|
|
Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film |
Haoyu Dong1, Le Lei1, Shuya Xing1, Jianfeng Guo1, Feiyue Cao1, Shangzhi Gu1, Yanyan Geng1, Shuo Mi1, Hanxiang Wu1, Yan Jun Li2, Yasuhiro Sugawara2, Fei Pang1( ), Wei Ji1, Rui Xu1, Zhihai Cheng1( ) |
1. Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China 2. Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan |
|
|
Abstract Transition-metal chalcogenides (TMCs) materials have attracted increasing interest both for fundamental research and industrial applications. Among all these materials, two-dimensional (2D) compounds with honeycomb-like structure possess exotic electronic structures. Here, we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111) and annealing. Few intrinsic defects are observed and studied by scanning tunneling microscopy, indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary. Then, the monolayer AgTe can serve as the template for the following growth of Te film. Meanwhile, some Te atoms are observed in the form of chains on the top of the bottom Te film. Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.
|
Keywords
AgTe monolayer
Te film
epitaxial growth
scanning tunneling microscopy
two-dimensional materials
transition-metal chalcogenides
|
Corresponding Author(s):
Fei Pang,Zhihai Cheng
|
Issue Date: 13 July 2021
|
|
1 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (5696), 666 (2004)
https://doi.org/10.1126/science.1102896
|
2 |
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostruc- tures, Science 353 (6298), aac9439 (2016)
https://doi.org/10.1126/science.aac9439
|
3 |
Y. Pan, L. Z. Zhang, L. Huang, L. F. Li, L. Meng, M. Gao, Q. Huan, X. Lin, Y. L. Wang, S. X. Du, H. J. Freund, and H. J. Gao, Construction of 2D atomic crystals on transition metal surfaces: Graphene, silicene, and hafnene, Small 10(11), 2215 (2014)
https://doi.org/10.1002/smll.201303698
|
4 |
G. Y. Zhang, S. X. Du, K. H. Wu, and H. J. Gao, Sponsored Collection |Humble beginning, bright future: Institute of Physics (CAS) at 90, Science 360(6389), 673 (2018)
https://doi.org/10.1126/science.360.6389.673-b
|
5 |
Y. Pan, D. X. Shi, and H. J. Gao, Formation of graphene on Ru(0001) surface, Chin. Phys. 16(11), 3151 (2007)
https://doi.org/10.1088/1009-1963/16/11/001
|
6 |
Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001), Adv. Mater. 21(27), 2777 (2009)
https://doi.org/10.1002/adma.200990105
|
7 |
L. Huang, W. Y. Xu, Y. D. Que, J. H. Mao, L. Meng, L. D. Pan, G. Li, Y. L. Wang, S. X. Du, Y. Q. Liu, and H. J. Gao, Intercalation of metals and silicon at the interface of epitaxial graphene and its substrates, Chin. Phys. B 22(9), 096803 (2013)
https://doi.org/10.1088/1674-1056/22/9/096803
|
8 |
C. X. Zhao and J. F. Jia, Stanene: A good platform for topological insulator and topological superconductor, Front. Phys. 15(5), 53201 (2020)
https://doi.org/10.1007/s11467-020-0965-5
|
9 |
S. Y. Xing, L. Lei, H. Y. Dong, J. F. Guo, F. Y. Cao, S. Z. Gu, S. Hussain, F. Pang, W. Ji, R. Xu, and Z. H. Cheng, Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness, Chin. Phys. B 29(9), 096801 (2020)
https://doi.org/10.1088/1674-1056/aba27c
|
10 |
L. Meng, Y. L. Wang, L. Z. Zhang, S. X. Du, R. T. Wu, L. F. Li, Y. Zhang, G. Li, H. T. Zhou, W. A. Hofer, and H. J. Gao, Buckled silicene formation on Ir(111), Nano Lett. 13(2), 685 (2013)
https://doi.org/10.1021/nl304347w
|
11 |
L. F. Li, S. Z. Lu, J. B. Pan, Z. H. Qin, Y. Q. Wang, Y. L. Wang, G. Y. Cao, S. X. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)
https://doi.org/10.1002/adma.201400909
|
12 |
X. Wu, Y. Shao, H. Liu, Z. Feng, Y. L. Wang, J. T. Sun, C. Liu, J. O. Wang, Z. L. Liu, S. Y. Zhu, Y. Q. Wang, S. X. Du, Y. G. Shi, K. Ibrahim, and H. J. Gao, Epitaxial growth and air-stability of monolayer antimonene on PdTe2, Adv. Mater. 29(11), 1605407 (2017)
https://doi.org/10.1002/adma.201605407
|
13 |
F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)
https://doi.org/10.1038/nmat4384
|
14 |
Z. H. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22), 6746 (2017)
https://doi.org/10.1039/C7CS00261K
|
15 |
S. Hussain, K. Q. Xu, S. L. Ye, L. Lei, X. M. Liu, R. Xu, L. M. Xie, and Z. H. Cheng, Local electrical characterization of two-dimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)
https://doi.org/10.1007/s11467-018-0879-7
|
16 |
Z. Y. Zheng, Y. H. Pan, T. F. Pei, R. Xu, L. Lei, S. Hussain, X. J. Liu, L. H. Bao, H. J. Gao, W. Ji, and Z. H. Cheng, Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy, Front. Phys. 15(6), 63505 (2020)
https://doi.org/10.1007/s11467-020-0994-0
|
17 |
Z. Y. Zheng, R. Xu, K. Q. Xu, S. L. Ye, F. Pang, L. Lei, S. Hussain, X. M. Liu, W. Ji, and Z. H. Cheng, Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy, Front. Phys. 15(2), 23601 (2020)
https://doi.org/10.1007/s11467-019-0933-0
|
18 |
S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)
https://doi.org/10.1002/smll.201402041
|
19 |
J. Gou, B. Xia, H. Li, X. Wang, L. Kong, P. Cheng, H. Li, W. Zhang, T. Qian, H. Ding, Y. Xu, W. Duan, K. Wu, and L. Chen, Binary two-dimensional honeycomb lattice with strong spin–orbit coupling and electron–hole asymmetry, Phys. Rev. Lett. 121(12), 126801 (2018)
https://doi.org/10.1103/PhysRevLett.121.126801
|
20 |
B. Özdamar, G. Özbal, M. N. Çinar, K. Sevim, G. Kurt, B. Kaya, and H. Sevinçli, Structural, vibrational, and electronic properties of single-layer hexagonal crystals of group IV and V elements, Phys. Rev. B 98(4), 045431 (2018)
https://doi.org/10.1103/PhysRevB.98.045431
|
21 |
F. D. M. Haldane, Model for a quantum Hall effect without landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
https://doi.org/10.1103/PhysRevLett.61.2015
|
22 |
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. B. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
https://doi.org/10.1038/nmat4802
|
23 |
C. C. Liu, W. Feng, and Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett. 107(7), 076802 (2011)
https://doi.org/10.1103/PhysRevLett.107.076802
|
24 |
G. H. Han, D. L. Duong, D. H. Keum, S. J. Yun, and Y. H. Lee, van der Waals metallic transition metal dichalcogenides, Chem. Rev. 118(13), 6297 (2018)
https://doi.org/10.1021/acs.chemrev.7b00618
|
25 |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
|
26 |
L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)
https://doi.org/10.1103/PhysRevB.76.045302
|
27 |
H. M. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter 28, 303001 (2016)
https://doi.org/10.1088/0953-8984/28/30/303001
|
28 |
L. Gao, J. T. Sun, J. C. Lu, H. Li, K. Qian, S. Zhang, Y. Y. Zhang, T. Qian, H. Ding, X. Lin, S. Du, and H.J. Gao, Epitaxial growth of honeycomb monolayer CuSe with Dirac nodal line fermions, Adv. Mater. 30(16), 1707055 (2018)
https://doi.org/10.1002/adma.201707055
|
29 |
B. Liu, J. Liu, G. Y. Miao, S. W. Xue, S. Y. Zhang, L. X. Liu, X. C. Huang, X. T. Zhu, S. Meng, J. D. Guo, M. Liu, and W. H. Wang, Flat AgTe honeycomb monolayer on Ag(111), J. Phys. Chem. Lett. 10(8), 1866 (2019)
https://doi.org/10.1021/acs.jpclett.9b00339
|
30 |
M. Ünzelmann, H. Bentmann, P. Eck, T. Kißlinger, B. Geldiyev, J. Rieger, S. Moser, R. C. Vidal, K. Kißner, L. Hammer, M. A. Schneider, T. Fauster, G. Sangiovanni, D. Di Sante, and F. Reinert, Orbital-driven Rashba effect in a binary honeycomb monolayer AgTe, Phys. Rev. Lett. 124(17), 176401 (2020)
https://doi.org/10.1103/PhysRevLett.124.176401
|
31 |
Z. Y. Zhang, H. Gedeon, Z. W. Cheng, C. Xu, Z. B. Shao, H. G. Sun, S. J. Li, Y. Cao, X. Zhang, Q. Bian, L. J. Liu, Z. B. Liu, H. M. Cheng, W. C. Ren, and M. H. Pan, Layer-stacking, defects, and robust superconductivity on the mo-terminated surface of ultrathin Mo2C flakes grown by CVD, Nano Lett. 19(5), 3327 (2019)
https://doi.org/10.1021/acs.nanolett.9b00972
|
32 |
B. W. J. Chen, D. Kirvassilis, Y. H. Bai, and M. Mavrikakis, Atomic and molecular adsorption on Ag(111), J. Phys. Chem. C 123(13), 7551 (2019)
https://doi.org/10.1021/acs.jpcc.7b11629
|
33 |
A. L. Gould, C. R. A. Catlow, and A. J. Logsdail, Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x= 1–5, 147) and monometallic Au and Ag low-energy surfaces, Eur. Phys. J. B 91(2), 32 (2018)
https://doi.org/10.1140/epjb/e2017-80280-7
|
34 |
M. Kulawik, H. P. Rust, M. Heyde, N. Nilius, B. A. Mantooth, P. S. Weiss, and H. J. Freund, Interaction of CO molecules with surface state electrons on Ag(111), Surf. Sci. Lett. 590(2–3), L253 (2005)
https://doi.org/10.1016/j.susc.2005.05.068
|
35 |
M. Kulawik, H. P. Rust, N. Nilius, M. Heyde, and H. J. Freund, STM studies of ordered ( 31 × 31 ) R 9◦ CO islands on Ag(111), Phys. Rev. B 71(15), 153405 (2005)
https://doi.org/10.1103/PhysRevB.71.153405
|
36 |
L. Dong, A. W. Wang, E. Li, Q. Wang, G. Li, Q. Huan, and H. J. Gao, Formation of two-dimensional AgTe monolayer atomic crystal on Ag(111) substrate, Chin. Phys. Lett. 36(2), 028102 (2019)
https://doi.org/10.1088/0256-307X/36/2/028102
|
37 |
J. Shah, H. M. Sohail, R. I. G. Uhrberg, and W. Wang, Two-dimensional binary honeycomb layer formed by Ag and Te on Ag(111), J. Phys. Chem. Lett. 11(5), 1609 (2020)
https://doi.org/10.1021/acs.jpclett.0c00123
|
38 |
W. Jolie, C. Murray, P. S. Weiß, J. Hall, F. Portner, N. Atodiresei, A. V. Krasheninnikov, C. Busse, H. P. Komsa, A. Rosch, and T. Michely, Tomonaga-luttinger liquid in a box: Electrons confined within MoS2 mirror-twin boundaries, Phys. Rev. X 9(1), 011055 (2019)
https://doi.org/10.1103/PhysRevX.9.011055
|
39 |
C. Wang, X. Y. Zhou, J. S. Qiao, L. W. Zhou, X. H. Kong, Y. H. Pan, Z. H. Cheng, Y. Chai, and W. Ji, Charge-governed phase manipulation of few-layer tellurium, Nanoscale 10(47), 22263 (2018)
https://doi.org/10.1039/C8NR07501H
|
40 |
Z. L. Zhu, X. L. Cai, S. H. Yi, J. L. Chen, Y. W. Dai, C. Y. Niu, Z. X. Guo, M. H. Xie, F. Liu, J. H. Cho, Y. Jia, and Z. Y. Zhang, Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study, Phys. Rev. Lett. 119(10), 106101 (2017)
https://doi.org/10.1103/PhysRevLett.119.106101
|
41 |
S. Zhang, Y. Song, J. M. Li, Z. Y. Wang, C. Liu, J. O. Wang, L. Gao, J. C. Lu, Y. Y. Zhang, X. Lin, J. B. Pan, S. X. Du, and H. J. Gao, Epitaxial fabrication of monolayer copper arsenide on Cu(111), Chin. Phys. B 29(7), 077301 (2020)
https://doi.org/10.1088/1674-1056/ab8db3
|
42 |
D. C. Zhou, H. P. Li, N. Si, Y. X. Jiang, H. Huang, H. Li, and T. C. Niu, Epitaxial growth of single tellurium atomic wires on a Cu2Sb surface alloy, Appl. Phys. Lett. 116(6), 061602 (2020)
https://doi.org/10.1063/1.5140376
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|