Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 22201    https://doi.org/10.1007/s11467-023-1341-z
RESEARCH ARTICLE
Universal dynamic scaling and Contact dynamics in quenched quantum gases
Jia-Nan Cui1, Zhengqiang Zhou1, Mingyuan Sun1,2()
1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. State Key Lab of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
 Download: PDF(5502 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently universal dynamic scaling is observed in several systems, which exhibit a spatiotemporal self-similar scaling behavior, analogous to the spatial scaling near phase transition. The latter one arises from the emergent continuous scaling symmetry. Motivated by this, we investigate the possible relation between the scaling dynamics and the continuous scaling symmetry in this paper. We derive a theorem that the scaling invariance of the quenched Hamiltonian and the initial density matrix can lead to the universal dynamic scaling. It is further demonstrated both in a two-body system analytically and in a many-body system numerically. For the latter one, we calculate the dynamics of quantum gases quenched from the zero interaction to a finite interaction via the non-equilibrium high-temperature virial expansion. A dynamic scaling of the momentum distribution appears in certain momentum-time windows at unitarity as well as in the weak interacting limit. Remarkably, this universal scaling dynamics persists approximately with smaller scaling exponents even if the scaling symmetry is fairly broken. Our findings may offer a new perspective to interpret the related experiments. We also study the Contact dynamics in the BEC−BCS crossover. Surprisingly, the half-way time displays a maximum near unitarity while some damping oscillations occur on the BEC side due to the dimer state, which can be used to detect possible two-body bound states in experiments.

Keywords dynamic scaling      Contact dynamics      quantum gases      cold atom      quench dynamics      virial expansion      continuous scaling symmetry     
Corresponding Author(s): Mingyuan Sun   
Just Accepted Date: 28 August 2023   Issue Date: 26 September 2023
 Cite this article:   
Jia-Nan Cui,Zhengqiang Zhou,Mingyuan Sun. Universal dynamic scaling and Contact dynamics in quenched quantum gases[J]. Front. Phys. , 2024, 19(2): 22201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1341-z
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/22201
Fig.1  The momentum distribution δnk at the large momentum region for various times t/tλ = 0.02 (black), 0.04 (red), 0.06 (blue), 0.08 (pink), 0.10 (green), 0.12 (navy) in the quench dynamics of quantum gases. Here, λ=2π/(mT) is the thermal wavelength, while tλ=1/T. t~=t/t0 with t0/tλ=0.02. The results in the BEC-BCS crossover are displayed with the scattering length labelled in the first row. In the second row, the corresponding scalings of both the horizontal and vertical axes are taken via Eq. (1), to demonstrate whether there exists a dynamic scaling behavior. The scaling exponents α and β are shown in the corresponding graphs.
Fig.2  The quench dynamics of the momentum distribution |δnk| at finite momentum region for various times t/tλ= 0.1 (black), 0.2 (red), 0.3 (blue), 0.4 (pink), 0.5 (green). The results for the unitarity are plotted with unscaled axes (a) and scaled axes (b), while they are only demonstrated in scaled axes for λ/as=?100 (c) and λ/as=100 (d). According to the theorem, they are not expected to display any strict dynamic scaling behavior, due to the breakdown of the scale invariance of the initial density matrix. However, an approximate scaling dynamics can still be seen in all three cases with smaller scaling exponents α and β displayed in the corresponding graphs.
Fig.3  The Contact dynamics after the quench for λ/as= ?3 (black), ?1 (red), 0 (blue), 1 (pink), 3 (green). They all start from zero and approach to a steady value at long times. On the BEC side, they exhibit damping oscillations.
Fig.4  The Contact dynamics in the BEC-BCS crossover. (a) The Contact at infinite time (t) in the whole BEC-BCS crossover, obtained from Eq. (14). (b) The half-way time τ as a function of the interaction. (c) The relative value at the peak ΔCp=Cp?C(t) for λ/as= 3 (black), 4 (red), 5 (blue), which obeys a power-law decay with the same power approximately. (d) The frequencies of oscillations at various interactions on the BEC side, with a linear fitting (red line).
1 Makotyn P. , E. Klauss C. , L. Goldberger D. , A. Cornell E. , S. Jin D. . Universal dynamics of a degenerate unitary Bose gas. Nat. Phys., 2014, 10(2): 116
https://doi.org/10.1038/nphys2850
2 Eigen C. , A. P. Glidden J. , Lopes R. , Navon N. , Hadzibabic Z. , P. Smith R. . Universal scaling laws in the dynamics of a homogeneous unitary Bose gas. Phys. Rev. Lett., 2017, 119(25): 250404
https://doi.org/10.1103/PhysRevLett.119.250404
3 Eigen C. , A. Glidden J. , Lopes R. , A. Cornell E. , P. Smith R. , Hadzibabic Z. . Universal prethermal dynamics of Bose gases quenched to unitarity. Nature, 2018, 563(7730): 221
https://doi.org/10.1038/s41586-018-0674-1
4 Prüfer M. , Kunkel P. , Strobel H. , Lannig S. , Linnemann D. , M. Schmied C. , Berges J. , Gasenzer T. , K. Oberthaler M. . Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature, 2018, 563(7730): 217
https://doi.org/10.1038/s41586-018-0659-0
5 Erne S. , Bucker R. , Gasenzer T. , Berges J. , Schmiedmayer J. . Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature, 2018, 563(7730): 225
https://doi.org/10.1038/s41586-018-0667-0
6 A. P. Glidden J. , Eigen C. , H. Dogra L. , A. Hilker T. , P. Smith R. , Hadzibabic Z. . Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium. Nat. Phys., 2021, 17(4): 457
https://doi.org/10.1038/s41567-020-01114-x
7 Gałka M. , Christodoulou P. , Gazo M. , Karailiev A. , Dogra N. , Schmitt J. , Hadzibabic Z. . Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett., 2022, 129(19): 190402
https://doi.org/10.1103/PhysRevLett.129.190402
8 Wei D. , Rubio-Abadal A. , Ye B. , Machado F. , Kemp J. , Srakaew K. , Hollerith S. , Rui J. , Gopalakrishnan S. , Y. Yao N. , Bloch I. , Zeiher J. . Quantum gas microscopy of Kardar‒Parisi‒Zhang superdiffusion. Science, 2022, 376(6594): 716
https://doi.org/10.1126/science.abk2397
9 Huh S.Mukherjee K.Kwon K.Seo J.I. Mistakidis S.R. Sadeghpour H.Y. Choi J., Classifying the universal coarsening dynamics of a quenched ferromagnetic condensate, arXiv: 2303.05230 (2023)
10 Yin X. , Radzihovsky L. . Quench dynamics of a strongly interacting resonant Bose gas. Phys. Rev. A, 2013, 88(6): 063611
https://doi.org/10.1103/PhysRevA.88.063611
11 G. Sykes A. , P. Corson J. , P. D’Incao J. , P. Koller A. , H. Greene C. , M. Rey A. , R. Hazzard K. , L. Bohn J. . Quenching to unitarity: Quantum dynamics in a three-dimensional Bose gas. Phys. Rev. A, 2014, 89(2): 021601
https://doi.org/10.1103/PhysRevA.89.021601
12 Rançon A. , Levin K. . Equilibrating dynamics in quenched Bose gases: Characterizing multiple time regimes. Phys. Rev. A, 2014, 90(2): 021602
https://doi.org/10.1103/PhysRevA.90.021602
13 Kain B. , Y. Ling H. . Nonequilibrium states of a quenched Bose gas. Phys. Rev. A, 2014, 90(6): 063626
https://doi.org/10.1103/PhysRevA.90.063626
14 P. Corson J. , L. Bohn J. . Bound-state signatures in quenched Bose‒Einstein condensates. Phys. Rev. A, 2015, 91(1): 013616
https://doi.org/10.1103/PhysRevA.91.013616
15 Ancilotto F. , Rossi M. , Salasnich L. , Toigo F. . Quenched dynamics of the momentum distribution of the unitary Bose gas. Few-Body Syst., 2015, 56(11-12): 801
https://doi.org/10.1007/s00601-015-0971-2
16 Yin X. , Radzihovsky L. . Postquench dynamics and prethermalization in a resonant Bose gas. Phys. Rev. A, 2016, 93(3): 033653
https://doi.org/10.1103/PhysRevA.93.033653
17 Y. Wu S. , H. Zhong H. , H. Huang J. , Z. Qin X. , H. Lee C. . Dynamic fragmentation in a quenched two-mode Bose–Einstein condensate. Front. Phys., 2016, 11(3): 110301
https://doi.org/10.1007/s11467-015-0530-9
18 E. Colussi V. , P. Corson J. , P. D’Incao J. . Dynamics of three-body correlations in quenched unitary Bose gases. Phys. Rev. Lett., 2018, 120(10): 100401
https://doi.org/10.1103/PhysRevLett.120.100401
19 E. Colussi V. , Musolino S. , J. J. M. F. Kokkelmans S. . Dynamical formation of the unitary Bose gas. Phys. Rev. A, 2018, 98(5): 051601
https://doi.org/10.1103/PhysRevA.98.051601
20 Van Regemortel M. , Kurkjian H. , Wouters M. , Carusotto I. . Prethermalization to thermalization crossover in a dilute Bose gas following an interaction ramp. Phys. Rev. A, 2018, 98(5): 053612
https://doi.org/10.1103/PhysRevA.98.053612
21 P. D’Incao J. , Wang J. , E. Colussi V. . Efimov physics in quenched unitary Bose gases. Phys. Rev. Lett., 2018, 121(2): 023401
https://doi.org/10.1103/PhysRevLett.121.023401
22 Musolino S. , E. Colussi V. , J. J. M. F. Kokkelmans S. . Pair formation in quenched unitary Bose gases. Phys. Rev. A, 2019, 100(1): 013612
https://doi.org/10.1103/PhysRevA.100.013612
23 Gao C. , Y. Sun M. , Zhang P. , Zhai H. . Universal dynamics of a degenerate Bose gas quenched to unitarity. Phys. Rev. Lett., 2020, 124(4): 040403
https://doi.org/10.1103/PhysRevLett.124.040403
24 Muñoz de las Heras A. , M. Parish M. , M. Marchetti F. . Early-time dynamics of Bose gases quenched into the strongly interacting regime. Phys. Rev. A, 2019, 99(2): 023623
https://doi.org/10.1103/PhysRevA.99.023623
25 E. Colussi V. , E. van Zwol B. , P. D’Incao J. , J. J. M. F. Kokkelmans S. . Bunching, clustering, and the buildup of few-body correlations in a quenched unitary Bose gas. Phys. Rev. A, 2019, 99(4): 043604
https://doi.org/10.1103/PhysRevA.99.043604
26 Bougas G. , I. Mistakidis S. , Schmelcher P. . Analytical treatment of the interaction quench dynamics of two bosons in a two-dimensional harmonic trap. Phys. Rev. A, 2019, 100(5): 053602
https://doi.org/10.1103/PhysRevA.100.053602
27 Y. Sun M. , Zhang P. , Zhai H. . High temperature virial expansion to universal quench dynamics. Phys. Rev. Lett., 2020, 125(11): 110404
https://doi.org/10.1103/PhysRevLett.125.110404
28 E. Colussi V. , Kurkjian H. , Van Regemortel M. , Musolino S. , van de Kraats J. , Wouters M. , J. J. M. F. Kokkelmans S. . Cumulant theory of the unitary Bose gas: Prethermal and Efimovian dynamics. Phys. Rev. A, 2020, 102(6): 063314
https://doi.org/10.1103/PhysRevA.102.063314
29 Bougas G. , I. Mistakidis S. , M. Alshalan G. , Schmelcher P. . Stationary and dynamical properties of two harmonically trapped bosons in the crossover from two dimensions to one. Phys. Rev. A, 2020, 102(1): 013314
https://doi.org/10.1103/PhysRevA.102.013314
30 Musolino S. , Kurkjian H. , Van Regemortel M. , Wouters M. , J. J. M. F. Kokkelmans S. , E. Colussi V. . Bose‒Einstein condensation of Efimovian triples in the unitary Bose gas. Phys. Rev. Lett., 2022, 128(2): 020401
https://doi.org/10.1103/PhysRevLett.128.020401
31 Enss T. , Cuadra Braatz N. , Gori G. . Complex scaling flows in the quench dynamics of interacting particles. Phys. Rev. A, 2022, 106(1): 013308
https://doi.org/10.1103/PhysRevA.106.013308
32 W. Fan G. , L. Chen X. , Zou P. . Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin‒orbit coupling. Front. Phys., 2022, 17(5): 52502
https://doi.org/10.1007/s11467-022-1155-4
33 M. Hu Y. , F. Fei Y. , L. Chen X. , B. Zhang Y. . Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys., 2022, 17(6): 61505
https://doi.org/10.1007/s11467-022-1192-z
34 A. Abanin D. , Altman E. , Bloch I. , Serbyn M. . Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 2019, 91(2): 021001
https://doi.org/10.1103/RevModPhys.91.021001
35 Wang C. , F. Zhang P. , Chen X. , L. Yu J. , Zhai H. . Scheme to measure the topological number of a Chern insulator from quench dynamics. Phys. Rev. Lett., 2017, 118(18): 185701
https://doi.org/10.1103/PhysRevLett.118.185701
36 Sun W. , R. Yi C. , Z. Wang B. , W. Zhang W. , C. Sanders B. , T. Xu X. , Y. Wang Z. , Schmiedmayer J. , Deng Y. , J. Liu X. , Chen S. , W. Pan J. . Uncover topology by quantum quench dynamics. Phys. Rev. Lett., 2018, 121(25): 250403
https://doi.org/10.1103/PhysRevLett.121.250403
37 F. N. Unal, N. Fläschner, B. S. Rem, A. Eckardt, K. Sengstock , C. Weitenberg. M. Tarnowski . Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun., 2019, 10(1): 1728
https://doi.org/10.1038/s41467-019-09668-y
38 Gao C. , Zhai H. , Y. Shi Z. . Dynamical fractal in quantum gases with discrete scaling symmetry. Phys. Rev. Lett., 2019, 122(23): 230402
https://doi.org/10.1103/PhysRevLett.122.230402
39 Huang K., Statistical Mechanics, John Wiley & Sons, New York, 1987
40 Sachdev S., Quantum Phase Transitions, Cambridge University Press, Cambridge, 1999
41 Micha R. , I. Tkachev I. . Turbulent thermalization. Phys. Rev. D, 2004, 70(4): 043538
https://doi.org/10.1103/PhysRevD.70.043538
42 Berges J. , Rothkopf A. , Schmidt J. . Nonthermal fixed points: Effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett., 2008, 101(4): 041603
https://doi.org/10.1103/PhysRevLett.101.041603
43 Nowak B. , Schole J. , Sexty D. , Gasenzer T. . Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas. Phys. Rev. A, 2012, 85(4): 043627
https://doi.org/10.1103/PhysRevA.85.043627
44 Nowak B. , Schole J. , Gasenzer T. . Universal dynamics on the way to thermalization. New J. Phys., 2014, 16(9): 093052
https://doi.org/10.1088/1367-2630/16/9/093052
45 Berges J. , Boguslavski K. , Schlichting S. , Venugopalan R. . Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett., 2015, 114(6): 061601
https://doi.org/10.1103/PhysRevLett.114.061601
46 P. Orioli A. , Boguslavski K. , Berges J. . Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D, 2015, 92(2): 025041
https://doi.org/10.1103/PhysRevD.92.025041
47 Chantesana I. , P. Orioli A. , Gasenzer T. . Kinetic theory of nonthermal fixed points in a Bose gas. Phys. Rev. A, 2019, 99(4): 043620
https://doi.org/10.1103/PhysRevA.99.043620
48 N. Mikheev A. , M. Schmied C. , Gasenzer T. . Low-energy effective theory of nonthermal fixed points in a multicomponent Bose gas. Phys. Rev. A, 2019, 99(6): 063622
https://doi.org/10.1103/PhysRevA.99.063622
49 M. Schmied C. , N. Mikheev A. , Gasenzer T. . Non-thermal fixed points: Universal dynamics far from equilibrium. Int. J. Mod. Phys. A, 2019, 34(29): 1941006
https://doi.org/10.1142/S0217751X19410069
50 Bhattacharyya S. , F. Rodriguez-Nieva J. , Demler E. . Universal prethermal dynamics in Heisenberg ferromagnets. Phys. Rev. Lett., 2020, 125(23): 230601
https://doi.org/10.1103/PhysRevLett.125.230601
51 Berges J. , Boguslavski K. , Mace M. , M. Pawlowski J. . Gauge-invariant condensation in the nonequilibrium quark-gluon plasma. Phys. Rev. D, 2020, 102(3): 034014
https://doi.org/10.1103/PhysRevD.102.034014
52 Fujimoto K. , Hamazaki R. , Kawaguchi Y. . Family‒Vicsek scaling of roughness growth in a strongly interacting Bose gas. Phys. Rev. Lett., 2020, 124(21): 210604
https://doi.org/10.1103/PhysRevLett.124.210604
53 Preis T. , P. Heller M. , Berges J. . Stable and unstable perturbations in universal scaling phenomena far from equilibrium. Phys. Rev. Lett., 2023, 130(3): 031602
https://doi.org/10.1103/PhysRevLett.130.031602
54 Tan S. . Large momentum part of a strongly correlated Fermi gas. Ann. Phys., 2008, 323(12): 2971
https://doi.org/10.1016/j.aop.2008.03.005
55 Zhang S. , J. Leggett A. . Universal properties of the ultracold Fermi gas. Phys. Rev. A, 2009, 79(2): 023601
https://doi.org/10.1103/PhysRevA.79.023601
56 B. Bardon A. , Beattie S. , Luciuk C. , Cairncross W. , Fine D. , S. Cheng N. , J. A. Edge G. , Taylor E. , Zhang S. , Trotzky S. , H. Thywissen J. . Transverse demagnetization dynamics of a unitary Fermi gas. Science, 2014, 344(6185): 722
https://doi.org/10.1126/science.1247425
57 J. Fletcher R. , Lopes R. , Man J. , Navon N. , P. Smith R. , W. Zwierlein M. , Hadzibabic Z. . Two- and three-body contacts in the unitary Bose gas. Science, 2017, 355(6323): 377
https://doi.org/10.1126/science.aai8195
58 Luciuk C. , Smale S. , Böttcher F. , Sharum H. , A. Olsen B. , Trotzky S. , Enss T. , H. Thywissen J. . Observation of quantum-limited spin transport in strongly interacting two-dimensional Fermi gases. Phys. Rev. Lett., 2017, 118(13): 130405
https://doi.org/10.1103/PhysRevLett.118.130405
59 Werner F. , Castin Y. . Unitary gas in an isotropic harmonic trap: Symmetry properties and applications. Phys. Rev. A, 2006, 74(5): 053604
https://doi.org/10.1103/PhysRevA.74.053604
60 In three-dimensional unitary Bose gas, the scale invariance is only approximate because of the three-body parameter. However, experiments [1–3] show that its contribution can be insignificant in quench dynamics
61 Qi R. , Y. Shi Z. , Zhai H. . Maximum energy growth rate in dilute quantum gases. Phys. Rev. Lett., 2021, 126(24): 240401
https://doi.org/10.1103/PhysRevLett.126.240401
[1] Xiuye Liu, Jianhua Zeng. Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices[J]. Front. Phys. , 2024, 19(4): 42201-.
[2] Wenhua Yan, Xudong Ren, Wenjie Xu, Zhongkun Hu, Minkang Zhou. Magnetic-field-sensitive multi-wave interference[J]. Front. Phys. , 2023, 18(5): 52306-.
[3] Xue-Jing Feng, Jin-Xin Li, Lu Qin, Ying-Ying Zhang, ShiQiang Xia, Lu Zhou, ChunJie Yang, ZunLue Zhu, Wu-Ming Liu, Xing-Dong Zhao. Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas[J]. Front. Phys. , 2023, 18(5): 52303-.
[4] Yanming Hu, Yifan Fei, Xiao-Long Chen, Yunbo Zhang. Collisional dynamics of symmetric two-dimensional quantum droplets[J]. Front. Phys. , 2022, 17(6): 61505-.
[5] Zixuan Zeng, Shangjin Li, Bo Yan. Isotope separation of Potassium with a magneto–optical combined method[J]. Front. Phys. , 2022, 17(3): 32502-.
[6] Qian Liang, Tao Chen, Wen-Hao Bu, Yu-He Zhang, Bo Yan. Laser cooling with adiabatic passage for type-II transitions[J]. Front. Phys. , 2021, 16(3): 32501-.
[7] Yong Xu. Topological gapless matters in three-dimensional ultracold atomic gases[J]. Front. Phys. , 2019, 14(4): 43402-.
[8] Junbo Zhu (竺俊博),Zhu Chen (陈竹),Biao Wu (吴飙). Construction of maximally localized Wannier functions[J]. Front. Phys. , 2017, 12(5): 127102-.
[9] Hongwei Xiong. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium[J]. Front. Phys. , 2015, 10(4): 100401-.
[10] Qiang Liu, Jin-Qing Fang, Yong Li. A unified dynamic scaling property for the unified hybrid network theory framework[J]. Front. Phys. , 2014, 9(2): 240-245.
[11] Andrey R. Kolovsky. Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices[J]. Front. Phys. , 2012, 7(1): 3-7.
[12] Dan-wei Zhang (张丹伟), Zi-dan Wang (汪子丹), Shi-liang Zhu (朱诗亮). Relativistic quantum effects of Dirac particles simulated by ultracold atoms[J]. Front. Phys. , 2012, 7(1): 31-53.
[13] Jin WANG (王谨), Lin ZHOU (周林), Run-bing LI (李润兵), Min LIU (刘敏), Ming-sheng ZHAN (詹明生). Cold atom interferometers and their applications in precision measurements[J]. Front. Phys. , 2009, 4(2): 179-189.
[14] Hui ZHAI (翟荟). Strongly interacting ultracold quantum gases[J]. Front. Phys. , 2009, 4(1): 1-20.
[15] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed