Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (6) : 63502    https://doi.org/10.1007/s11467-021-1080-y
RESEARCH ARTICLE
Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film
Haoyu Dong1, Le Lei1, Shuya Xing1, Jianfeng Guo1, Feiyue Cao1, Shangzhi Gu1, Yanyan Geng1, Shuo Mi1, Hanxiang Wu1, Yan Jun Li2, Yasuhiro Sugawara2, Fei Pang1(), Wei Ji1, Rui Xu1, Zhihai Cheng1()
1. Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
2. Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
 Download: PDF(2858 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transition-metal chalcogenides (TMCs) materials have attracted increasing interest both for fundamental research and industrial applications. Among all these materials, two-dimensional (2D) compounds with honeycomb-like structure possess exotic electronic structures. Here, we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111) and annealing. Few intrinsic defects are observed and studied by scanning tunneling microscopy, indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary. Then, the monolayer AgTe can serve as the template for the following growth of Te film. Meanwhile, some Te atoms are observed in the form of chains on the top of the bottom Te film. Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.

Keywords AgTe monolayer      Te film      epitaxial growth      scanning tunneling microscopy      two-dimensional materials      transition-metal chalcogenides     
Corresponding Author(s): Fei Pang,Zhihai Cheng   
Issue Date: 13 July 2021
 Cite this article:   
Haoyu Dong,Le Lei,Shuya Xing, et al. Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film[J]. Front. Phys. , 2021, 16(6): 63502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1080-y
https://academic.hep.com.cn/fop/EN/Y2021/V16/I6/63502
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostruc- tures, Science 353 (6298), aac9439 (2016)
https://doi.org/10.1126/science.aac9439
3 Y. Pan, L. Z. Zhang, L. Huang, L. F. Li, L. Meng, M. Gao, Q. Huan, X. Lin, Y. L. Wang, S. X. Du, H. J. Freund, and H. J. Gao, Construction of 2D atomic crystals on transition metal surfaces: Graphene, silicene, and hafnene, Small 10(11), 2215 (2014)
https://doi.org/10.1002/smll.201303698
4 G. Y. Zhang, S. X. Du, K. H. Wu, and H. J. Gao, Sponsored Collection |Humble beginning, bright future: Institute of Physics (CAS) at 90, Science 360(6389), 673 (2018)
https://doi.org/10.1126/science.360.6389.673-b
5 Y. Pan, D. X. Shi, and H. J. Gao, Formation of graphene on Ru(0001) surface, Chin. Phys. 16(11), 3151 (2007)
https://doi.org/10.1088/1009-1963/16/11/001
6 Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001), Adv. Mater. 21(27), 2777 (2009)
https://doi.org/10.1002/adma.200990105
7 L. Huang, W. Y. Xu, Y. D. Que, J. H. Mao, L. Meng, L. D. Pan, G. Li, Y. L. Wang, S. X. Du, Y. Q. Liu, and H. J. Gao, Intercalation of metals and silicon at the interface of epitaxial graphene and its substrates, Chin. Phys. B 22(9), 096803 (2013)
https://doi.org/10.1088/1674-1056/22/9/096803
8 C. X. Zhao and J. F. Jia, Stanene: A good platform for topological insulator and topological superconductor, Front. Phys. 15(5), 53201 (2020)
https://doi.org/10.1007/s11467-020-0965-5
9 S. Y. Xing, L. Lei, H. Y. Dong, J. F. Guo, F. Y. Cao, S. Z. Gu, S. Hussain, F. Pang, W. Ji, R. Xu, and Z. H. Cheng, Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness, Chin. Phys. B 29(9), 096801 (2020)
https://doi.org/10.1088/1674-1056/aba27c
10 L. Meng, Y. L. Wang, L. Z. Zhang, S. X. Du, R. T. Wu, L. F. Li, Y. Zhang, G. Li, H. T. Zhou, W. A. Hofer, and H. J. Gao, Buckled silicene formation on Ir(111), Nano Lett. 13(2), 685 (2013)
https://doi.org/10.1021/nl304347w
11 L. F. Li, S. Z. Lu, J. B. Pan, Z. H. Qin, Y. Q. Wang, Y. L. Wang, G. Y. Cao, S. X. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)
https://doi.org/10.1002/adma.201400909
12 X. Wu, Y. Shao, H. Liu, Z. Feng, Y. L. Wang, J. T. Sun, C. Liu, J. O. Wang, Z. L. Liu, S. Y. Zhu, Y. Q. Wang, S. X. Du, Y. G. Shi, K. Ibrahim, and H. J. Gao, Epitaxial growth and air-stability of monolayer antimonene on PdTe2, Adv. Mater. 29(11), 1605407 (2017)
https://doi.org/10.1002/adma.201605407
13 F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)
https://doi.org/10.1038/nmat4384
14 Z. H. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22), 6746 (2017)
https://doi.org/10.1039/C7CS00261K
15 S. Hussain, K. Q. Xu, S. L. Ye, L. Lei, X. M. Liu, R. Xu, L. M. Xie, and Z. H. Cheng, Local electrical characterization of two-dimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)
https://doi.org/10.1007/s11467-018-0879-7
16 Z. Y. Zheng, Y. H. Pan, T. F. Pei, R. Xu, L. Lei, S. Hussain, X. J. Liu, L. H. Bao, H. J. Gao, W. Ji, and Z. H. Cheng, Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy, Front. Phys. 15(6), 63505 (2020)
https://doi.org/10.1007/s11467-020-0994-0
17 Z. Y. Zheng, R. Xu, K. Q. Xu, S. L. Ye, F. Pang, L. Lei, S. Hussain, X. M. Liu, W. Ji, and Z. H. Cheng, Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy, Front. Phys. 15(2), 23601 (2020)
https://doi.org/10.1007/s11467-019-0933-0
18 S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)
https://doi.org/10.1002/smll.201402041
19 J. Gou, B. Xia, H. Li, X. Wang, L. Kong, P. Cheng, H. Li, W. Zhang, T. Qian, H. Ding, Y. Xu, W. Duan, K. Wu, and L. Chen, Binary two-dimensional honeycomb lattice with strong spin–orbit coupling and electron–hole asymmetry, Phys. Rev. Lett. 121(12), 126801 (2018)
https://doi.org/10.1103/PhysRevLett.121.126801
20 B. Özdamar, G. Özbal, M. N. Çinar, K. Sevim, G. Kurt, B. Kaya, and H. Sevinçli, Structural, vibrational, and electronic properties of single-layer hexagonal crystals of group IV and V elements, Phys. Rev. B 98(4), 045431 (2018)
https://doi.org/10.1103/PhysRevB.98.045431
21 F. D. M. Haldane, Model for a quantum Hall effect without landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
https://doi.org/10.1103/PhysRevLett.61.2015
22 A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. B. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
https://doi.org/10.1038/nmat4802
23 C. C. Liu, W. Feng, and Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett. 107(7), 076802 (2011)
https://doi.org/10.1103/PhysRevLett.107.076802
24 G. H. Han, D. L. Duong, D. H. Keum, S. J. Yun, and Y. H. Lee, van der Waals metallic transition metal dichalcogenides, Chem. Rev. 118(13), 6297 (2018)
https://doi.org/10.1021/acs.chemrev.7b00618
25 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
26 L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)
https://doi.org/10.1103/PhysRevB.76.045302
27 H. M. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter 28, 303001 (2016)
https://doi.org/10.1088/0953-8984/28/30/303001
28 L. Gao, J. T. Sun, J. C. Lu, H. Li, K. Qian, S. Zhang, Y. Y. Zhang, T. Qian, H. Ding, X. Lin, S. Du, and H.J. Gao, Epitaxial growth of honeycomb monolayer CuSe with Dirac nodal line fermions, Adv. Mater. 30(16), 1707055 (2018)
https://doi.org/10.1002/adma.201707055
29 B. Liu, J. Liu, G. Y. Miao, S. W. Xue, S. Y. Zhang, L. X. Liu, X. C. Huang, X. T. Zhu, S. Meng, J. D. Guo, M. Liu, and W. H. Wang, Flat AgTe honeycomb monolayer on Ag(111), J. Phys. Chem. Lett. 10(8), 1866 (2019)
https://doi.org/10.1021/acs.jpclett.9b00339
30 M. Ünzelmann, H. Bentmann, P. Eck, T. Kißlinger, B. Geldiyev, J. Rieger, S. Moser, R. C. Vidal, K. Kißner, L. Hammer, M. A. Schneider, T. Fauster, G. Sangiovanni, D. Di Sante, and F. Reinert, Orbital-driven Rashba effect in a binary honeycomb monolayer AgTe, Phys. Rev. Lett. 124(17), 176401 (2020)
https://doi.org/10.1103/PhysRevLett.124.176401
31 Z. Y. Zhang, H. Gedeon, Z. W. Cheng, C. Xu, Z. B. Shao, H. G. Sun, S. J. Li, Y. Cao, X. Zhang, Q. Bian, L. J. Liu, Z. B. Liu, H. M. Cheng, W. C. Ren, and M. H. Pan, Layer-stacking, defects, and robust superconductivity on the mo-terminated surface of ultrathin Mo2C flakes grown by CVD, Nano Lett. 19(5), 3327 (2019)
https://doi.org/10.1021/acs.nanolett.9b00972
32 B. W. J. Chen, D. Kirvassilis, Y. H. Bai, and M. Mavrikakis, Atomic and molecular adsorption on Ag(111), J. Phys. Chem. C 123(13), 7551 (2019)
https://doi.org/10.1021/acs.jpcc.7b11629
33 A. L. Gould, C. R. A. Catlow, and A. J. Logsdail, Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x= 1–5, 147) and monometallic Au and Ag low-energy surfaces, Eur. Phys. J. B 91(2), 32 (2018)
https://doi.org/10.1140/epjb/e2017-80280-7
34 M. Kulawik, H. P. Rust, M. Heyde, N. Nilius, B. A. Mantooth, P. S. Weiss, and H. J. Freund, Interaction of CO molecules with surface state electrons on Ag(111), Surf. Sci. Lett. 590(2–3), L253 (2005)
https://doi.org/10.1016/j.susc.2005.05.068
35 M. Kulawik, H. P. Rust, N. Nilius, M. Heyde, and H. J. Freund, STM studies of ordered ( 31 × 31 ) R 9◦ CO islands on Ag(111), Phys. Rev. B 71(15), 153405 (2005)
https://doi.org/10.1103/PhysRevB.71.153405
36 L. Dong, A. W. Wang, E. Li, Q. Wang, G. Li, Q. Huan, and H. J. Gao, Formation of two-dimensional AgTe monolayer atomic crystal on Ag(111) substrate, Chin. Phys. Lett. 36(2), 028102 (2019)
https://doi.org/10.1088/0256-307X/36/2/028102
37 J. Shah, H. M. Sohail, R. I. G. Uhrberg, and W. Wang, Two-dimensional binary honeycomb layer formed by Ag and Te on Ag(111), J. Phys. Chem. Lett. 11(5), 1609 (2020)
https://doi.org/10.1021/acs.jpclett.0c00123
38 W. Jolie, C. Murray, P. S. Weiß, J. Hall, F. Portner, N. Atodiresei, A. V. Krasheninnikov, C. Busse, H. P. Komsa, A. Rosch, and T. Michely, Tomonaga-luttinger liquid in a box: Electrons confined within MoS2 mirror-twin boundaries, Phys. Rev. X 9(1), 011055 (2019)
https://doi.org/10.1103/PhysRevX.9.011055
39 C. Wang, X. Y. Zhou, J. S. Qiao, L. W. Zhou, X. H. Kong, Y. H. Pan, Z. H. Cheng, Y. Chai, and W. Ji, Charge-governed phase manipulation of few-layer tellurium, Nanoscale 10(47), 22263 (2018)
https://doi.org/10.1039/C8NR07501H
40 Z. L. Zhu, X. L. Cai, S. H. Yi, J. L. Chen, Y. W. Dai, C. Y. Niu, Z. X. Guo, M. H. Xie, F. Liu, J. H. Cho, Y. Jia, and Z. Y. Zhang, Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study, Phys. Rev. Lett. 119(10), 106101 (2017)
https://doi.org/10.1103/PhysRevLett.119.106101
41 S. Zhang, Y. Song, J. M. Li, Z. Y. Wang, C. Liu, J. O. Wang, L. Gao, J. C. Lu, Y. Y. Zhang, X. Lin, J. B. Pan, S. X. Du, and H. J. Gao, Epitaxial fabrication of monolayer copper arsenide on Cu(111), Chin. Phys. B 29(7), 077301 (2020)
https://doi.org/10.1088/1674-1056/ab8db3
42 D. C. Zhou, H. P. Li, N. Si, Y. X. Jiang, H. Huang, H. Li, and T. C. Niu, Epitaxial growth of single tellurium atomic wires on a Cu2Sb surface alloy, Appl. Phys. Lett. 116(6), 061602 (2020)
https://doi.org/10.1063/1.5140376
[1] Si-Yu Li, Lin He. Recent progresses of quantum confinement in graphene quantum dots[J]. Front. Phys. , 2022, 17(3): 33201-.
[2] Ya-Hui Mao, Huan Shan, Jin-Rong Wu, Ze-Jun Li, Chang-Zheng Wu, Xiao-Fang Zhai, Ai-Di Zhao, Bing Wang. Observation of pseudogap in SnSe2 atomic layers grown on graphite[J]. Front. Phys. , 2020, 15(4): 43501-.
[3] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[4] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[5] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
[6] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[7] Yuan-Yuan Tang, Jian-Dong Guo. Strong localization across the metal-insulator transition at the Ag/Si(111)-(3×3)R30? interface[J]. Front. Phys. , 2013, 8(1): 44-49.
[8] Shi-xuan DU (杜世萱), Ye-liang WANG (王业亮), Qi LIU (刘奇), Hai-gang ZHANG (张海刚), Hai-ming GUO (郭海明), Hong-jun GAO (高鸿钧). Understanding formation of molecular rotor array on Au(111) surface[J]. Front Phys Chin, 2010, 5(4): 380-386.
[9] Qin LIU (刘琴), Ke-dong WANG (王克东), Xu-dong XIAO (肖旭东). Surface dynamics studied by time-dependent tunneling current[J]. Front Phys Chin, 2010, 5(4): 357-368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed