|
|
Universal dynamic scaling and Contact dynamics in quenched quantum gases |
Jia-Nan Cui1, Zhengqiang Zhou1, Mingyuan Sun1,2( ) |
1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China 2. State Key Lab of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract Recently universal dynamic scaling is observed in several systems, which exhibit a spatiotemporal self-similar scaling behavior, analogous to the spatial scaling near phase transition. The latter one arises from the emergent continuous scaling symmetry. Motivated by this, we investigate the possible relation between the scaling dynamics and the continuous scaling symmetry in this paper. We derive a theorem that the scaling invariance of the quenched Hamiltonian and the initial density matrix can lead to the universal dynamic scaling. It is further demonstrated both in a two-body system analytically and in a many-body system numerically. For the latter one, we calculate the dynamics of quantum gases quenched from the zero interaction to a finite interaction via the non-equilibrium high-temperature virial expansion. A dynamic scaling of the momentum distribution appears in certain momentum-time windows at unitarity as well as in the weak interacting limit. Remarkably, this universal scaling dynamics persists approximately with smaller scaling exponents even if the scaling symmetry is fairly broken. Our findings may offer a new perspective to interpret the related experiments. We also study the Contact dynamics in the BEC−BCS crossover. Surprisingly, the half-way time displays a maximum near unitarity while some damping oscillations occur on the BEC side due to the dimer state, which can be used to detect possible two-body bound states in experiments.
|
Keywords
dynamic scaling
Contact dynamics
quantum gases
cold atom
quench dynamics
virial expansion
continuous scaling symmetry
|
Corresponding Author(s):
Mingyuan Sun
|
Just Accepted Date: 28 August 2023
Issue Date: 26 September 2023
|
|
1 |
Makotyn P. , E. Klauss C. , L. Goldberger D. , A. Cornell E. , S. Jin D. . Universal dynamics of a degenerate unitary Bose gas. Nat. Phys., 2014, 10(2): 116
https://doi.org/10.1038/nphys2850
|
2 |
Eigen C. , A. P. Glidden J. , Lopes R. , Navon N. , Hadzibabic Z. , P. Smith R. . Universal scaling laws in the dynamics of a homogeneous unitary Bose gas. Phys. Rev. Lett., 2017, 119(25): 250404
https://doi.org/10.1103/PhysRevLett.119.250404
|
3 |
Eigen C. , A. Glidden J. , Lopes R. , A. Cornell E. , P. Smith R. , Hadzibabic Z. . Universal prethermal dynamics of Bose gases quenched to unitarity. Nature, 2018, 563(7730): 221
https://doi.org/10.1038/s41586-018-0674-1
|
4 |
Prüfer M. , Kunkel P. , Strobel H. , Lannig S. , Linnemann D. , M. Schmied C. , Berges J. , Gasenzer T. , K. Oberthaler M. . Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature, 2018, 563(7730): 217
https://doi.org/10.1038/s41586-018-0659-0
|
5 |
Erne S. , Bucker R. , Gasenzer T. , Berges J. , Schmiedmayer J. . Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature, 2018, 563(7730): 225
https://doi.org/10.1038/s41586-018-0667-0
|
6 |
A. P. Glidden J. , Eigen C. , H. Dogra L. , A. Hilker T. , P. Smith R. , Hadzibabic Z. . Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium. Nat. Phys., 2021, 17(4): 457
https://doi.org/10.1038/s41567-020-01114-x
|
7 |
Gałka M. , Christodoulou P. , Gazo M. , Karailiev A. , Dogra N. , Schmitt J. , Hadzibabic Z. . Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett., 2022, 129(19): 190402
https://doi.org/10.1103/PhysRevLett.129.190402
|
8 |
Wei D. , Rubio-Abadal A. , Ye B. , Machado F. , Kemp J. , Srakaew K. , Hollerith S. , Rui J. , Gopalakrishnan S. , Y. Yao N. , Bloch I. , Zeiher J. . Quantum gas microscopy of Kardar‒Parisi‒Zhang superdiffusion. Science, 2022, 376(6594): 716
https://doi.org/10.1126/science.abk2397
|
9 |
Huh S.Mukherjee K.Kwon K.Seo J.I. Mistakidis S.R. Sadeghpour H.Y. Choi J., Classifying the universal coarsening dynamics of a quenched ferromagnetic condensate, arXiv: 2303.05230 (2023)
|
10 |
Yin X. , Radzihovsky L. . Quench dynamics of a strongly interacting resonant Bose gas. Phys. Rev. A, 2013, 88(6): 063611
https://doi.org/10.1103/PhysRevA.88.063611
|
11 |
G. Sykes A. , P. Corson J. , P. D’Incao J. , P. Koller A. , H. Greene C. , M. Rey A. , R. Hazzard K. , L. Bohn J. . Quenching to unitarity: Quantum dynamics in a three-dimensional Bose gas. Phys. Rev. A, 2014, 89(2): 021601
https://doi.org/10.1103/PhysRevA.89.021601
|
12 |
Rançon A. , Levin K. . Equilibrating dynamics in quenched Bose gases: Characterizing multiple time regimes. Phys. Rev. A, 2014, 90(2): 021602
https://doi.org/10.1103/PhysRevA.90.021602
|
13 |
Kain B. , Y. Ling H. . Nonequilibrium states of a quenched Bose gas. Phys. Rev. A, 2014, 90(6): 063626
https://doi.org/10.1103/PhysRevA.90.063626
|
14 |
P. Corson J. , L. Bohn J. . Bound-state signatures in quenched Bose‒Einstein condensates. Phys. Rev. A, 2015, 91(1): 013616
https://doi.org/10.1103/PhysRevA.91.013616
|
15 |
Ancilotto F. , Rossi M. , Salasnich L. , Toigo F. . Quenched dynamics of the momentum distribution of the unitary Bose gas. Few-Body Syst., 2015, 56(11-12): 801
https://doi.org/10.1007/s00601-015-0971-2
|
16 |
Yin X. , Radzihovsky L. . Postquench dynamics and prethermalization in a resonant Bose gas. Phys. Rev. A, 2016, 93(3): 033653
https://doi.org/10.1103/PhysRevA.93.033653
|
17 |
Y. Wu S. , H. Zhong H. , H. Huang J. , Z. Qin X. , H. Lee C. . Dynamic fragmentation in a quenched two-mode Bose–Einstein condensate. Front. Phys., 2016, 11(3): 110301
https://doi.org/10.1007/s11467-015-0530-9
|
18 |
E. Colussi V. , P. Corson J. , P. D’Incao J. . Dynamics of three-body correlations in quenched unitary Bose gases. Phys. Rev. Lett., 2018, 120(10): 100401
https://doi.org/10.1103/PhysRevLett.120.100401
|
19 |
E. Colussi V. , Musolino S. , J. J. M. F. Kokkelmans S. . Dynamical formation of the unitary Bose gas. Phys. Rev. A, 2018, 98(5): 051601
https://doi.org/10.1103/PhysRevA.98.051601
|
20 |
Van Regemortel M. , Kurkjian H. , Wouters M. , Carusotto I. . Prethermalization to thermalization crossover in a dilute Bose gas following an interaction ramp. Phys. Rev. A, 2018, 98(5): 053612
https://doi.org/10.1103/PhysRevA.98.053612
|
21 |
P. D’Incao J. , Wang J. , E. Colussi V. . Efimov physics in quenched unitary Bose gases. Phys. Rev. Lett., 2018, 121(2): 023401
https://doi.org/10.1103/PhysRevLett.121.023401
|
22 |
Musolino S. , E. Colussi V. , J. J. M. F. Kokkelmans S. . Pair formation in quenched unitary Bose gases. Phys. Rev. A, 2019, 100(1): 013612
https://doi.org/10.1103/PhysRevA.100.013612
|
23 |
Gao C. , Y. Sun M. , Zhang P. , Zhai H. . Universal dynamics of a degenerate Bose gas quenched to unitarity. Phys. Rev. Lett., 2020, 124(4): 040403
https://doi.org/10.1103/PhysRevLett.124.040403
|
24 |
Muñoz de las Heras A. , M. Parish M. , M. Marchetti F. . Early-time dynamics of Bose gases quenched into the strongly interacting regime. Phys. Rev. A, 2019, 99(2): 023623
https://doi.org/10.1103/PhysRevA.99.023623
|
25 |
E. Colussi V. , E. van Zwol B. , P. D’Incao J. , J. J. M. F. Kokkelmans S. . Bunching, clustering, and the buildup of few-body correlations in a quenched unitary Bose gas. Phys. Rev. A, 2019, 99(4): 043604
https://doi.org/10.1103/PhysRevA.99.043604
|
26 |
Bougas G. , I. Mistakidis S. , Schmelcher P. . Analytical treatment of the interaction quench dynamics of two bosons in a two-dimensional harmonic trap. Phys. Rev. A, 2019, 100(5): 053602
https://doi.org/10.1103/PhysRevA.100.053602
|
27 |
Y. Sun M. , Zhang P. , Zhai H. . High temperature virial expansion to universal quench dynamics. Phys. Rev. Lett., 2020, 125(11): 110404
https://doi.org/10.1103/PhysRevLett.125.110404
|
28 |
E. Colussi V. , Kurkjian H. , Van Regemortel M. , Musolino S. , van de Kraats J. , Wouters M. , J. J. M. F. Kokkelmans S. . Cumulant theory of the unitary Bose gas: Prethermal and Efimovian dynamics. Phys. Rev. A, 2020, 102(6): 063314
https://doi.org/10.1103/PhysRevA.102.063314
|
29 |
Bougas G. , I. Mistakidis S. , M. Alshalan G. , Schmelcher P. . Stationary and dynamical properties of two harmonically trapped bosons in the crossover from two dimensions to one. Phys. Rev. A, 2020, 102(1): 013314
https://doi.org/10.1103/PhysRevA.102.013314
|
30 |
Musolino S. , Kurkjian H. , Van Regemortel M. , Wouters M. , J. J. M. F. Kokkelmans S. , E. Colussi V. . Bose‒Einstein condensation of Efimovian triples in the unitary Bose gas. Phys. Rev. Lett., 2022, 128(2): 020401
https://doi.org/10.1103/PhysRevLett.128.020401
|
31 |
Enss T. , Cuadra Braatz N. , Gori G. . Complex scaling flows in the quench dynamics of interacting particles. Phys. Rev. A, 2022, 106(1): 013308
https://doi.org/10.1103/PhysRevA.106.013308
|
32 |
W. Fan G. , L. Chen X. , Zou P. . Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin‒orbit coupling. Front. Phys., 2022, 17(5): 52502
https://doi.org/10.1007/s11467-022-1155-4
|
33 |
M. Hu Y. , F. Fei Y. , L. Chen X. , B. Zhang Y. . Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys., 2022, 17(6): 61505
https://doi.org/10.1007/s11467-022-1192-z
|
34 |
A. Abanin D. , Altman E. , Bloch I. , Serbyn M. . Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 2019, 91(2): 021001
https://doi.org/10.1103/RevModPhys.91.021001
|
35 |
Wang C. , F. Zhang P. , Chen X. , L. Yu J. , Zhai H. . Scheme to measure the topological number of a Chern insulator from quench dynamics. Phys. Rev. Lett., 2017, 118(18): 185701
https://doi.org/10.1103/PhysRevLett.118.185701
|
36 |
Sun W. , R. Yi C. , Z. Wang B. , W. Zhang W. , C. Sanders B. , T. Xu X. , Y. Wang Z. , Schmiedmayer J. , Deng Y. , J. Liu X. , Chen S. , W. Pan J. . Uncover topology by quantum quench dynamics. Phys. Rev. Lett., 2018, 121(25): 250403
https://doi.org/10.1103/PhysRevLett.121.250403
|
37 |
F. N. Unal, N. Fläschner, B. S. Rem, A. Eckardt, K. Sengstock , C. Weitenberg. M. Tarnowski . Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun., 2019, 10(1): 1728
https://doi.org/10.1038/s41467-019-09668-y
|
38 |
Gao C. , Zhai H. , Y. Shi Z. . Dynamical fractal in quantum gases with discrete scaling symmetry. Phys. Rev. Lett., 2019, 122(23): 230402
https://doi.org/10.1103/PhysRevLett.122.230402
|
39 |
Huang K., Statistical Mechanics, John Wiley & Sons, New York, 1987
|
40 |
Sachdev S., Quantum Phase Transitions, Cambridge University Press, Cambridge, 1999
|
41 |
Micha R. , I. Tkachev I. . Turbulent thermalization. Phys. Rev. D, 2004, 70(4): 043538
https://doi.org/10.1103/PhysRevD.70.043538
|
42 |
Berges J. , Rothkopf A. , Schmidt J. . Nonthermal fixed points: Effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett., 2008, 101(4): 041603
https://doi.org/10.1103/PhysRevLett.101.041603
|
43 |
Nowak B. , Schole J. , Sexty D. , Gasenzer T. . Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas. Phys. Rev. A, 2012, 85(4): 043627
https://doi.org/10.1103/PhysRevA.85.043627
|
44 |
Nowak B. , Schole J. , Gasenzer T. . Universal dynamics on the way to thermalization. New J. Phys., 2014, 16(9): 093052
https://doi.org/10.1088/1367-2630/16/9/093052
|
45 |
Berges J. , Boguslavski K. , Schlichting S. , Venugopalan R. . Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett., 2015, 114(6): 061601
https://doi.org/10.1103/PhysRevLett.114.061601
|
46 |
P. Orioli A. , Boguslavski K. , Berges J. . Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D, 2015, 92(2): 025041
https://doi.org/10.1103/PhysRevD.92.025041
|
47 |
Chantesana I. , P. Orioli A. , Gasenzer T. . Kinetic theory of nonthermal fixed points in a Bose gas. Phys. Rev. A, 2019, 99(4): 043620
https://doi.org/10.1103/PhysRevA.99.043620
|
48 |
N. Mikheev A. , M. Schmied C. , Gasenzer T. . Low-energy effective theory of nonthermal fixed points in a multicomponent Bose gas. Phys. Rev. A, 2019, 99(6): 063622
https://doi.org/10.1103/PhysRevA.99.063622
|
49 |
M. Schmied C. , N. Mikheev A. , Gasenzer T. . Non-thermal fixed points: Universal dynamics far from equilibrium. Int. J. Mod. Phys. A, 2019, 34(29): 1941006
https://doi.org/10.1142/S0217751X19410069
|
50 |
Bhattacharyya S. , F. Rodriguez-Nieva J. , Demler E. . Universal prethermal dynamics in Heisenberg ferromagnets. Phys. Rev. Lett., 2020, 125(23): 230601
https://doi.org/10.1103/PhysRevLett.125.230601
|
51 |
Berges J. , Boguslavski K. , Mace M. , M. Pawlowski J. . Gauge-invariant condensation in the nonequilibrium quark-gluon plasma. Phys. Rev. D, 2020, 102(3): 034014
https://doi.org/10.1103/PhysRevD.102.034014
|
52 |
Fujimoto K. , Hamazaki R. , Kawaguchi Y. . Family‒Vicsek scaling of roughness growth in a strongly interacting Bose gas. Phys. Rev. Lett., 2020, 124(21): 210604
https://doi.org/10.1103/PhysRevLett.124.210604
|
53 |
Preis T. , P. Heller M. , Berges J. . Stable and unstable perturbations in universal scaling phenomena far from equilibrium. Phys. Rev. Lett., 2023, 130(3): 031602
https://doi.org/10.1103/PhysRevLett.130.031602
|
54 |
Tan S. . Large momentum part of a strongly correlated Fermi gas. Ann. Phys., 2008, 323(12): 2971
https://doi.org/10.1016/j.aop.2008.03.005
|
55 |
Zhang S. , J. Leggett A. . Universal properties of the ultracold Fermi gas. Phys. Rev. A, 2009, 79(2): 023601
https://doi.org/10.1103/PhysRevA.79.023601
|
56 |
B. Bardon A. , Beattie S. , Luciuk C. , Cairncross W. , Fine D. , S. Cheng N. , J. A. Edge G. , Taylor E. , Zhang S. , Trotzky S. , H. Thywissen J. . Transverse demagnetization dynamics of a unitary Fermi gas. Science, 2014, 344(6185): 722
https://doi.org/10.1126/science.1247425
|
57 |
J. Fletcher R. , Lopes R. , Man J. , Navon N. , P. Smith R. , W. Zwierlein M. , Hadzibabic Z. . Two- and three-body contacts in the unitary Bose gas. Science, 2017, 355(6323): 377
https://doi.org/10.1126/science.aai8195
|
58 |
Luciuk C. , Smale S. , Böttcher F. , Sharum H. , A. Olsen B. , Trotzky S. , Enss T. , H. Thywissen J. . Observation of quantum-limited spin transport in strongly interacting two-dimensional Fermi gases. Phys. Rev. Lett., 2017, 118(13): 130405
https://doi.org/10.1103/PhysRevLett.118.130405
|
59 |
Werner F. , Castin Y. . Unitary gas in an isotropic harmonic trap: Symmetry properties and applications. Phys. Rev. A, 2006, 74(5): 053604
https://doi.org/10.1103/PhysRevA.74.053604
|
60 |
In three-dimensional unitary Bose gas, the scale invariance is only approximate because of the three-body parameter. However, experiments [1–3] show that its contribution can be insignificant in quench dynamics
|
61 |
Qi R. , Y. Shi Z. , Zhai H. . Maximum energy growth rate in dilute quantum gases. Phys. Rev. Lett., 2021, 126(24): 240401
https://doi.org/10.1103/PhysRevLett.126.240401
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|