|
|
Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas |
Xue-Jing Feng1, Jin-Xin Li1, Lu Qin1, Ying-Ying Zhang1, ShiQiang Xia1, Lu Zhou2, ChunJie Yang1( ), ZunLue Zhu1( ), Wu-Ming Liu3, Xing-Dong Zhao1( ) |
1. School of Physics, Henan Normal University, Xinxiang 453000, China 2. Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China 3. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We investigate the itinerant ferromagnetism in a dipolar Fermi atomic system with the anisotropic spin−orbit coupling (SOC), which is traditionally explored with isotropic contact interaction. We first study the ferromagnetism transition boundaries and the properties of the ground states through the density and spin-flip distribution in momentum space, and we find that both the anisotropy and the magnitude of the SOC play an important role in this process. We propose a helpful scheme and a quantum control method which can be applied to conquering the difficulties of previous experimental observation of itinerant ferromagnetism. Our further study reveals that exotic Fermi surfaces and an abnormal phase region can exist in this system by controlling the anisotropy of SOC, which can provide constructive suggestions for the research and the application of a dipolar Fermi gas. Furthermore, we also calculate the ferromagnetism transition temperature and novel distributions in momentum space at finite temperature beyond the ground states from the perspective of experiment.
|
Keywords
itinerant ferromagnetism
spin−orbit coupling
cold atom
quantum simulation
dipolar Fermi gas
dipole−dipole interaction
|
Corresponding Author(s):
ChunJie Yang,ZunLue Zhu,Xing-Dong Zhao
|
Issue Date: 26 April 2023
|
|
1 |
Wagner D., Introduction to the Theory of Magnetism: International Series of Monographs in Natural Philosophy, Vol. 48, Elsevier, 2013
|
2 |
Kübler J., Theory of Itinerant Electron Magnetism, Vol. 106, Oxford University Press, 2017
|
3 |
Zak J.. Dynamics of electrons in solids in external fields. Phys. Rev., 1968, 168(3): 686
https://doi.org/10.1103/PhysRev.168.686
|
4 |
Bloch F.. Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitfähigkeit. Eur. Phys. J. A, 1929, 57(7–8): 545
https://doi.org/10.1007/BF01340281
|
5 |
Misawa S.. Ferromagnetism of an electron gas. Phys. Rev., 1965, 140(5A): A1645
https://doi.org/10.1103/PhysRev.140.A1645
|
6 |
C. Stoner E.. Collective electron ferronmagnetism. Proc. R. Soc. Lond. A, 1938, 165(922): 372
https://doi.org/10.1098/rspa.1938.0066
|
7 |
C. Stoner E.. LXXX. Atomic moments in ferromagnetic metals and alloys with non-ferromagnetic elements. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1933, 15(101): 1018
https://doi.org/10.1080/14786443309462241
|
8 |
A. Duine R., H. MacDonald A.. Itinerant ferromagnetism in an ultracold atom Fermi gas. Phys. Rev. Lett., 2005, 95(23): 230403
https://doi.org/10.1103/PhysRevLett.95.230403
|
9 |
Pilati S., Bertaina G., Giorgini S., Troyer M.. Itinerant ferromagnetism of a repulsive atomic Fermi gas: A quantum Monte Carlo study. Phys. Rev. Lett., 2010, 105(3): 030405
https://doi.org/10.1103/PhysRevLett.105.030405
|
10 |
He L., G. Huang X.. Nonperturbative effects on the ferromagnetic transition in repulsive Fermi gases. Phys. Rev. A, 2012, 85(4): 043624
https://doi.org/10.1103/PhysRevA.85.043624
|
11 |
He L., J. Liu X., G. Huang X., Hu H.. Stoner ferromagnetism of a strongly interacting Fermi gas in the quasirepulsive regime. Phys. Rev. A, 2016, 93(6): 063629
https://doi.org/10.1103/PhysRevA.93.063629
|
12 |
He L.. Finite range and upper branch effects on itinerant ferromagnetism in repulsive Fermi gases: Bethe–Goldstone ladder resummation approach. Ann. Phys., 2014, 351: 477
https://doi.org/10.1016/j.aop.2014.09.009
|
13 |
Massignan P., Yu Z., M. Bruun G.. Itinerant ferromagnetism in a polarized two-component Fermi gas. Phys. Rev. Lett., 2013, 110(23): 230401
https://doi.org/10.1103/PhysRevLett.110.230401
|
14 |
Zintchenko I., Wang L., Troyer M.. Ferromagnetism of the repulsive atomic Fermi gas: Three-body recombination and domain formation. Eur. Phys. J. B, 2016, 89(8): 180
https://doi.org/10.1140/epjb/e2016-70302-5
|
15 |
Tajima H., Iida K.. Non-Hermitian ferromagnetism in an ultracold Fermi gas. J. Phys. Soc. Jpn., 2021, 90(2): 024004
https://doi.org/10.7566/JPSJ.90.024004
|
16 |
B. Jo G., R. Lee Y., H. Choi J., A. Christensen C., H. Kim T., H. Thywissen J., E. Pritchard D., Ketterle W.. Itinerant ferromagnetism in a Fermi gas of ultracold atoms. Science, 2009, 325(5947): 1521
https://doi.org/10.1126/science.1177112
|
17 |
Valtolina G., Scazza F., Amico A., Burchianti A., Re-cati A., Enss T., Inguscio M., Zaccanti M., Roati G.. Exploring the ferromagnetic behaviour of a repulsive Fermi gas through spin dynamics. Nat. Phys., 2017, 13(7): 704
https://doi.org/10.1038/nphys4108
|
18 |
Arias de Saavedra F., Mazzanti F., Boronat J., Polls A.. Ferromagnetic transition of a two-component Fermi gas of hard spheres. Phys. Rev. A, 2012, 85(3): 033615
https://doi.org/10.1103/PhysRevA.85.033615
|
19 |
W. von Keyserlingk C., J. Conduit G.. Itinerant ferromagnetism with finite-ranged interactions. Phys. Rev. B, 2013, 87(18): 184424
https://doi.org/10.1103/PhysRevB.87.184424
|
20 |
Sun Z., Gu Q.. Ferromagnetic transition in harmonically trapped Fermi gas with higher partial-wave interactions. J. Phys. At. Mol. Opt. Phys., 2017, 50(1): 015302
https://doi.org/10.1088/1361-6455/50/1/015302
|
21 |
Vermeyen E., A. R. Sá de Melo C., Tempere J.. Exchange interactions and itinerant ferromagnetism in ultracold Fermi gases. Phys. Rev. A, 2018, 98(2): 023635
https://doi.org/10.1103/PhysRevA.98.023635
|
22 |
Hu Y., Fei Y., L. Chen X., Zhang Y.. Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys., 2022, 17(6): 61505
https://doi.org/10.1007/s11467-022-1192-z
|
23 |
Guo H., Ji Y., Liu Q., Yang T., Hou S., Yin J.. A driven three-dimensional electric lattice for polar molecules. Front. Phys., 2022, 17(5): 52505
https://doi.org/10.1007/s11467-022-1174-1
|
24 |
S. Zeng T., Yin L.. Supersolidity of a dipolar Fermi gas in a cubic optical lattice. Phys. Rev. B, 2014, 89(17): 174511
https://doi.org/10.1103/PhysRevB.89.174511
|
25 |
Wu Z., K. Block J., M. Bruun G.. Coexistence of density wave and superfluid order in a dipolar Fermi gas. Phys. Rev. B, 2015, 91(22): 224504
https://doi.org/10.1103/PhysRevB.91.224504
|
26 |
G. Bhongale S., Mathey L., W. Tsai S., W. Clark C., Zhao E.. Unconventional spin-density waves in dipolar Fermi gases. Phys. Rev. A, 2013, 87(4): 043604
https://doi.org/10.1103/PhysRevA.87.043604
|
27 |
K. Ni K., Ospelkaus S., H. G. de Miranda M., Pe’Er A., Neyenhuis B., J. Zirbel J., Kotochigova S., S. Julienne P., S. Jin D., Ye J.. A high phase-space-density gas of polar molecules. Science, 2008, 322(5899): 231
https://doi.org/10.1126/science.1163861
|
28 |
Yan B., A. Moses S., Gadway B., P. Covey J., R. A. Hazzard K., M. Rey A., S. Jin D., Ye J.. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature, 2013, 501(7468): 521
https://doi.org/10.1038/nature12483
|
29 |
Chotia A., Neyenhuis B., A. Moses S., Yan B., P. Covey J., Foss-Feig M., M. Rey A., S. Jin D., Ye J.. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett., 2012, 108(8): 080405
https://doi.org/10.1103/PhysRevLett.108.080405
|
30 |
K. Ni K., Ospelkaus S., Wang D., Quéméner G., Neyenhuis B., H. G. de Miranda M., L. Bohn J., Ye J., S. Jin D.. Dipolar collisions of polar molecules in the quantum regime. Nature, 2010, 464(7293): 1324
https://doi.org/10.1038/nature08953
|
31 |
H. Wu C., W. Park J., Ahmadi P., Will S., W. Zwierlein M.. Ultracold fermionic Feshbach molecules of 23Na 40K. Phys. Rev. Lett., 2012, 109(8): 085301
https://doi.org/10.1103/PhysRevLett.109.085301
|
32 |
Lu M., Q. Burdick N., L. Lev B.. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett., 2012, 108(21): 215301
https://doi.org/10.1103/PhysRevLett.108.215301
|
33 |
Q. Burdick N., Tang Y., L. Lev B.. Long-lived spin–orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X, 2016, 6(3): 031022
https://doi.org/10.1103/PhysRevX.6.031022
|
34 |
J. Feng X., Yin L.. Phase diagram of a spin–orbit coupled dipolar Fermi gas at T = 0 K. Chin. Phys. Lett., 2020, 37(2): 020301
https://doi.org/10.1088/0256-307X/37/2/020301
|
35 |
J. Feng X., D. Zhao X., Qin L., Y. Zhang Y., Zhu Z., J. Tian H., Zhuang L., M. Liu W.. Itinerant ferromagnetism of a dipolar Fermi gas with Raman-induced spin–orbit coupling. Phys. Rev. A, 2022, 105(5): 053312
https://doi.org/10.1103/PhysRevA.105.053312
|
36 |
M. Fregoso B., Fradkin E.. Ferronematic ground state of the dilute dipolar Fermi gas. Phys. Rev. Lett., 2009, 103(20): 205301
https://doi.org/10.1103/PhysRevLett.103.205301
|
37 |
Miyakawa T., Sogo T., Pu H.. Phase-space deformation of a trapped dipolar Fermi gas. Phys. Rev. A, 2008, 77(6): 061603
https://doi.org/10.1103/PhysRevA.77.061603
|
38 |
Ronen S., L. Bohn J.. Zero sound in dipolar Fermi gases. Phys. Rev. A, 2010, 81(3): 033601
https://doi.org/10.1103/PhysRevA.81.033601
|
39 |
J. Lin Y., Jiménez-García K., B. Spielman I.. Spin–orbit-coupled Bose–Einstein condensates. Nature, 2011, 471(7336): 83
https://doi.org/10.1038/nature09887
|
40 |
Wang P., Q. Yu Z., Fu Z., Miao J., Huang L., Chai S., Zhai H., Zhang J.. Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett., 2012, 109(9): 095301
https://doi.org/10.1103/PhysRevLett.109.095301
|
41 |
Wu Z., Zhang L., Sun W., T. Xu X., Z. Wang B., C. Ji S., Deng Y., Chen S., J. Liu X., W. Pan J.. Realization of two-dimensional spin–orbit coupling for Bose– Einstein condensates. Science, 2016, 354(6308): 83
https://doi.org/10.1126/science.aaf6689
|
42 |
Meng Z., Huang L., Peng P., Li D., Chen L., Xu Y., Zhang C., Wang P., Zhang J.. Experimental observation of a topological band gap opening in ultracold Fermi gases with two-dimensional spin–orbit coupling. Phys. Rev. Lett., 2016, 117(23): 235304
https://doi.org/10.1103/PhysRevLett.117.235304
|
43 |
Huang L., Meng Z., Wang P., Peng P., L. Zhang S., Chen L., Li D., Zhou Q., Zhang J.. Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys., 2016, 12(6): 540
https://doi.org/10.1038/nphys3672
|
44 |
Y. Wang Z., C. Cheng X., Z. Wang B., Y. Zhang J., H. Lu Y., R. Yi C., Niu S., Deng Y., J. Liu X., Chen S., Pan J.W.. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin–orbit coupling. Science, 2021, 372(6539): 271
https://doi.org/10.1126/science.abc0105
|
45 |
Zhang Y., E. Mossman M., Busch T., Engels P., Zhang C.. Properties of spin–orbit-coupled Bose–Einstein condensates. Front. Phys., 2016, 11(3): 118103
https://doi.org/10.1007/s11467-016-0560-y
|
46 |
H. Lu P., F. Zhang X., Q. Dai C.. Dynamics and formation of vortices collapsed from ring dark solitons in a two-dimensional spin−orbit coupled Bose–Einstein condensate. Front. Phys., 2022, 17(4): 42501
https://doi.org/10.1007/s11467-021-1134-1
|
47 |
Jiao C., C. Liang J., F. Yu Z., Chen Y., X. Zhang A., K. Xue J.. Bose–Einstein condensates with tunable spin–orbit coupling in the two-dimensional harmonic potential: The ground-state phases. stability phase diagram and collapse dynamics, Front. Phys., 2022, 17(6): 61503
https://doi.org/10.1007/s11467-022-1180-3
|
48 |
Yang H., Zhang Q., Jian Z.. Dynamics of rotating spin−orbit-coupled spin-1 Bose–Einstein condensates with in-plane gradient magnetic field in an anharmonic trap. Front. Phys., 2022, 10(910818):
https://doi.org/10.3389/fphy.2022.910818
|
49 |
S. Zhang S., Ye J., M. Liu W.. Itinerant magnetic phases and quantum Lifshitz transitions in a three-dimensional repulsively interacting Fermi gas with spin–orbit coupling. Phys. Rev. B, 2016, 94(11): 115121
https://doi.org/10.1103/PhysRevB.94.115121
|
50 |
E. Liu W., Chesi S., Webb D., Zülicke U., Winkler R., Joynt R., Culcer D.. Generalized Stoner criterion and versatile spin ordering in two-dimensional spin–orbit coupled electron systems. Phys. Rev. B, 2017, 96(23): 235425
https://doi.org/10.1103/PhysRevB.96.235425
|
51 |
Vivas C H.. Magnetic stability for the Hartree–Fock ground state in two dimensional Rashba–Gauge electronic systems. J. Magn. Magn. Mater., 2020, 498(166113):
https://doi.org/10.1016/j.jmmm.2019.166113
|
52 |
Gu Q., Yin L.. Spin–orbit-coupling-induced resonance in an ultracold Bose gas. Phys. Rev. A, 2018, 98(1): 013617
https://doi.org/10.1103/PhysRevA.98.013617
|
53 |
D. Stanescu T., Anderson B., Galitski V.. Spin–orbit coupled Bose–Einstein condensates. Phys. Rev. A, 2008, 78(2): 023616
https://doi.org/10.1103/PhysRevA.78.023616
|
54 |
F. Liu C., M. Yu Y., C. Gou S., M. Liu W.. Vortex chain in anisotropic spin–orbit-coupled spin-1 Bose– Einstein condensates. Phys. Rev. A, 2013, 87(6): 063630
https://doi.org/10.1103/PhysRevA.87.063630
|
55 |
Liao B., Ye Y., Zhuang J., Huang C., Deng H., Pang W., Liu B., Li Y.. Anisotropic solitary semivortices in dipolar spinor condensates controlled by the two-dimensional anisotropic spin–orbit coupling. Chaos Solitons Fractals, 2018, 116: 424
https://doi.org/10.1016/j.chaos.2018.10.001
|
56 |
W. Zhang D., P. Chen J., J. Shan C., D. Wang Z., L. Zhu S.. Superfluid and magnetic states of an ultracold Bose gas with synthetic three-dimensional spin–orbit coupling in an optical lattice. Phys. Rev. A, 2013, 88(1): 013612
https://doi.org/10.1103/PhysRevA.88.013612
|
57 |
J. Liu X., Hu H., Pu H.. Three-dimensional spin–orbit coupled Fermi gases: Fulde–Ferrell pairing. Majorana fermions, Weyl fermions.and gapless topological superfluidity. Chin. Phys. B, 2015, 24(5): 050502
https://doi.org/10.1088/1674-1056/24/5/050502
|
58 |
Li J.R., G. Tobias W., Matsuda K., Miller C., Valtolina G., De Marco L., R. Wang R., Lassablière L., Quéméner G., L. Bohn J., Ye J.. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys., 2021, 17(10): 1144
https://doi.org/10.1038/s41567-021-01329-6
|
59 |
Stuhler J., Griesmaier A., Koch T., Fattori M., Pfau T., Giovanazzi S., Pedri P., Santos L.. Observation of dipole–dipole interaction in a degenerate quantum gas. Phys. Rev. Lett., 2005, 95(15): 150406
https://doi.org/10.1103/PhysRevLett.95.150406
|
60 |
Aikawa K., Baier S., Frisch A., Mark M., Ravensbergen C., Ferlaino F.. Observation of Fermi surface deformation in a dipolar quantum gas. Science, 2014, 345(6203): 1484
https://doi.org/10.1126/science.1255259
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|