|
|
Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer |
Rong Guo, Yilv Guo, Yehui Zhang, Xiaoshu Gong, Tingbo Zhang, Xing Yu, Shijun Yuan( ), Jinlan Wang( ) |
Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China |
|
|
Abstract As a two-dimensional material with a hollow hexatomic ring structure, Néel-type anti-ferromagnetic (AFM) GdI3 can be used as a theoretical model to study the effect of electron doping. Based on first-principles calculations, we find that the Fermi surface nesting occurs when more than 1/3 electron per Gd is doped, resulting in the failure to obtain a stable ferromagnetic (FM) state. More interestingly, GdI3 with appropriate Mg/Ca doping (1/6 Mg/Ca per Gd) turns to be half-metallic FM state. This AFM−FM transition results from the transfer of doped electrons to the spatially expanded Gd-5d orbital, which leads to the FM coupling of local half-full Gd-4f electrons through 5d−4f hybridization. Moreover, the shortened Gd−Gd length is the key to the formation of the stable ferromagnetic coupling. Our method provides new insights into obtaining stable FM materials from AFM materials.
|
Keywords
two-dimensional materials
electronic structure
magnetism
|
Corresponding Author(s):
Shijun Yuan,Jinlan Wang
|
Issue Date: 26 May 2023
|
|
1 |
Gong C. , Li L. , L. Li Z. , W. Ji H. , Stern A. , Xia Y. , Cao T. , Bao W. , Z. Wang C. , A. Wang Y. , Q. Qiu Z. , J. Cava R. , G. Louie S. , Xia J. , Zhang X. . Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
https://doi.org/10.1038/nature22060
|
2 |
Huang B. , Clark G. , Navarro-Moratalla E. , R. Klein D. , Cheng R. , L. Seyler K. , Zhong D. , Schmidgall E. , A. McGuire M. , H. Cobden D. , Yao W. , Xiao D. , Jarillo-Herrero P. , D. Xu X. . Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
|
3 |
An M. , Dong S. . Ferroic orders in two-dimensional transition/rare-earth metal halides. APL Mater., 2020, 8(11): 110704
https://doi.org/10.1063/5.0031870
|
4 |
Cheng X. , X. Cheng Z. , Wang C. , L. Li M. , F. Gu P. , Q. Yang S. , P. Li Y. , Watanabe K. , Taniguchi T. , Ji W. , Dai L. . Light helicity detector based on 2D magnetic semiconductor CrI3. Nat. Commun., 2021, 12(1): 6874
https://doi.org/10.1038/s41467-021-27218-3
|
5 |
Ding N. , Chen J. , Dong S. , Stroppa A. . Ferroelectricity and ferromagnetism in a VOI2 monolayer: Role of the Dzyaloshinskii−Moriya interaction. Phys. Rev. B, 2020, 102(16): 165129
https://doi.org/10.1103/PhysRevB.102.165129
|
6 |
Gong C. , Zhang X. . Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363(6428): eaav4450
https://doi.org/10.1126/science.aav4450
|
7 |
Hidalgo-Sacoto R. , I. Gonzalez R. , E. Vogel E. , Allende S. , D. Mella J. , Cardenas C. , E. Troncoso R. , Munoz F. . Magnon valley Hall effect in CrI3-based van der Waals heterostructures. Phys. Rev. B, 2020, 101(20): 205425
https://doi.org/10.1103/PhysRevB.101.205425
|
8 |
X. Huang C. , P. Du Y. , P. Wu H. , J. Xiang H. , M. Deng K. , J. Kan E. . Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys. Rev. Lett., 2018, 120(14): 147601
https://doi.org/10.1103/PhysRevLett.120.147601
|
9 |
Y. Kim S. , Y. Kim T. , J. Sandilands L. , Sinn S. , C. Lee M. , Son J. , Lee S. , Y. Choi K. , Kim W. , G. Park B. , Jeon C. , D. Kim H. , H. Park C. , G. Park J. , J. Moon S. , W. Noh T. . Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett., 2018, 120(13): 136402
https://doi.org/10.1103/PhysRevLett.120.136402
|
10 |
A. McGuire M. , O. Garlea V. , Kc S. , R. Cooper V. , Yan J. , Cao H. , C. Sales B. . Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3. Phys. Rev. B, 2017, 95(14): 144421
https://doi.org/10.1103/PhysRevB.95.144421
|
11 |
L. Sun Q. , Kioussis N. . Prediction of manganese trihalides as two-dimensional Dirac half-metals. Phys. Rev. B, 2018, 97(9): 094408
https://doi.org/10.1103/PhysRevB.97.094408
|
12 |
Tang X. , Z. Kou L. . Two-dimensional ferroics and multiferroics: Platforms for new physics and applications. J. Phys. Chem. Lett., 2019, 10(21): 6634
https://doi.org/10.1021/acs.jpclett.9b01969
|
13 |
H. Wu M. , Jena P. . The rise of two-dimensional van der Waals ferroelectrics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8(5): e1365
https://doi.org/10.1002/wcms.1365
|
14 |
Zhou S. , You L. , L. Zhou H. , Pu Y. , G. Gui Z. , L. Wang J. . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
https://doi.org/10.1007/s11467-020-0986-0
|
15 |
Y. He X.T. Lin F.Liu F.Shi W., 3D Dirac semimetals supported tunable terahertz BIC metamaterials, Nanophotonics 11(21), 4705 (2022)
|
16 |
Leng J. , Peng J. , Jin A. , Cao D. , J. Liu D. , Y. He X. , T. Lin F. , Liu F. . Investigation of terahertz high Q-factor of all-dielectric metamaterials. Opt. Laser Technol., 2022, 146: 107570
https://doi.org/10.1016/j.optlastec.2021.107570
|
17 |
Peng J. , Y. He X. , Y. Y. Shi C. , Leng J. , T. Lin F. , Liu F. , Zhang H. , Z. Shi W. . Investigation of graphene supported terahertz elliptical metamaterials. Physica E, 2020, 124: 114309
https://doi.org/10.1016/j.physe.2020.114309
|
18 |
Y. He X.Liu F.T. Lin F.Shi W., 3D Dirac semimetal supported tunable TE modes, Ann. Phys. 534(4), 2100355 (2022)
|
19 |
L. L. Zhuang H. , R. C. Kent P. , G. Hennig R. . Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys. Rev. B, 2016, 93(13): 134407
https://doi.org/10.1103/PhysRevB.93.134407
|
20 |
Wang B. , H. Zhang Y. , Ma L. , S. Wu Q. , L. Guo Y. , W. Zhang X. , L. Wang J. , (X = P MnX . As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. Nanoscale, 2019, 11(10): 4204
https://doi.org/10.1039/C8NR09734H
|
21 |
Wang B. , W. Zhang X. , H. Zhang Y. , J. Yuan S. , Guo Y. , Dong S. , L. Wang J. . Prediction of a two-dimensional high-Tc f-electron ferromagnetic semiconductor. Mater. Horiz., 2020, 7(6): 1623
https://doi.org/10.1039/D0MH00183J
|
22 |
Guo Y. , H. Zhang Y. , H. Lu S. , W. Zhang X. , H. Zhou Q. , J. Yuan S. , L. Wang J. . Coexistence of semiconducting ferromagnetics and piezoelectrics down 2D limit from non van der Waals antiferromagnetic LiNbO3-type FeTiO3. J. Phys. Chem. Lett., 2022, 13(8): 1991
https://doi.org/10.1021/acs.jpclett.2c00091
|
23 |
A. Broadway D. , C. Scholten S. , Tan C. , Dontschuk N. , E. Lillie S. , C. Johnson B. , L. Zheng G. , H. Wang Z. , R. Oganov A. , J. Tian S. , H. Li C. , C. Lei H. , Wang L. , C. L. Hollenberg L. , P. Tetienne J. . Imaging domain reversal in an ultrathin van der Waals ferromagnet. Adv. Mater., 2020, 32(39): 2003314
https://doi.org/10.1002/adma.202003314
|
24 |
A. McGuire M. , Clark G. , Kc S. , M. Chance W. , E. Jellison G. , R. Cooper V. , Xu X. , C. Sales B. . Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys. Rev. Mater., 2017, 1(1): 014001
https://doi.org/10.1103/PhysRevMaterials.1.014001
|
25 |
J. Tian S. , F. Zhang J. , H. Li C. , P. Ying T. , Y. Li S. , Zhang X. , Liu K. , C. Lei H. . Ferromagnetic van der Waals crystal VI3. J. Am. Chem. Soc., 2019, 141(13): 5326
https://doi.org/10.1021/jacs.8b13584
|
26 |
W. Zhang Z. , Z. Shang J. , Y. Jiang C. , Rasmita A. , B. Gao W. , Yu T. . Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett., 2019, 19(5): 3138
https://doi.org/10.1021/acs.nanolett.9b00553
|
27 |
Dagotto E. . Complexity in strongly correlated electronic systems. Science, 2005, 309(5732): 257
https://doi.org/10.1126/science.1107559
|
28 |
B. Asprey L. , K. Keenan T. , H. Kruse F. . Preparation and crystal data for lanthanide and actinide triiodides. Inorg. Chem., 1964, 3(8): 1137
https://doi.org/10.1021/ic50018a015
|
29 |
P. You H. , Zhang Y. , Chen J. , Ding N. , An M. , Miao L. , Dong S. . Peierls transition driven ferroelasticity in the two-dimensional d−f hybrid magnets. Phys. Rev. B, 2021, 103(16): L161408
https://doi.org/10.1103/PhysRevB.103.L161408
|
30 |
P. You H. , Ding N. , Chen J. , Y. Yao X. , Dong S. . Gadolinium halide monolayers: A fertile family of two-dimensional 4f magnets. ACS Appl. Electron. Mater., 2022, 4(7): 3168
https://doi.org/10.1021/acsaelm.2c00384
|
31 |
Kresse G. , Furthmuller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
|
32 |
P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
33 |
Larson P. , R. L. Lambrecht W. , Chantis A. , van Schilfgaarde M. . Electronic structure of rare-earth nitrides using the LSDA plus U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys. Rev. B, 2007, 75(4): 045114
https://doi.org/10.1103/PhysRevB.75.045114
|
34 |
H. Zhang Y.Wang B.Guo Y.Li Q.N. Wang J., A universal framework for metropolis Monte Carlo simulation of magnetic Curie temperature, Comput. Mater. Sci. 197, 110638 (2021)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|