Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 62201    https://doi.org/10.1007/s11467-024-1420-9
Influence of thermal effects on atomic Bloch oscillation
Guoling Yin1, Chi-Kin Lai2, Nana Chang2,3, Yi Liang2, Dekai Mao2, Xiaoji Zhou1,2,3()
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2. State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
3. Institute of Carbon-based Thin Film Electronics, Peking University, Taiyuan 030012, China
 Download: PDF(4180 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Advancements in the experimental toolbox of cold atoms have enabled the meticulous control of atomic Bloch oscillation (BO) within optical lattices, thereby enhancing the capabilities of gravity interferometers. This work delves into the impact of thermal effects on Bloch oscillation in 1D accelerated optical lattices aligned with gravity by varying the system’s initial temperature. Through the application of Raman cooling, we effectively reduce the longitudinal thermal effect, stabilizing the longitudinal coherence length over the timescale of its lifetime. The atomic losses over multiple Bloch periods are measured, which are primarily attributed to transverse excitation. Furthermore, we identify two distinct inverse scaling behaviors in the oscillation lifetime scaled by the corresponding density with respect to temperatures, implying diverse equilibrium processes within or outside the Bose−Einstein condensate (BEC) regime. The competition between the system’s coherence and atomic density leads to a relatively smooth variation in the actual lifetime versus temperature. Our findings provide valuable insights into the interaction between thermal effects and BO, offering avenues for the refinement of quantum measurement technologies.

Keywords Bloch oscillation      optical lattice      thermal effects      cold atoms      Raman cooling     
Corresponding Author(s): Xiaoji Zhou   
Issue Date: 24 May 2024
 Cite this article:   
Guoling Yin,Chi-Kin Lai,Nana Chang, et al. Influence of thermal effects on atomic Bloch oscillation[J]. Front. Phys. , 2024, 19(6): 62201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1420-9
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/62201
Fig.1  Experimental setup for both acceleration and gravity-driven BO. (a) Longitudinal movement of atoms in the 1D accelerated optical lattices under gravity, illustrating the periodic potential aligned with gravity in x-axis, depicted as a black arrow, and atoms with a pancake-shape spatial distribution. The acceleration of the optical lattice is achieved by modulating the frequency difference δω=kαt between the two lattice beams, as indicated by the two red arrows. In the co-moving frame, atoms are subject to a net force m(g?α). The longitudinal length l// and lattice constant d are displayed in the figure. (b) Schematic diagram of the setup, illustrating the atoms are prepared within a crossed 1064 nm optical dipole trap. It highlights the Raman and lattice beams in the vertical direction, including the counter-propagating configuration achieved by reflecting one of the Raman beams. The downward lattice beam is combined with Raman beams in the same optical fiber, while upward lattice beams are merged with one Raman beam using a polarizing beam splitter (PBS) and two half-wave plates (HWPs).
Fig.2  Experimental sequence for the accelerated optical lattice. (a) Initial state preparation begins at t0 with atoms in |F=1?. At t1, a microwave pulse transitions atoms to |F=2,mF=0?, while atoms still in |F=1? are removed using a state-specific clear beam. The first Raman pulse at t2 narrows the velocity distribution and transfers atoms to |F=1,mF=0?. Any remaining atoms in |F=2? are then cleared. The optical lattice operation commences from t3 to t4, ending with a second Raman pulse at t5 for velocity measurement by transferring resonant atoms to |F=2,mF=0?, followed by fluorescence detection at t6. (b) The sequence for the accelerated optical lattice is detailed further: The lattice depth is linearly increased to V0=15 Er within trise=1 ms and is maintained during thold. Phase modulation initiates by synchronizing the lattice’s velocity with the atoms’ free fall, adjusting the lattice frequency difference δω at a rate of kg. To induce BO, δω is modulated at a rate corresponding to α=?2g. Finally, δω is adjusted at a rate of kg to ensure zero relative velocity between the lattice and the atoms, facilitating mapping of the atoms’ states into quasimomentum space.
Fig.3  BO process in the co-moving frame. (a) Illustration of BO driven by a constant acceleration g?α in the co-moving frame, showing atoms initially in the ground state (q=0 at the instantaneous S band). Subject to a constant force F=m(g?α), the atoms’ quasimomentum increases linearly until reaching the boundary of the first Brillouin zone. This induces Bragg scattering, resulting in quasimomentum shifts of 2?k. (b) The BO process is depicted by black dashed arrows for the trajectory and red ellipses for atoms, corresponding to the momentum distribution of atoms at holding time: (b1) thold=0, (b2) thold=TB/4=99 μs, (b3) thold=TB/2=198 μs.
Fig.4  Fitting of the BO signal. Extraction of the quasimomentum distribution, f(q), from the raw data (black dots) by fitting with a Lorentzian profile (blue solid line) at thold=30TB. The BO signal (light-blue solid line) is obtained by subtracting the fitted offset. The center of the signal, q=0, corresponds to a momentum amount of 2n?k after n occurrences of BO, and the central peak fc is denoted by a black arrow. The momentum broadening, δq, is extracted from the signal’s full width at half maximum (FWHM).
Fig.5  Measurement of the longitudinal coherence length. (a) The longitudinal coherence length, l//, for various initial temperatures, remains largely constant across increasing holding times, thold, for atoms at 50 nK (green squares) and 500 nK (orange diamonds). The error bar represents the standard deviation of three repeated measurements. (b) The mean longitudinal coherence length, lˉ//, depicted as a function of initial temperature, shows data for atoms below (purple circles) and above (magenta triangles) the critical temperature Tc, averaged across various thold periods. Error bars indicate the corresponding standard deviations.
Fig.6  Evaluation of BO lifetime. Lifetime values are derived from the central peak, fc, of the quasimomentum distribution for various holding times, thold. Data points for atoms at 50 nK (purple circles) are normalized to the value at thold=0. Error bars denote the standard deviation from three independent measurements. The calculated lifetime, τ, is indicated by the point where a black dashed line at exp?(?1) intersects the solid purple fitting curve.
Fig.7  Lifetimes of BO at varying initial temperatures. (a) Lifetimes of BO across different temperatures for atoms below (purple circles) and above (magenta triangles) the critical temperature, Tc, with an upward trend highlighted by a black dashed guideline. Error bars correspond to fitting uncertainties. (b) Scaled lifetimes of BO, normalized by the initial average density ρˉ (illustrated in the inset), exhibit two distinct T?1 scaling behaviors for conditions within and outside the BEC regime, depicted by purple (T<Tc) and magenta (T>Tc) dashed lines, respectively. Error bars are calculated by combining fitting uncertainties in τ with the standard deviation of ρˉ from three measurements.
1 Bloch F., Über die quantenmechanik der elektronen in kristallgittern, Eur. Phys. J. A 52(7–8), 555 (1929)
2 Zener C., A theory of the electrical breakdown of solid dielectrics, Proc. R. Soc. Lond. A 145(855), 523 (1934)
3 Ben Dahan M. , Peik E. , Reichel J. , Castin Y. , Salomon C. . Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett., 1996, 76(24): 4508
https://doi.org/10.1103/PhysRevLett.76.4508
4 Peik E. , Ben Dahan M. , Bouchoule I. , Castin Y. , Salomon C. . Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams. Phys. Rev. A, 1997, 55(4): 2989
https://doi.org/10.1103/PhysRevA.55.2989
5 Morsch O. , H. Müller J. , Cristiani M. , Ciampini D. , Arimondo E. . Bloch oscillations and mean-field effects of Bose‒Einstein condensates in 1D optical lattices. Phys. Rev. Lett., 2001, 87(14): 140402
https://doi.org/10.1103/PhysRevLett.87.140402
6 Hartmann T. , Keck F. , J. Korsch H. , Mossmann S. . Dynamics of Bloch oscillations. New J. Phys., 2004, 6: 2
https://doi.org/10.1088/1367-2630/6/1/002
7 Gustavsson M. , Haller E. , J. Mark M. , G. Danzl J. , Rojas-Kopeinig G. , C. Nägerl H. . Control of interaction-induced dephasing of Bloch oscillations. Phys. Rev. Lett., 2008, 100(8): 080404
https://doi.org/10.1103/PhysRevLett.100.080404
8 I. Choi D. , Niu Q. . Bose‒Einstein condensates in an optical lattice. Phys. Rev. Lett., 1999, 82(10): 2022
https://doi.org/10.1103/PhysRevLett.82.2022
9 Raizen M. , Salomon C. , Niu Q. . New light on quantum transport. Phys. Today, 1997, 50(7): 30
https://doi.org/10.1063/1.881845
10 Pertsch T. , Dannberg P. , Elflein W. , Braüer A. , Lederer F. . Optical Bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett., 1999, 83: 4752
https://doi.org/10.1103/PhysRevLett.83.4752
11 Morandotti R. , Peschel U. , S. Aitchison J. , S. Eisenberg H. , Silberberg Y. . Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett., 1999, 83(23): 4756
https://doi.org/10.1103/PhysRevLett.83.4756
12 Zhang Z. , Ning S. , Zhong H. , R. Belić M. , Zhang Y. , Feng Y. , Liang S. , Zhang Y. , Xiao M. . Experimental demonstration of optical Bloch oscillation in electromagnetically induced photonic lattices. Fundamental Research, 2022, 2(3): 401
https://doi.org/10.1016/j.fmre.2021.08.019
13 Agarwal V. , A. del Río J. , Malpuech G. , Zamfirescu M. , Kavokin A. , Coquillat D. , Scalbert D. , Vladimirova M. , Gil B. . Photon Bloch oscillations in porous silicon optical superlattices. Phys. Rev. Lett., 2004, 92(9): 097401
https://doi.org/10.1103/PhysRevLett.92.097401
14 H. Anderson M. , R. Ensher J. , R. Matthews M. , E. Wieman C. , A. Cornell E. . Observation of Bose‒Einstein condensation in a dilute atomic vapor. Science, 1995, 269(5221): 198
https://doi.org/10.1126/science.269.5221.198
15 B. Davis K. , O. Mewes M. , R. Andrews M. , J. van Druten N. , S. Durfee D. , M. Kurn D. , Ketterle W. . Bose‒Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 1995, 75(22): 3969
https://doi.org/10.1103/PhysRevLett.75.3969
16 Kasevich M. , Chu S. . Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett., 1992, 69(12): 1741
https://doi.org/10.1103/PhysRevLett.69.1741
17 Reichel J. , Bardou F. , B. Dahan M. , Peik E. , Rand S. , Salomon C. , Cohen-Tannoudji C. . Raman cooling of cesium below 3 nK: New approach inspired by Lévy flight statistics. Phys. Rev. Lett., 1995, 75(25): 4575
https://doi.org/10.1103/PhysRevLett.75.4575
18 Boyer V. , J. Lising L. , L. Rolston S. , D. Phillips W. . Deeply subrecoil two-dimensional Raman cooling. Phys. Rev. A, 2004, 70(4): 043405
https://doi.org/10.1103/PhysRevA.70.043405
19 Modugno G. , de Mirandés E. , Ferlaino F. , Ott H. , Roati G. , Inguscio M. . Atom interferometry in a vertical optical lattice. Fortschr. Phys., 2004, 52(11−12): 1173
https://doi.org/10.1002/prop.200410187
20 Roati G. , de Mirandes E. , Ferlaino F. , Ott H. , Modugno G. , Inguscio M. . Atom interferometry with trapped Fermi gases. Phys. Rev. Lett., 2004, 92(23): 230402
https://doi.org/10.1103/PhysRevLett.92.230402
21 Ferrari G. , Poli N. , Sorrentino F. , M. Tino G. . Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale. Phys. Rev. Lett., 2006, 97(6): 060402
https://doi.org/10.1103/PhysRevLett.97.060402
22 Xu V. , Jaffe M. , D. Panda C. , L. Kristensen S. , W. Clark L. , Müller H. . Probing gravity by holding atoms for 20 seconds. Science, 2019, 366(6466): 745
https://doi.org/10.1126/science.aay6428
23 Cladé P.Guellati-Khélifa S.Schwob C.Nez F.Julien L.Biraben F., A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave, Europhys. Lett. 71(5), 730 (2005)
24 Poli N. , Y. Wang F. , G. Tarallo M. , Alberti A. , Prevedelli M. , M. Tino G. . Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett., 2011, 106(3): 038501
https://doi.org/10.1103/PhysRevLett.106.038501
25 Rosi G. , Sorrentino F. , Cacciapuoti L. , Prevedelli M. , Tino G. . Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 2014, 510(7506): 518
https://doi.org/10.1038/nature13433
26 M. Tino G. . Testing gravity with cold atom interferometry: Results and prospects. Quantum Sci. Technol., 2021, 6(2): 024014
https://doi.org/10.1088/2058-9565/abd83e
27 B. Fixler J. , T. Foster G. , M. McGuirk J. , A. Kasevich M. . Atom interferometer measurement of the Newtonian constant of gravity. Science, 2007, 315(5808): 74
https://doi.org/10.1126/science.1135459
28 Rosi G. , Cacciapuoti L. , Sorrentino F. , Menchetti M. , Prevedelli M. , M. Tino G. . Measurement of the gravity-field curvature by atom interferometry. Phys. Rev. Lett., 2015, 114(1): 013001
https://doi.org/10.1103/PhysRevLett.114.013001
29 Cladé P. , de Mirandes E. , Cadoret M. , Guellati-Khélifa S. , Schwob C. , Nez F. , Julien L. , Biraben F. . Precise measurement of h/mRb using Bloch oscillations in a vertical optical lattice: Determination of the fine-structure constant. Phys. Rev. A, 2006, 74: 052109
https://doi.org/10.1103/PhysRevA.74.052109
30 H. Parker R. , Yu C. , Zhong W. , Estey B. , Müller H. . Measurement of the fine-structure constant as a test of the Standard Model. Science, 2018, 360(6385): 191
https://doi.org/10.1126/science.aap7706
31 G. Tarallo M. , Mazzoni T. , Poli N. , V. Sutyrin D. , Zhang X. , M. Tino G. . Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin−gravity coupling effects. Phys. Rev. Lett., 2014, 113(2): 023005
https://doi.org/10.1103/PhysRevLett.113.023005
32 Guo X. , Yu Z. , Wei F. , Jin S. , Chen X. , Li X. , Zhang X. , Zhou X. . Quantum precision measurement of two-dimensional forces with 10‒28-Newton stability. Sci. Bull. (Beijing), 2022, 67(22): 2291
https://doi.org/10.1016/j.scib.2022.10.027
33 Berg-Sørensen K. , Mølmer K. . Bose‒Einstein condensates in spatially periodic potentials. Phys. Rev. A, 1998, 58(2): 1480
https://doi.org/10.1103/PhysRevA.58.1480
34 J. E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys, D. Cho, K. Helmerson, S. L. Rolston , W. D. Phillips. J. H. Denschlag, A Bose‒Einstein condensate in an optical lattice, J. Phys. At. Mol. Opt. Phys. 35(14), 3095 (2002)
35 Yu Z. , Tian J. , Peng P. , Mao D. , Chen X. , Zhou X. . Transport of ultracold atoms in superpositions of S- and D-band states in a moving optical lattice. Phys. Rev. A, 2023, 107(2): 023303
https://doi.org/10.1103/PhysRevA.107.023303
36 Yin G. , Kong L. , Yu Z. , Tian J. , Chen X. , Zhou X. . Time bound of atomic adiabatic evolution in an accelerated optical lattice. Phys. Rev. A, 2023, 108(3): 033310
https://doi.org/10.1103/PhysRevA.108.033310
37 Andia M. , Jannin R. , c. Nez F. , c. Biraben F. , Guellati-Khélifa S. , Cladé P. . Compact atomic gravimeter based on a pulsed and accelerated optical lattice. Phys. Rev. A, 2013, 88: 031605
https://doi.org/10.1103/PhysRevA.88.031605
38 Cladé P. . Bloch oscillations in atom interferometry. Riv. Nuovo Cim., 2015, 38: 173
https://doi.org/10.1393/ncr/i2015-10111-3
39 Charrière R. , Cadoret M. , Zahzam N. , Bidel Y. , Bresson A. . Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Phys. Rev. A, 2012, 85(1): 013639
https://doi.org/10.1103/PhysRevA.85.013639
40 Bouchendira R., Thèse de doctorat, Université Pierre et Marie Curie, Paris (2012), soutenue publiquement le 17 Juillet 2012
41 Andia M., Thèse de doctorat, Université Pierre et Marie Curie, Paris (2015), soutenue le 25 Septembre 2015
42 Choudhury S. , J. Mueller E. . Transverse collisional instabilities of a Bose‒Einstein condensate in a driven one-dimensional lattice. Phys. Rev. A, 2015, 91(2): 023624
https://doi.org/10.1103/PhysRevA.91.023624
[1] Xiuye Liu, Jianhua Zeng. Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices[J]. Front. Phys. , 2024, 19(4): 42201-.
[2] Yanming Hu, Yifan Fei, Xiao-Long Chen, Yunbo Zhang. Collisional dynamics of symmetric two-dimensional quantum droplets[J]. Front. Phys. , 2022, 17(6): 61505-.
[3] Zhiming Chen, Xiuye Liu, Jianhua Zeng. Electromagnetically induced moiré optical lattices in a coherent atomic gas[J]. Front. Phys. , 2022, 17(4): 42508-.
[4] Yi-Yin Zheng, Shan-Tong Chen, Zhi-Peng Huang, Shi-Xuan Dai, Bin Liu, Yong-Yao Li, Shu-Rong Wang. Quantum droplets in two-dimensional optical lattices[J]. Front. Phys. , 2021, 16(2): 22501-.
[5] Zhi Lin, Jun Zhang, Ying Jiang. Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method[J]. Front. Phys. , 2018, 13(4): 136401-.
[6] Shu-Yang Wang, Jing-Wei Jiang, Yue-Ran Shi, Qiongyi He, Qihuang Gong, Wei Zhang. Fulde–Ferrell–Larkin–Ovchinnikov pairing states between s- and p-orbital fermions[J]. Front. Phys. , 2017, 12(5): 126701-.
[7] Yin Zhong, Yu Liu, Hong-Gang Luo. Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential[J]. Front. Phys. , 2017, 12(5): 127502-.
[8] Yongping Zhang,Maren Elizabeth Mossman,Thomas Busch,Peter Engels,Chuanwei Zhang. Properties of spin–orbit-coupled Bose–Einstein condensates[J]. Front. Phys. , 2016, 11(3): 118103-.
[9] Hongwei Xiong. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium[J]. Front. Phys. , 2015, 10(4): 100401-.
[10] Han-Lei Zheng, Qiang Gu. Dynamics of Bose–Einstein condensates in a one-dimensional optical lattice with double-well potential[J]. Front. Phys. , 2013, 8(4): 375-380.
[11] Yao-hua Chen, Wei Wu, Guo-cai Liu, Hong-shuai Tao, Wu-ming Liu. Quantum phase transition of cold atoms trapped in optical lattices[J]. Front. Phys. , 2012, 7(2): 223-234.
[12] Andrey R. Kolovsky. Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices[J]. Front. Phys. , 2012, 7(1): 3-7.
[13] Dan-wei Zhang (张丹伟), Zi-dan Wang (汪子丹), Shi-liang Zhu (朱诗亮). Relativistic quantum effects of Dirac particles simulated by ultracold atoms[J]. Front. Phys. , 2012, 7(1): 31-53.
[14] Hui ZHAI (翟荟). Strongly interacting ultracold quantum gases[J]. Front. Phys. , 2009, 4(1): 1-20.
[15] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed