Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 52303    https://doi.org/10.1007/s11467-023-1283-5
RESEARCH ARTICLE
Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas
Xue-Jing Feng1, Jin-Xin Li1, Lu Qin1, Ying-Ying Zhang1, ShiQiang Xia1, Lu Zhou2, ChunJie Yang1(), ZunLue Zhu1(), Wu-Ming Liu3, Xing-Dong Zhao1()
1. School of Physics, Henan Normal University, Xinxiang 453000, China
2. Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
3. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(4137 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the itinerant ferromagnetism in a dipolar Fermi atomic system with the anisotropic spin−orbit coupling (SOC), which is traditionally explored with isotropic contact interaction. We first study the ferromagnetism transition boundaries and the properties of the ground states through the density and spin-flip distribution in momentum space, and we find that both the anisotropy and the magnitude of the SOC play an important role in this process. We propose a helpful scheme and a quantum control method which can be applied to conquering the difficulties of previous experimental observation of itinerant ferromagnetism. Our further study reveals that exotic Fermi surfaces and an abnormal phase region can exist in this system by controlling the anisotropy of SOC, which can provide constructive suggestions for the research and the application of a dipolar Fermi gas. Furthermore, we also calculate the ferromagnetism transition temperature and novel distributions in momentum space at finite temperature beyond the ground states from the perspective of experiment.

Keywords itinerant ferromagnetism      spin−orbit coupling      cold atom      quantum simulation      dipolar Fermi gas      dipole−dipole interaction     
Corresponding Author(s): ChunJie Yang,ZunLue Zhu,Xing-Dong Zhao   
Issue Date: 26 April 2023
 Cite this article:   
Xue-Jing Feng,Jin-Xin Li,Lu Qin, et al. Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas[J]. Front. Phys. , 2023, 18(5): 52303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1283-5
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/52303
Fig.1  (a) Schematic diagram of the experimental realization of the anisotropic 3D spin−orbit coupling [44]. Three pairs of Raman lasers propagating in three directions are polarized in the directions displayed above. The x-direction and the z-direction Raman laser, along with the y-direction and the z-direction Raman laser, comprise a double- Λ configuration leading to a 3D SOC. The atoms interact with each other through a long-range anisotropic dipole−dipole interaction (DDI). (b) Density of states (DOS) of the lower-branch of single-atom excitation energy with different anisotropy parameters γ. The unit energy ?λ=2λ 2/(2m) with λ= α0m / 2. The unit of DOS Dm in=Vλ 3/? λ. When γ= 0 (Rashba SOC) or γ= 1 (Weyl SOC), energy unit is Emin=?λ. When γ=2 and γ= 5 which correspond to two anisotropic circumstances, the energy unit Em in=4?λ and Emin=25? λ, respectively. The singularities of DOS with anisotropic SOC occur at E=?λ.
Fig.2  (a) Zero-temperature ferromagnetism transition boundaries as functions of γ and λd with λs= 0. (b) The same as (a), but as functions of γ and λs with λd= 0. In panels (a) and (b), the red dashed line, blue dash-dotted line, and black dash-dot-dotted line are for λsoc= 0.6,0.4,0.2, respectively. The green solid line in (a) is the unstable boundary above which the dipolar system undergoes a dynamical instability [36]. (c) The same as (a), but as functions of λsoc and λd. In panel (c), the red dashed line, blue dash-dotted line, and black dash-dot-dotted line are for γ=2.5, 2,1.5, respectively. (d) Zero-temperature ferromagnetism transition boundaries as functions of γ and λsoc. In panel (d), the red dashed line and blue dash-dotted line are for λd= 0.3,0.2, respectively. Above the boundary curves, this system undergoes a ferromagnetic transition with the magnetization M>0 from a normal state with M=0.
Fig.3  Magnetization (M) and chemical potential ( μ) as functions of γ with λd= 0.2 and λsoc=0.4 (a); as functions of λsoc with λd= 0.2 and γ=2 (b). Both figures indicate a transition from a normal state (M = 0) to a ferromagnetic state ( M>0).
Fig.4  Zero-temperature density distribution nk, [panels (a1−a3)], nk, [panels (b1−b3)], and spin-flip distribution |tk| [panels (c1−c3)] with λsoc = 0.4, λd = 0.2. Panels (a1−c1) are for γ = 5.7; panels (a2−c2) are for γ = 5.5; panels (a3−c3) are for γ = 4.9. These figures from the left column to the right column show a transition from a ferromagnetic state to a normal state.
Fig.5  Density distributions of spin-up [panels (a1−d1)] and spin-down component [panels (a2−d2)] in momentum space. Panels (a1, a2) are for λd= 0.1; panels (b1, b2) are for λd=0.13; panels (c1, c2) are for λd= 0.4; panels (d1, d2) are for λd=0.5, and all for λsoc= 1.9, γ=1.2.
Fig.6  (a) Ferromagnetic transition temperature as functions of γ with λd=0.2. The red dashed line and blue dash-dotted line are for λsoc= 0.4,0.6, respectively. (b) Entropy as functions of temperature λT with λd = 0.20, λsoc = 0.4. The red dashed line, blue dash-dotted line, and black dash-dot-dotted line are for γ =8, 6.5,5, respectively. (c) Ferromagnetic transition temperature as functions of λsoc with λd= 0.2. The red dashed line and blue dash-dotted line are for γ=5,6, respectively. (d) Ferromagnetic transition temperature as functions of λd with γ= 5. The red dashed line and blue dash-dotted line are for λsoc=0.4, 0.5, respectively.
Fig.7  Density distributions of spin-up [panels (a1, b1)], spin-down [panels (a2, b2)] and spin-flip distribution [panels (a3, b3)]. Panels (a1−a3) are for λT= 0.3 and panels (b1−b3) are for λT= 1. All panels are for γ= 8, λsoc=0.4 and λd=0.2.
1 Wagner D., Introduction to the Theory of Magnetism: International Series of Monographs in Natural Philosophy, Vol. 48, Elsevier, 2013
2 Kübler J., Theory of Itinerant Electron Magnetism, Vol. 106, Oxford University Press, 2017
3 Zak J.. Dynamics of electrons in solids in external fields. Phys. Rev., 1968, 168(3): 686
https://doi.org/10.1103/PhysRev.168.686
4 Bloch F.. Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitfähigkeit. Eur. Phys. J. A, 1929, 57(7–8): 545
https://doi.org/10.1007/BF01340281
5 Misawa S.. Ferromagnetism of an electron gas. Phys. Rev., 1965, 140(5A): A1645
https://doi.org/10.1103/PhysRev.140.A1645
6 C. Stoner E.. Collective electron ferronmagnetism. Proc. R. Soc. Lond. A, 1938, 165(922): 372
https://doi.org/10.1098/rspa.1938.0066
7 C. Stoner E.. LXXX. Atomic moments in ferromagnetic metals and alloys with non-ferromagnetic elements. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1933, 15(101): 1018
https://doi.org/10.1080/14786443309462241
8 A. Duine R., H. MacDonald A.. Itinerant ferromagnetism in an ultracold atom Fermi gas. Phys. Rev. Lett., 2005, 95(23): 230403
https://doi.org/10.1103/PhysRevLett.95.230403
9 Pilati S., Bertaina G., Giorgini S., Troyer M.. Itinerant ferromagnetism of a repulsive atomic Fermi gas: A quantum Monte Carlo study. Phys. Rev. Lett., 2010, 105(3): 030405
https://doi.org/10.1103/PhysRevLett.105.030405
10 He L., G. Huang X.. Nonperturbative effects on the ferromagnetic transition in repulsive Fermi gases. Phys. Rev. A, 2012, 85(4): 043624
https://doi.org/10.1103/PhysRevA.85.043624
11 He L., J. Liu X., G. Huang X., Hu H.. Stoner ferromagnetism of a strongly interacting Fermi gas in the quasirepulsive regime. Phys. Rev. A, 2016, 93(6): 063629
https://doi.org/10.1103/PhysRevA.93.063629
12 He L.. Finite range and upper branch effects on itinerant ferromagnetism in repulsive Fermi gases: Bethe–Goldstone ladder resummation approach. Ann. Phys., 2014, 351: 477
https://doi.org/10.1016/j.aop.2014.09.009
13 Massignan P., Yu Z., M. Bruun G.. Itinerant ferromagnetism in a polarized two-component Fermi gas. Phys. Rev. Lett., 2013, 110(23): 230401
https://doi.org/10.1103/PhysRevLett.110.230401
14 Zintchenko I., Wang L., Troyer M.. Ferromagnetism of the repulsive atomic Fermi gas: Three-body recombination and domain formation. Eur. Phys. J. B, 2016, 89(8): 180
https://doi.org/10.1140/epjb/e2016-70302-5
15 Tajima H., Iida K.. Non-Hermitian ferromagnetism in an ultracold Fermi gas. J. Phys. Soc. Jpn., 2021, 90(2): 024004
https://doi.org/10.7566/JPSJ.90.024004
16 B. Jo G., R. Lee Y., H. Choi J., A. Christensen C., H. Kim T., H. Thywissen J., E. Pritchard D., Ketterle W.. Itinerant ferromagnetism in a Fermi gas of ultracold atoms. Science, 2009, 325(5947): 1521
https://doi.org/10.1126/science.1177112
17 Valtolina G., Scazza F., Amico A., Burchianti A., Re-cati A., Enss T., Inguscio M., Zaccanti M., Roati G.. Exploring the ferromagnetic behaviour of a repulsive Fermi gas through spin dynamics. Nat. Phys., 2017, 13(7): 704
https://doi.org/10.1038/nphys4108
18 Arias de Saavedra F., Mazzanti F., Boronat J., Polls A.. Ferromagnetic transition of a two-component Fermi gas of hard spheres. Phys. Rev. A, 2012, 85(3): 033615
https://doi.org/10.1103/PhysRevA.85.033615
19 W. von Keyserlingk C., J. Conduit G.. Itinerant ferromagnetism with finite-ranged interactions. Phys. Rev. B, 2013, 87(18): 184424
https://doi.org/10.1103/PhysRevB.87.184424
20 Sun Z., Gu Q.. Ferromagnetic transition in harmonically trapped Fermi gas with higher partial-wave interactions. J. Phys. At. Mol. Opt. Phys., 2017, 50(1): 015302
https://doi.org/10.1088/1361-6455/50/1/015302
21 Vermeyen E., A. R. Sá de Melo C., Tempere J.. Exchange interactions and itinerant ferromagnetism in ultracold Fermi gases. Phys. Rev. A, 2018, 98(2): 023635
https://doi.org/10.1103/PhysRevA.98.023635
22 Hu Y., Fei Y., L. Chen X., Zhang Y.. Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys., 2022, 17(6): 61505
https://doi.org/10.1007/s11467-022-1192-z
23 Guo H., Ji Y., Liu Q., Yang T., Hou S., Yin J.. A driven three-dimensional electric lattice for polar molecules. Front. Phys., 2022, 17(5): 52505
https://doi.org/10.1007/s11467-022-1174-1
24 S. Zeng T., Yin L.. Supersolidity of a dipolar Fermi gas in a cubic optical lattice. Phys. Rev. B, 2014, 89(17): 174511
https://doi.org/10.1103/PhysRevB.89.174511
25 Wu Z., K. Block J., M. Bruun G.. Coexistence of density wave and superfluid order in a dipolar Fermi gas. Phys. Rev. B, 2015, 91(22): 224504
https://doi.org/10.1103/PhysRevB.91.224504
26 G. Bhongale S., Mathey L., W. Tsai S., W. Clark C., Zhao E.. Unconventional spin-density waves in dipolar Fermi gases. Phys. Rev. A, 2013, 87(4): 043604
https://doi.org/10.1103/PhysRevA.87.043604
27 K. Ni K., Ospelkaus S., H. G. de Miranda M., Pe’Er A., Neyenhuis B., J. Zirbel J., Kotochigova S., S. Julienne P., S. Jin D., Ye J.. A high phase-space-density gas of polar molecules. Science, 2008, 322(5899): 231
https://doi.org/10.1126/science.1163861
28 Yan B., A. Moses S., Gadway B., P. Covey J., R. A. Hazzard K., M. Rey A., S. Jin D., Ye J.. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature, 2013, 501(7468): 521
https://doi.org/10.1038/nature12483
29 Chotia A., Neyenhuis B., A. Moses S., Yan B., P. Covey J., Foss-Feig M., M. Rey A., S. Jin D., Ye J.. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett., 2012, 108(8): 080405
https://doi.org/10.1103/PhysRevLett.108.080405
30 K. Ni K., Ospelkaus S., Wang D., Quéméner G., Neyenhuis B., H. G. de Miranda M., L. Bohn J., Ye J., S. Jin D.. Dipolar collisions of polar molecules in the quantum regime. Nature, 2010, 464(7293): 1324
https://doi.org/10.1038/nature08953
31 H. Wu C., W. Park J., Ahmadi P., Will S., W. Zwierlein M.. Ultracold fermionic Feshbach molecules of 23Na 40K. Phys. Rev. Lett., 2012, 109(8): 085301
https://doi.org/10.1103/PhysRevLett.109.085301
32 Lu M., Q. Burdick N., L. Lev B.. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett., 2012, 108(21): 215301
https://doi.org/10.1103/PhysRevLett.108.215301
33 Q. Burdick N., Tang Y., L. Lev B.. Long-lived spin–orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X, 2016, 6(3): 031022
https://doi.org/10.1103/PhysRevX.6.031022
34 J. Feng X., Yin L.. Phase diagram of a spin–orbit coupled dipolar Fermi gas at T = 0 K. Chin. Phys. Lett., 2020, 37(2): 020301
https://doi.org/10.1088/0256-307X/37/2/020301
35 J. Feng X., D. Zhao X., Qin L., Y. Zhang Y., Zhu Z., J. Tian H., Zhuang L., M. Liu W.. Itinerant ferromagnetism of a dipolar Fermi gas with Raman-induced spin–orbit coupling. Phys. Rev. A, 2022, 105(5): 053312
https://doi.org/10.1103/PhysRevA.105.053312
36 M. Fregoso B., Fradkin E.. Ferronematic ground state of the dilute dipolar Fermi gas. Phys. Rev. Lett., 2009, 103(20): 205301
https://doi.org/10.1103/PhysRevLett.103.205301
37 Miyakawa T., Sogo T., Pu H.. Phase-space deformation of a trapped dipolar Fermi gas. Phys. Rev. A, 2008, 77(6): 061603
https://doi.org/10.1103/PhysRevA.77.061603
38 Ronen S., L. Bohn J.. Zero sound in dipolar Fermi gases. Phys. Rev. A, 2010, 81(3): 033601
https://doi.org/10.1103/PhysRevA.81.033601
39 J. Lin Y., Jiménez-García K., B. Spielman I.. Spin–orbit-coupled Bose–Einstein condensates. Nature, 2011, 471(7336): 83
https://doi.org/10.1038/nature09887
40 Wang P., Q. Yu Z., Fu Z., Miao J., Huang L., Chai S., Zhai H., Zhang J.. Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett., 2012, 109(9): 095301
https://doi.org/10.1103/PhysRevLett.109.095301
41 Wu Z., Zhang L., Sun W., T. Xu X., Z. Wang B., C. Ji S., Deng Y., Chen S., J. Liu X., W. Pan J.. Realization of two-dimensional spin–orbit coupling for Bose– Einstein condensates. Science, 2016, 354(6308): 83
https://doi.org/10.1126/science.aaf6689
42 Meng Z., Huang L., Peng P., Li D., Chen L., Xu Y., Zhang C., Wang P., Zhang J.. Experimental observation of a topological band gap opening in ultracold Fermi gases with two-dimensional spin–orbit coupling. Phys. Rev. Lett., 2016, 117(23): 235304
https://doi.org/10.1103/PhysRevLett.117.235304
43 Huang L., Meng Z., Wang P., Peng P., L. Zhang S., Chen L., Li D., Zhou Q., Zhang J.. Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys., 2016, 12(6): 540
https://doi.org/10.1038/nphys3672
44 Y. Wang Z., C. Cheng X., Z. Wang B., Y. Zhang J., H. Lu Y., R. Yi C., Niu S., Deng Y., J. Liu X., Chen S., Pan J.W.. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin–orbit coupling. Science, 2021, 372(6539): 271
https://doi.org/10.1126/science.abc0105
45 Zhang Y., E. Mossman M., Busch T., Engels P., Zhang C.. Properties of spin–orbit-coupled Bose–Einstein condensates. Front. Phys., 2016, 11(3): 118103
https://doi.org/10.1007/s11467-016-0560-y
46 H. Lu P., F. Zhang X., Q. Dai C.. Dynamics and formation of vortices collapsed from ring dark solitons in a two-dimensional spin−orbit coupled Bose–Einstein condensate. Front. Phys., 2022, 17(4): 42501
https://doi.org/10.1007/s11467-021-1134-1
47 Jiao C., C. Liang J., F. Yu Z., Chen Y., X. Zhang A., K. Xue J.. Bose–Einstein condensates with tunable spin–orbit coupling in the two-dimensional harmonic potential: The ground-state phases. stability phase diagram and collapse dynamics, Front. Phys., 2022, 17(6): 61503
https://doi.org/10.1007/s11467-022-1180-3
48 Yang H., Zhang Q., Jian Z.. Dynamics of rotating spin−orbit-coupled spin-1 Bose–Einstein condensates with in-plane gradient magnetic field in an anharmonic trap. Front. Phys., 2022, 10(910818):
https://doi.org/10.3389/fphy.2022.910818
49 S. Zhang S., Ye J., M. Liu W.. Itinerant magnetic phases and quantum Lifshitz transitions in a three-dimensional repulsively interacting Fermi gas with spin–orbit coupling. Phys. Rev. B, 2016, 94(11): 115121
https://doi.org/10.1103/PhysRevB.94.115121
50 E. Liu W., Chesi S., Webb D., Zülicke U., Winkler R., Joynt R., Culcer D.. Generalized Stoner criterion and versatile spin ordering in two-dimensional spin–orbit coupled electron systems. Phys. Rev. B, 2017, 96(23): 235425
https://doi.org/10.1103/PhysRevB.96.235425
51 Vivas C H.. Magnetic stability for the Hartree–Fock ground state in two dimensional Rashba–Gauge electronic systems. J. Magn. Magn. Mater., 2020, 498(166113):
https://doi.org/10.1016/j.jmmm.2019.166113
52 Gu Q., Yin L.. Spin–orbit-coupling-induced resonance in an ultracold Bose gas. Phys. Rev. A, 2018, 98(1): 013617
https://doi.org/10.1103/PhysRevA.98.013617
53 D. Stanescu T., Anderson B., Galitski V.. Spin–orbit coupled Bose–Einstein condensates. Phys. Rev. A, 2008, 78(2): 023616
https://doi.org/10.1103/PhysRevA.78.023616
54 F. Liu C., M. Yu Y., C. Gou S., M. Liu W.. Vortex chain in anisotropic spin–orbit-coupled spin-1 Bose– Einstein condensates. Phys. Rev. A, 2013, 87(6): 063630
https://doi.org/10.1103/PhysRevA.87.063630
55 Liao B., Ye Y., Zhuang J., Huang C., Deng H., Pang W., Liu B., Li Y.. Anisotropic solitary semivortices in dipolar spinor condensates controlled by the two-dimensional anisotropic spin–orbit coupling. Chaos Solitons Fractals, 2018, 116: 424
https://doi.org/10.1016/j.chaos.2018.10.001
56 W. Zhang D., P. Chen J., J. Shan C., D. Wang Z., L. Zhu S.. Superfluid and magnetic states of an ultracold Bose gas with synthetic three-dimensional spin–orbit coupling in an optical lattice. Phys. Rev. A, 2013, 88(1): 013612
https://doi.org/10.1103/PhysRevA.88.013612
57 J. Liu X., Hu H., Pu H.. Three-dimensional spin–orbit coupled Fermi gases: Fulde–Ferrell pairing. Majorana fermions, Weyl fermions.and gapless topological superfluidity. Chin. Phys. B, 2015, 24(5): 050502
https://doi.org/10.1088/1674-1056/24/5/050502
58 Li J.R., G. Tobias W., Matsuda K., Miller C., Valtolina G., De Marco L., R. Wang R., Lassablière L., Quéméner G., L. Bohn J., Ye J.. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys., 2021, 17(10): 1144
https://doi.org/10.1038/s41567-021-01329-6
59 Stuhler J., Griesmaier A., Koch T., Fattori M., Pfau T., Giovanazzi S., Pedri P., Santos L.. Observation of dipole–dipole interaction in a degenerate quantum gas. Phys. Rev. Lett., 2005, 95(15): 150406
https://doi.org/10.1103/PhysRevLett.95.150406
60 Aikawa K., Baier S., Frisch A., Mark M., Ravensbergen C., Ferlaino F.. Observation of Fermi surface deformation in a dipolar quantum gas. Science, 2014, 345(6203): 1484
https://doi.org/10.1126/science.1255259
[1] Wen-Qiang Liu, Zhang-qi Yin. Efficiently simulating the work distribution of multiple identical bosons with boson sampling[J]. Front. Phys. , 2024, 19(3): 32203-.
[2] Jia-Nan Cui, Zhengqiang Zhou, Mingyuan Sun. Universal dynamic scaling and Contact dynamics in quenched quantum gases[J]. Front. Phys. , 2024, 19(2): 22201-.
[3] Wei Feng, Dexi Shao, Guo-Qiang Zhang, Qi-Ping Su, Jun-Xiang Zhang, Chui-Ping Yang. Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices[J]. Front. Phys. , 2023, 18(6): 61302-.
[4] Wenhua Yan, Xudong Ren, Wenjie Xu, Zhongkun Hu, Minkang Zhou. Magnetic-field-sensitive multi-wave interference[J]. Front. Phys. , 2023, 18(5): 52306-.
[5] Yanming Hu, Yifan Fei, Xiao-Long Chen, Yunbo Zhang. Collisional dynamics of symmetric two-dimensional quantum droplets[J]. Front. Phys. , 2022, 17(6): 61505-.
[6] Zixuan Zeng, Shangjin Li, Bo Yan. Isotope separation of Potassium with a magneto–optical combined method[J]. Front. Phys. , 2022, 17(3): 32502-.
[7] Na-Na Zhang (张娜娜), Ming-Jie Tao (陶明杰), Wan-Ting He (何宛亭), Xin-Yu Chen (陈鑫宇), Xiang-Yu Kong (孔祥宇), Fu-Guo Deng (邓富国), Neill Lambert, Qing Ai (艾清). Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities[J]. Front. Phys. , 2021, 16(5): 51501-.
[8] Qian Liang, Tao Chen, Wen-Hao Bu, Yu-He Zhang, Bo Yan. Laser cooling with adiabatic passage for type-II transitions[J]. Front. Phys. , 2021, 16(3): 32501-.
[9] Yong Xu. Topological gapless matters in three-dimensional ultracold atomic gases[J]. Front. Phys. , 2019, 14(4): 43402-.
[10] Junbo Zhu (竺俊博),Zhu Chen (陈竹),Biao Wu (吴飙). Construction of maximally localized Wannier functions[J]. Front. Phys. , 2017, 12(5): 127102-.
[11] Hongwei Xiong. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium[J]. Front. Phys. , 2015, 10(4): 100401-.
[12] Andrey R. Kolovsky. Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices[J]. Front. Phys. , 2012, 7(1): 3-7.
[13] Dan-wei Zhang (张丹伟), Zi-dan Wang (汪子丹), Shi-liang Zhu (朱诗亮). Relativistic quantum effects of Dirac particles simulated by ultracold atoms[J]. Front. Phys. , 2012, 7(1): 31-53.
[14] Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜). Quantum simulation of molecular interaction and dynamics at surfaces[J]. Front. Phys. , 2011, 6(3): 294-308.
[15] Xin-hua PENG (彭新华), Dieter SUTER, . Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed