Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 53601    https://doi.org/10.1007/s11467-024-1394-7
Deep learning in two-dimensional materials: Characterization, prediction, and design
Xinqin Meng1, Chengbing Qin1,2(), Xilong Liang3, Guofeng Zhang1, Ruiyun Chen1, Jianyong Hu1, Zhichun Yang1, Jianzhong Huo3, Liantuan Xiao1,2(), Suotang Jia1
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
2. College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
3. Taiyuan Central Hospital of Shanxi Medical University, Taiyuan 030009, China
 Download: PDF(18419 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Since the isolation of graphene, two-dimensional (2D) materials have attracted increasing interest because of their excellent chemical and physical properties, as well as promising applications. Nonetheless, particular challenges persist in their further development, particularly in the effective identification of diverse 2D materials, the domains of large-scale and high-precision characterization, also intelligent function prediction and design. These issues are mainly solved by computational techniques, such as density function theory and molecular dynamic simulation, which require powerful computational resources and high time consumption. The booming deep learning methods in recent years offer innovative insights and tools to address these challenges. This review comprehensively outlines the current progress of deep learning within the realm of 2D materials. Firstly, we will briefly introduce the basic concepts of deep learning and commonly used architectures, including convolutional neural and generative adversarial networks, as well as U-net models. Then, the characterization of 2D materials by deep learning methods will be discussed, including defects and materials identification, as well as automatic thickness characterization. Thirdly, the research progress for predicting the unique properties of 2D materials, involving electronic, mechanical, and thermodynamic features, will be evaluated succinctly. Lately, the current works on the inverse design of functional 2D materials will be presented. At last, we will look forward to the application prospects and opportunities of deep learning in other aspects of 2D materials. This review may offer some guidance to boost the understanding and employing novel 2D materials.

Keywords deep learning      two-dimensional materials      materials identification      thickness characterization      prediction      inverse design      convolutional neural networks      generative adversarial networks     
Corresponding Author(s): Chengbing Qin,Liantuan Xiao   
About author: Li Liu and Yanqing Liu contributed equally to this work.
Issue Date: 15 April 2024
 Cite this article:   
Xinqin Meng,Chengbing Qin,Xilong Liang, et al. Deep learning in two-dimensional materials: Characterization, prediction, and design[J]. Front. Phys. , 2024, 19(5): 53601.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1394-7
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/53601
Fig.1  The taxonomy of artificial intelligence (AI) and diagram of the structure of a commonly used neural network. (a) The taxonomy of AI, where ML represents machine learning, SNN represents the spiking neural network, NN represents the neural network, and DL represents deep learning. (b) The overall architecture of CNN. (c) GAN model frame diagram. (d) U-net architecture. (a, b) Reproduced with permission from Ref. [94]. (c) Reproduced with permission from Ref. [103]. (d) Reproduced with permission from Ref. [104].
Fig.2  Defects identification of 2D materials based on the deep learning methods. (a) The schematic architecture of FCN with encoder?decoder structure. (b) Using FCN and Laplacian of Gaussian blob detection method to obtain atomic positions from raw experimental data on graphene. Imaging area: 2.16 nm × 2.16 nm. (c) Left: The first frame from STEM movie on Mo-doped WS2 as a training image. Middle: The outcome derived from the application of Fourier transform and high-pass filtering to the left image. Right: The ultimate thresholded difference image serves as ground truth. (d) Gaussian mixture model clusters the defects into five categories. From left to right represents categories 1 to 5. (e) The upper part exhibits ADF STEM images of WSe2 with V dopant under electron beam irradiation. The lower part presents the corresponding atom-site classification maps, acquired through the established deep learning algorithm. (a, b) Reproduced with permission from Ref. [121]. (c, d) Reproduced with permission from Ref. [123]. (e) Reproduced with permission from Ref. [125].
Fig.3  Materials identification and thickness analysis of 2D materials based on the deep learning methods. (a) Process of quality filtering of 2D crystals via deep-neural network. (b) OM images of 13 materials. (c) Schematic diagram of the structure of 2DMOINet. (d) The label map predicted by 2DMOINet segments individual 2D material flakes and provides labels for their material identities and thickness. (e) Using improved U-net to identify the number of layers for both out-of-focus images and refocused images, respectively. Scale bar: 100 μm. (f) The OM images of the heterostructures. (g) Raman mapping of the heterostructures in (f). Left: The peak intensity mapping of E2g1 mode in WS2. Right: The peak intensity mapping of E2g1 mode in MoS2. (h) Predictions from ANN for heterostructures in (f). (i) The OM images of the graphene. (j) Predictions from the model based on Mask-RCNN for graphene in (i). The segmentation masks are shown in color, and the category and confidence are also indicated. (a) Reproduced with permission from Ref. [129]. (b?d) Reproduced with permission from Ref. [130]. (e) Reproduced with permission from Ref. [137]. (f?h) Reproduced with permission from Ref. [138]. (i, j) Reproduced with permission from Ref. [131].
Fig.4  Prediction of electronic properties of graphene and related materials based on the deep learning methods. (a) A hybrid h-BN graphene nanoflake. (b, c) Results from the first ANN model and the second ANN model, represented by blue and red for the training and testing sets, respectively. (d, e) Prediction performance of four models. (d) The predictive bandgap error of the four models in 4 × 4 supercell systems. (e) The comparison between the predicted bandgap generated by the four models and the bandgap calculated by DFT. (f) Data preparation. Large amounts of data are randomly generated under limited conditions. (g) The prediction results of CNN for different defect combinations at varying defect distances. (a?c) Reproduced with permission from Ref. [140]. (d, e) Reproduced with permission from Ref. [141]. (f, g) Reproduced with permission from Ref. [143].
Fig.5  Prediction of mechanical properties of 2D materials based on the deep learning methods. (a) Schematic diagram of the model based on ConvLSTM. (b) Comparison between the predicted results from ConvLSTM-based model on the test set and the MD simulation results. (c) The input and output images in the dataset. (d) Crack length comparison from MD simulation and the model based on CNN and Bi-RNNs. (e) The relationship between crack length and grain size plots from MD simulation and the model. (f) The deep CNN model is employed to extract the average grain size of polycrystalline graphene, demonstrating its testing performance. (g) The standard deviation of fracture stress and Young’s modulus with grain size distribution obtained by MD simulation. (a, b) Reproduced with permission from Ref. [146]. (c?e) Reproduced with permission from Ref. [149]. (f, g) Reproduced with permission from Ref. [153].
Fig.6  Prediction of thermal conductivity of 2D materials based on the deep learning methods. Machine learning results of (a) linear regression, (b) 2nd order polynomial regression, (c) decision tree, and (d) random forest algorithms. The red and black squares represent the machine learning predicted values and the target interfacial thermal resistance values, respectively. (e?h) Predictive results of ANN with different architectures: (e) with one hidden layer, each layer containing 10 neurons; (f) with one hidden layer, each layer containing 20 neurons; (g) with two hidden layers, each layer containing 10 neurons; (h) with two hidden layers, each layer containing 20 neurons. The red and black squares represent the ANN predicted values and the target interfacial thermal resistance values, respectively. (i) The structure of porous graphene. The atomic clusters in the central region (highlighted in blue) are candidate positions for generating holes. (j) Exploded schematic of piled graphene with dimensions l × w. (k) The process of generating fingerprints for piled graphene structures. (l) A databank consisting of geometric features and thermal conductivity of piled graphene structures. (a?h) Reproduced with permission from Ref. [155]. (i) Reproduced with permission from Ref. [156]. (j?l) Reproduced with permission from Ref. [157].
Fig.7  2D materials design based on deep learning methods. (a) The four science paradigms: empirical, theoretical, computational, and data-driven. (b) The architecture of RCGAN used for the design of 2D graphene and h-BN hybrids with specific bandgap. (c) For the 4 × 4 supercell systems, the comparison between the bandgap of the generated structure and the desired bandgap, with a correlation factor of 0.87. (d) For the 4 × 4 supercell system, the distribution of bandgap errors for the generated structures with a mean absolute error of 9.45%. (e) MoS2 model and design parameter space. (f) Using DFT calculations to validate the performance of candidate structures generated by the MatDesINNe-cINN model. For candidate structures with a target bandgap of 0.5 eV generated by the model, the average absolute error is 0.111 eV. (g) The MoS2 example structure generated by the MatDesINNe-cINN model with a bandgap value of 0.5 eV. (h) Time required to calculate hydrogen evolution reaction adsorption energies of 34 materials. (a) Reproduced with permission from Ref. [168]. (b?d) Reproduced with permission from Ref. [169]. (e?g) Reproduced with permission from Ref. [170]. (h) Reproduced with permission from Ref. [171].
Research area2D materialsModelData sourcesApplicationsRef.
Structure characterizationgraphene, Mo1–xWxSe2FCNsimulated imagesdefects identification[121]
graphene, metallic nanoparticlesCNNsimulated images using multislice algorithmrecognition and classification of atomic structures[122]
Mo-doped WS2CNN with encoder–decoder structureexperimental STEM imagesdefects identification[123]
2H-MoTe2CNNsimulated STEM imagespoint defects identification[124]
TMDsCNN, U-netsimulated ADF STEM images using multislice algorithmquantification of dopants and defects[125]
WSe2–2xTe2xFCNsimulated images using Computemlocalization and classification of point defects[126]
Ti3C2TxFCNsimulated images and experimental STEM imagesdefects and atoms identification[127]
SegNetOM imagesmaterials identification[128]
graphene, MoS2U-netOM imagesthickness characterization[129]
13 typical 2D materials2DMOINet model based on encoder–decoder structureOM imagesmaterials identification and thickness characterization[130]
graphene, h-BN, MoS2, WTe2Mask-RCNNOM imagesmaterials identification and thickness characterization[131]
grapheneDeep-CNNOM imagesmaterials identification and thickness characterization[133]
graphene, MoS2U2-netOM images from [129]thickness characterization[134]
MoS2GAN, U-netOM imagesdeblurring and thickness characterization[137]
WS2, h-BN, MoS2, MoTe2, WSe2, BSCCO, MoSe2, grapheneANNOM images (RGB/HSV)materials identification, thickness characterization and identification defect concentrations[138]
MoS2GAN, U-netmultispectral imagesdeblurring and thickness characterization[139]
Properties predictionhybrid graphene-h-BNANNDFT calculationbandgap[140]
hybrid graphene-h-BNCNNDFT calculationbandgap[141]
defected graphene, MoS2CNNDFT calculationformation energy[143]
defected grapheneANN, CNNMD simulationfracture stress[144]
grapheneConvLSTM networkMD simulationfracture path[146]
polycrystalline grapheneCNN, Bi-RNNMD simulationfracture path[149]
polycrystalline grapheneDeep-CNNMD simulationYoung’s modulus and fracture stress[153]
h-BNDeep-CNNMD simulationYoung’s modulus and tensile strength[154]
graphene, h-BNANNMD simulationinterfacial thermal resistance[155]
porous grapheneCNNMD simulationthermal conductivity[156]
mechanically stretched grapheneDNNMD simulationthermal conductivity[157]
Material designhybrids graphene/h-BNGANDFT calculationgenerate graphene/h-BN hybrids with specific bandgap[169]
MoS2INNDFT calculationgenerate MoS2 with specific bandgap[170]
porous grapheneCNNMD simulationfind porous graphene with low thermal conductivity[156]
2D material catalystsCGCNNDFT calculationfind high-performance hydrogen evolution reaction catalysts[171]
Tab.1  Summary of utilizing deep learning in the diverse fields of 2D materials.
1 S. Novoselov K. , K. Geim A. , V. Morozov S. , Jiang D. , Zhang Y. , V. Dubonos S. , V. Grigorieva I. , A. Firsov A. . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
2 Ma Q. , Ren G. , Xu K. , Z. Ou J. . Tunable optical properties of 2D materials and their applications. Adv. Opt. Mater., 2021, 9(2): 2001313
https://doi.org/10.1002/adom.202001313
3 L. Li X. , P. Han W. , B. Wu J. , F. Qiao X. , Zhang J. , H. Tan P. . Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater., 2017, 27(19): 1604468
https://doi.org/10.1002/adfm.201604468
4 Low T. , Chaves A. , D. Caldwell J. , Kumar A. , X. Fang N. , Avouris P. , F. Heinz T. , Guinea F. , Martin-Moreno L. , Koppens F. . Polaritons in layered two-dimensional materials. Nat. Mater., 2017, 16(2): 182
https://doi.org/10.1038/nmat4792
5 Qin Y. , Sayyad M. , R. P. Montblanch A. , S. G. Feuer M. , Dey D. , Blei M. , Sailus R. , M. Kara D. , Shen Y. , Yang S. , S. Botana A. , Atature M. , Tongay S. . Reaching the excitonic limit in 2D Janus monolayers by in situ deterministic growth. Adv. Mater., 2022, 34(6): 2106222
https://doi.org/10.1002/adma.202106222
6 LaMountain T. , J. Lenferink E. , J. Chen Y. , K. Stanev T. , P. Stern N. . Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys., 2018, 13(4): 138114
https://doi.org/10.1007/s11467-018-0795-x
7 Liu Y. , Xiao C. , Li Z. , Xie Y. . Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater., 2016, 6(23): 1600436
https://doi.org/10.1002/aenm.201600436
8 Kuc A. , Heine T. , Kis A. . Electronic properties of transition-metal dichalcogenides. MRS Bull., 2015, 40(7): 577
https://doi.org/10.1557/mrs.2015.143
9 H. Wang Q. , Kalantar-Zadeh K. , Kis A. , N. Coleman J. , S. Strano M. . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
https://doi.org/10.1038/nnano.2012.193
10 Q. Fang Y.K. Wang F.Q. Wang R.Zhai T.Huang F., 2D NbOI2: A chiral semiconductor with highly in-plane anisotropic electrical and optical properties, Adv. Mater. 33(29), 2101505 (2021)
11 Yang R. , Fan J. , Sun M. . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
https://doi.org/10.1007/s11467-022-1176-z
12 Song H. , Liu J. , Liu B. , Wu J. , M. Cheng H. , Kang F. . Two-dimensional materials for thermal management applications. Joule, 2018, 2(3): 442
https://doi.org/10.1016/j.joule.2018.01.006
13 Wang Y. , Xu N. , Li D. , Zhu J. . Thermal properties of two dimensional layered materials. Adv. Funct. Mater., 2017, 27(19): 1604134
https://doi.org/10.1002/adfm.201604134
14 Thiel L. , Wang Z. , A. Tschudin M. , Rohner D. , Gutiérrez-Lezama I. , Ubrig N. , Gibertini M. , Giannini E. , F. Morpurgo A. , Maletinsky P. . Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science, 2019, 364(6444): 973
https://doi.org/10.1126/science.aav6926
15 Li Y. , Yang B. , Xu S. , Huang B. , Duan W. . Emergent phenomena in magnetic two-dimensional materials and van der Waals heterostructures. ACS Appl. Electron. Mater., 2022, 4(7): 3278
https://doi.org/10.1021/acsaelm.2c00419
16 Gibertini M. , Koperski M. , F. Morpurgo A. , S. Novoselov K. . Magnetic 2D materials and heterostructures. Nat. Nanotechnol., 2019, 14(5): 408
https://doi.org/10.1038/s41565-019-0438-6
17 Li X. , Sun M. , Shan C. , Chen Q. , Wei X. . Mechanical properties of 2D materials studied by in situ microscopy techniques. Adv. Mater. Interfaces, 2018, 5(5): 1701246
https://doi.org/10.1002/admi.201701246
18 Jiang H. , Zheng L. , Liu Z. , Wang X. . Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat, 2020, 2(6): 1077
https://doi.org/10.1002/inf2.12072
19 Fang C. , Wang H. , Shen Z. , Shen H. , Wang S. , Ma J. , Wang J. , Luo H. , Li D. . High-performance photodetectors based on lead-free 2D Ruddlesden–Popper perovskite/MoS2 heterostructures. ACS Appl. Mater. Interfaces, 2019, 11(8): 8419
https://doi.org/10.1021/acsami.8b20538
20 Liu H. , Zhu X. , Sun X. , Zhu C. , Huang W. , Zhang X. , Zheng B. , Zou Z. , Luo Z. , Wang X. , Li D. , Pan A. . Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p–n heterojunctions. ACS Nano, 2019, 13(11): 13573
https://doi.org/10.1021/acsnano.9b07563
21 Long M. , Gao A. , Wang P. , Xia H. , Ott C. , Pan C. , Fu Y. , Liu E. , Chen X. , Lu W. , Nilges T. , Xu J. , Wang X. , Hu W. , Miao F. . Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv., 2017, 3(6): e1700589
https://doi.org/10.1126/sciadv.1700589
22 Das S. , Pandey D. , Thomas J. , Roy T. . The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1): 1802722
https://doi.org/10.1002/adma.201802722
23 Abnavi A. , Ahmadi R. , Ghanbari H. , Fawzy M. , Hasani A. , De Silva T. , M. Askar A. , R. Mohammadzadeh M. , Kabir F. , Whitwick M. , Beaudoin M. , K. O’Leary S. , M. Adachi M. . Flexible high-performance photovoltaic devices based on 2D MoS2 diodes with geometrically asymmetric contact areas. Adv. Funct. Mater., 2023, 33(7): 2210619
https://doi.org/10.1002/adfm.202210619
24 Sung J. , Shin D. , Cho H. , W. Lee S. , Park S. , D. Kim Y. , S. Moon J. , H. Kim J. , H. Gong S. . Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk. Nat. Photonics, 2022, 16(11): 792
https://doi.org/10.1038/s41566-022-01085-w
25 Li C. , Zhao L. , Shang Q. , Wang R. , Bai P. , Zhang J. , Gao Y. , Cao Q. , Wei Z. , Zhang Q. . Room-temperature near-infrared excitonic lasing from mechanically exfoliated InSe microflake. ACS Nano, 2022, 16(1): 1477
https://doi.org/10.1021/acsnano.1c09844
26 Gu J.Chakraborty B.Khatoniar M.M. Menon V., A room-temperature polariton light-emitting diode based on monolayer WS2, Nat. Nanotechnol. 14(11), 1024 (2019)
27 Zhao L. , Jiang Y. , Li C. , Liang Y. , Wei Z. , Wei X. , Zhang Q. . Probing anisotropic deformation and near-infrared emission tuning in thin-layered InSe crystal under high pressure. Nano Lett., 2023, 23(8): 3493
https://doi.org/10.1021/acs.nanolett.3c00593
28 Wang J. , J. Zhou Y. , Xiang D. , J. Ng S. , Watanabe K. , Taniguchi T. , Eda G. . Polarized light-emitting diodes based on anisotropic excitons in few-layer ReS2. Adv. Mater., 2020, 32(32): 2001890
https://doi.org/10.1002/adma.202001890
29 Jariwala D. , K. Sangwan V. , J. Lauhon L. , J. Marks T. , C. Hersam M. . Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8(2): 1102
https://doi.org/10.1021/nn500064s
30 Fiori G. , Bonaccorso F. , Iannaccone G. , Palacios T. , Neumaier D. , Seabaugh A. , K. Banerjee S. , Colombo L. . Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10): 768
https://doi.org/10.1038/nnano.2014.207
31 Kaushal P. , Khanna G. . The role of two-dimensional materials for electronic devices. Mater. Sci. Semicond. Process., 2022, 143: 106546
https://doi.org/10.1016/j.mssp.2022.106546
32 Cheng R. , Jiang S. , Chen Y. , Liu Y. , Weiss N. , C. Cheng H. , Wu H. , Huang Y. , Duan X. . Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun., 2014, 5(1): 5143
https://doi.org/10.1038/ncomms6143
33 Choi M. , R. Bae S. , Hu L. , T. Hoang A. , Y. Kim S. , H. Ahn J. . Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv., 2020, 6(28): eabb5898
https://doi.org/10.1126/sciadv.abb5898
34 Mukherjee B. , Hayakawa R. , Watanabe K. , Taniguchi T. , Nakaharai S. , Wakayama Y. . ReS2/h-BN/graphene heterostructure based multifunctional devices:Tunneling diodes, FETs, logic gates, and memory. Adv. Electron. Mater., 2021, 7(1): 2000925
https://doi.org/10.1002/aelm.202000925
35 Cheng M. , B. Yang J. , H. Li X. , Li H. , F. Du R. , P. Shi J. , He J. . Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
https://doi.org/10.1007/s11467-022-1190-1
36 Hu X. , Wang G. , Li J. , Huang J. , Liu Y. , Zhong G. , Yuan J. , Zhan H. , Wen Z. . Significant contribution of single atomic Mn implanted in carbon nanosheets to high-performance sodium–ion hybrid capacitors. Energy Environ. Sci., 2021, 14(8): 4564
https://doi.org/10.1039/D1EE00370D
37 Huang Z. , Hou H. , Zhang Y. , Wang C. , Qiu X. , Ji X. . Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater., 2017, 29(34): 1702372
https://doi.org/10.1002/adma.201702372
38 Lu X. , Shi Y. , Tang D. , Lu X. , Wang Z. , Sakai N. , Ebina Y. , Taniguchi T. , Ma R. , Sasaki T. , Yan C. . Accelerated ionic and charge transfer through atomic interfacial electric fields for superior sodium storage. ACS Nano, 2022, 16(3): 4775
https://doi.org/10.1021/acsnano.2c00089
39 Li X. , Li M. , Huang Z. , Liang G. , Chen Z. , Yang Q. , Huang Q. , Zhi C. . Activating the I0/I+ redox couple in an aqueous I2–Zn battery to achieve a high voltage plateau. Energy Environ. Sci., 2021, 14(1): 407
https://doi.org/10.1039/D0EE03086D
40 Zhang Y. , Cao J. , Yuan Z. , Zhao L. , Wang L. , Han W. . Assembling Co3O4 nanoparticles into MXene with enhanced electrochemical performance for advanced asymmetric supercapacitors. J. Colloid Interface Sci., 2021, 599: 109
https://doi.org/10.1016/j.jcis.2021.04.089
41 K. Kim Y. , Y. Shin K. . Functionalized phosphorene/polypyrrole hybrid nanomaterial by covalent bonding and its supercapacitor application. J. Ind. Eng. Chem., 2021, 94: 122
https://doi.org/10.1016/j.jiec.2020.10.044
42 Fu Q. , Meng Y. , Fang Z. , Hu Q. , Xu L. , Gao W. , Huang X. , Xue Q. , P. Sun Y. , Lu F. . Boron nitride nanosheet-anchored Pd–Fe core–shell nanoparticles as highly efficient catalysts for suzuki–miyaura coupling reactions. ACS Appl. Mater. Interfaces, 2017, 9(3): 2469
https://doi.org/10.1021/acsami.6b13570
43 H. Shin H. , Kang E. , Park H. , Han T. , H. Lee C. , K. Lim D. . Pd-nanodot decorated MoS2 nanosheets as a highly efficient photocatalyst for the visible-light-induced Suzuki–Miyaura coupling reaction. J. Mater. Chem. A, 2017, 5(47): 24965
https://doi.org/10.1039/C7TA08441B
44 Yao C. , Guo N. , Xi S. , Q. Xu C. , Liu W. , Zhao X. , Li J. , Fang H. , Su J. , Chen Z. , Yan H. , Qiu Z. , Lyu P. , Chen C. , Xu H. , Peng X. , Li X. , Liu B. , Su C. , J. Pennycook S. , J. Sun C. , Li J. , Zhang C. , Du Y. , Lu J. . Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun., 2020, 11(1): 4389
https://doi.org/10.1038/s41467-020-18080-w
45 Luo Z. , Zhang H. , Yang Y. , Wang X. , Li Y. , Jin Z. , Jiang Z. , Liu C. , Xing W. , Ge J. . Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun., 2020, 11(1): 1116
https://doi.org/10.1038/s41467-020-14980-z
46 J. Li H. , Xi K. , Wang W. , Liu S. , R. Li G. , P. Gao X. . Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Mater., 2022, 45: 1229
https://doi.org/10.1016/j.ensm.2021.11.024
47 Zhang G.Li G.Wang J.Tong H.Wang J.Du Y.Sun S.Dang F., 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li-oxygen batteries, Adv. Energy Mater. 12(21), 2103910 (2022)
48 Hou J. , Wang H. , Ge Z. , Zuo T. , Chen Q. , Liu X. , Mou S. , Fan C. , Xie Y. , Wang L. . Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett., 2020, 20(2): 1447
https://doi.org/10.1021/acs.nanolett.9b05218
49 Chen W. , Ouyang J. , Yi X. , Xu Y. , Niu C. , Zhang W. , Wang L. , Sheng J. , Deng L. , N. Liu Y. , Guo S. . Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater., 2018, 30(3): 1703458
https://doi.org/10.1002/adma.201703458
50 Yim D. , E. Lee D. , So Y. , Choi C. , Son W. , Jang K. , S. Yang C. , H. Kim J. . Sustainable nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxygen and nitrogen species. ACS Nano, 2020, 14(8): 10324
https://doi.org/10.1021/acsnano.0c03807
51 Feng W.Han X.Hu H.Chang M.Ding L.Xiang H.Chen Y.Li Y., 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases, Nat. Commun. 12(1), 2203 (2021)
52 Li M. , Peng X. , Han Y. , Fan L. , Liu Z. , Guo Y. . Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem. J., 2021, 166: 106238
https://doi.org/10.1016/j.microc.2021.106238
53 Rasool K. , Helal M. , Ali A. , E. Ren C. , Gogotsi Y. , A. Mahmoud K. . Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 2016, 10(3): 3674
https://doi.org/10.1021/acsnano.6b00181
54 Arabi Shamsabadi A. , Sharifian Gh M. , Anasori B. , Soroush M. . Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain. Chem. & Eng., 2018, 6(12): 16586
https://doi.org/10.1021/acssuschemeng.8b03823
55 Sha R. , K. Bhattacharyya T. . MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochim. Acta, 2020, 349: 136370
https://doi.org/10.1016/j.electacta.2020.136370
56 K. Choi H. , Park J. , H. Gwon O. , Y. Kim J. , J. Kang S. , R. Byun H. , K. Shin B. , G. Jang S. , S. Kim H. , J. Yu Y. . Gate-tuned gas molecule sensitivity of a two-dimensional semiconductor. ACS Appl. Mater. Interfaces, 2022, 14(20): 23617
https://doi.org/10.1021/acsami.2c02380
57 P. Figerez S. , K. Tadi K. , R. Sahoo K. , Sharma R. , K. Biroju R. , Gigi A. , A. Anand K. , Kalita G. , N. Narayanan T. . Molybdenum disulfide–graphene van der Waals heterostructures as stable and sensitive electrochemical sensing platforms. Tungsten, 2020, 2(4): 411
https://doi.org/10.1007/s42864-020-00061-7
58 Madhuvilakku R. , Alagar S. , Mariappan R. , Piraman S. . Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal. Chim. Acta, 2020, 1093: 93
https://doi.org/10.1016/j.aca.2019.09.043
59 Wu L. , Wang Q. , Ruan B. , Zhu J. , You Q. , Dai X. , Xiang Y. . High-performance lossy-mode resonance sensor based on few-layer black phosphorus. J. Phys. Chem. C, 2018, 122(13): 7368
https://doi.org/10.1021/acs.jpcc.7b12549
60 H. Huang C.T. Huang T.H. Chiang C.T. Huang W.T. Lin Y., A chemiresistive biosensor based on a layered graphene oxide/graphene composite for the sensitive and selective detection of circulating miRNA-21, Biosens. Bioelectron. 164, 112320 (2020)
61 Cui S. , Pu H. , A. Wells S. , Wen Z. , Mao S. , Chang J. , C. Hersam M. , Chen J. . Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun., 2015, 6(1): 8632
https://doi.org/10.1038/ncomms9632
62 Liang Q. , Wang Q. , Zhang Q. , Wei J. , X. Lim S. , Zhu R. , Hu J. , Wei W. , Lee C. , H. Sow C. , Zhang W. , T. S. Wee A. . High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater., 2019, 31(24): 1807609
https://doi.org/10.1002/adma.201807609
63 Wang Y. , Li L. , Yao W. , Song S. , T. Sun J. , Pan J. , Ren X. , Li C. , Okunishi E. , Q. Wang Y. , Wang E. , Shao Y. , Y. Zhang Y. , Yang H. , F. Schwier E. , Iwasawa H. , Shimada K. , Taniguchi M. , Cheng Z. , Zhou S. , Du S. , J. Pennycook S. , T. Pantelides S. , J. Gao H. . Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett., 2015, 15(6): 4013
https://doi.org/10.1021/acs.nanolett.5b00964
64 Yu X. , Yu P. , Wu D. , Singh B. , Zeng Q. , Lin H. , Zhou W. , Lin J. , Suenaga K. , Liu Z. , J. Wang Q. . Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun., 2018, 9(1): 1545
https://doi.org/10.1038/s41467-018-03935-0
65 D. Oyedele A. , Yang S. , Liang L. , A. Puretzky A. , Wang K. , Zhang J. , Yu P. , R. Pudasaini P. , W. Ghosh A. , Liu Z. , M. Rouleau C. , G. Sumpter B. , F. Chisholm M. , Zhou W. , D. Rack P. , B. Geohegan D. , Xiao K. . PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc., 2017, 139(40): 14090
https://doi.org/10.1021/jacs.7b04865
66 Gong Y. , Lin Z. , X. Chen Y. , Khan Q. , Wang C. , Zhang B. , Nie G. , Xie N. , Li D. . Two-dimensional platinum diselenide: Synthesis, emerging applications, and future challenges. Nano-Micro Lett., 2020, 12(1): 174
https://doi.org/10.1007/s40820-020-00515-0
67 Wang Y. , Li Y. , Chen Z. . Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS2 monolayer. J. Mater. Chem. C, 2015, 3(37): 9603
https://doi.org/10.1039/C5TC01345C
68 Ghorbani-Asl M.Kuc A.Miro P.Heine T., A single-material logical junction based on 2D crystal PdS2, Adv. Mater. 28(5), 853 (2016)
69 Zhao Y. , Qiao J. , Yu P. , Hu Z. , Lin Z. , P. Lau S. , Liu Z. , Ji W. , Chai Y. . Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater., 2016, 28(12): 2399
https://doi.org/10.1002/adma.201504572
70 Chia X. , Adriano A. , Lazar P. , Sofer Z. , Luxa J. , Pumera M. . Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: Monotonic dependence on the chalcogen size. Adv. Funct. Mater., 2016, 26(24): 4306
https://doi.org/10.1002/adfm.201505402
71 Wang Y. , Zhou L. , Zhong M. , Liu Y. , Xiao S. , He J. . Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Res., 2022, 15(4): 3675
https://doi.org/10.1007/s12274-021-3979-6
72 Pi L. , Li L. , Liu K. , Zhang Q. , Li H. , Zhai T. . Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater., 2019, 29(51): 1904932
https://doi.org/10.1002/adfm.201904932
73 Zeng H. , Wen Y. , Yin L. , Q. Cheng R. , Wang H. , S. Liu C. , He J. . Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
https://doi.org/10.1007/s11467-023-1286-2
74 Wu W. , Qiu G. , Wang Y. , Wang R. , Ye P. . Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev., 2018, 47(19): 7203
https://doi.org/10.1039/C8CS00598B
75 Wang Y. , Qiu G. , Wang R. , Huang S. , Wang Q. , Liu Y. , Du Y. , A. III Goddard W. , J. Kim M. , Xu X. , D. Ye P. , Wu W. . Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron., 2018, 1(4): 228
https://doi.org/10.1038/s41928-018-0058-4
76 Xie Z. , Xing C. , Huang W. , Fan T. , Li Z. , Zhao J. , Xiang Y. , Guo Z. , Li J. , Yang Z. , Dong B. , Qu J. , Fan D. , Zhang H. . Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater., 2018, 28(16): 1705833
https://doi.org/10.1002/adfm.201705833
77 Gao W. , Zheng Z. , Wen P. , Huo N. , Li J. . Novel two-dimensional monoelemental and ternary materials: Growth, physics and application. Nanophotonics, 2020, 9(8): 2147
https://doi.org/10.1515/nanoph-2019-0557
78 Xian L. , Pérez Paz A. , Bianco E. , M. Ajayan P. , Rubio A. . Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater., 2017, 4(4): 041003
https://doi.org/10.1088/2053-1583/aa8418
79 Ji D. , Cai S. , R. Paudel T. , Sun H. , Zhang C. , Han L. , Wei Y. , Zang Y. , Gu M. , Zhang Y. , Gao W. , Huyan H. , Guo W. , Wu D. , Gu Z. , Y. Tsymbal E. , Wang P. , Nie Y. , Pan X. . Freestanding crystalline oxide perovskites down to the monolayer limit. Nature, 2019, 570(7759): 87
https://doi.org/10.1038/s41586-019-1255-7
80 Zhang Y. , H. Ma H. , Gan X. , Hui Y. , Zhang Y. , Su J. , Yang M. , Hu Z. , Xiao J. , Lu X. , Zhang J. , Hao Y. . Emergent midgap excitons in large-size freestanding 2D strongly correlated perovskite oxide films. Adv. Opt. Mater., 2021, 9(10): 2100025
https://doi.org/10.1002/adom.202100025
81 Lu Y. , Zhang H. , Wang Y. , Zhu X. , Xiao W. , Xu H. , Li G. , Li Y. , Fan D. , Zeng H. , Chen Z. , Yang X. . Solar-driven interfacial evaporation accelerated electrocatalytic water splitting on 2D perovskite oxide/MXene heterostructure. Adv. Funct. Mater., 2023, 33(21): 2215061
https://doi.org/10.1002/adfm.202215061
82 Burke K. . Perspective on density functional theory. J. Chem. Phys., 2012, 136(15): 150901
https://doi.org/10.1063/1.4704546
83 Mounet N. , Gibertini M. , Schwaller P. , Campi D. , Merkys A. , Marrazzo A. , Sohier T. , E. Castelli I. , Cepellotti A. , Pizzi G. , Marzari N. . Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol., 2018, 13(3): 246
https://doi.org/10.1038/s41565-017-0035-5
84 K. Geim A. , V. Grigorieva I. . Van der Waals heterostructures. Nature, 2013, 499(7459): 419
https://doi.org/10.1038/nature12385
85 Liu Y. , O. Weiss N. , Duan X. , C. Cheng H. , Huang Y. , Duan X. . Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1(9): 16042
https://doi.org/10.1038/natrevmats.2016.42
86 Novoselov K.Mishchenko A.Carvalho A.H. Castro Neto A., 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
87 Castellanos-Gomez A. , Duan X. , Fei Z. , R. Gutierrez H. , Huang Y. , Huang X. , Quereda J. , Qian Q. , Sutter E. , Sutter P. . Van der Waals heterostructures. Nat. Rev. Methods Primers, 2022, 2(1): 58
https://doi.org/10.1038/s43586-022-00139-1
88 L. Fan X. , F. Xin R. , Li L. , Zhang B. , Li C. , L. Zhou X. , Z. Chen H. , Y. Zhang H. , P. Ouyang F. , Zhou Y. . Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions. Front. Phys., 2023, 19(2): 23401
https://doi.org/10.1007/s11467-023-1342-y
89 Deng L. , Yu D. . Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 2014, 7(3-4): 197
https://doi.org/10.1561/2000000039
90 Moen E. , Bannon D. , Kudo T. , Graf W. , Covert M. , Van Valen D. . Deep learning for cellular image analysis. Nat. Methods, 2019, 16(12): 1233
https://doi.org/10.1038/s41592-019-0403-1
91 LeCun Y. , Bengio Y. , Hinton G. . Deep learning. Nature, 2015, 521(7553): 436
https://doi.org/10.1038/nature14539
92 Deng L.Hinton G.Kingsbury B., New types of deep neural network learning for speech recognition and related applications: An overview, in: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 26‒31, 2013, 2013
93 W. Otter D.R. Medina J.K. Kalita J., A survey of the usages of deep learning for natural language processing, IEEE Trans. Neural Netw. Learn. Syst. 32(2), 604 (2021)
94 Z. Alom M.M. Taha T.Yakopcic C.Westberg S.Sidike P.S. Nasrin M.Hasan M.C. Van Essen B.A. S. Awwal A.K. Asari V., A state-of-the-art survey on deep learning theory and architectures, Electronics (Basel) 8(3), 292 (2019)
95 E. Hinton G. , R. Salakhutdinov R. . Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504
https://doi.org/10.1126/science.1127647
96 I. Jordan M. , M. Mitchell T. . Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255
https://doi.org/10.1126/science.aaa8415
97 S. McCulloch W.Pitts W., A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5(4), 115 (1943)
98 Rosenblatt F. . The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev., 1958, 65(6): 386
https://doi.org/10.1037/h0042519
99 E. Rumelhart D. , E. Hinton G. , J. Williams R. . Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533
https://doi.org/10.1038/323533a0
100 Fukushima K. . Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Netw., 1988, 1(2): 119
https://doi.org/10.1016/0893-6080(88)90014-7
101 Lecun Y. , Bottou L. , Bengio Y. , Haffner P. . Gradient-based learning applied to document recognition. Proc. IEEE, 1998, 86(11): 2278
https://doi.org/10.1109/5.726791
102 Goodfellow I. , Pouget-Abadie J. , Mirza M. , Xu B. , Warde-Farley D. , Ozair S. , Courville A. , Bengio Y. . Generative adversarial networks. Commun. ACM, 2020, 63(11): 139
https://doi.org/10.1145/3422622
103 Cheng J.Yang Y.Tang X., et al.., Generative Adversarial Networks: A Literature Review, Trans. Internet Inf. Syst. (Seoul) 14(12) (2020)
104 Ronneberger O.Fischer P.Brox T., U-net: Convolutional networks for biomedical image segmentation, in: Proceedings of the Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5‒9, 2015, Proceedings, Part III 18, Springer, 2015
105 Li H. , Wu J. , Huang X. , Lu G. , Yang J. , Lu X. , Xiong Q. , Zhang H. . Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano, 2013, 7(11): 10344
https://doi.org/10.1021/nn4047474
106 C. Wang H. , W. Huang S. , M. Yang J. , H. Wu G. , P. Hsieh Y. , W. Feng S. , K. Lee M. , T. Kuo C. . Large-area few-layered graphene film determination by multispectral imaging microscopy. Nanoscale, 2015, 7(19): 9033
https://doi.org/10.1039/C5NR01544H
107 Li Y. , Dong N. , Zhang S. , Wang K. , Zhang L. , Wang J. . Optical identification of layered MoS2 via the characteristic matrix method. Nanoscale, 2016, 8(2): 1210
https://doi.org/10.1039/C5NR06287J
108 Zhang J. , Yu Y. , Wang P. , Luo C. , Wu X. , Sun Z. , Wang J. , D. Hu W. , Shen G. . Characterization of atomic defects on the photoluminescence in two-dimensional materials using transmission electron microscope. InfoMat, 2019, 1(1): 85
https://doi.org/10.1002/inf2.12002
109 Zhao W. , Xia B. , Lin L. , Xiao X. , Liu P. , Lin X. , Peng H. , Zhu Y. , Yu R. , Lei P. , Wang J. , Zhang L. , Xu Y. , Zhao M. , Peng L. , Li Q. , Duan W. , Liu Z. , Fan S. , Jiang K. . Low-energy transmission electron diffraction and imaging of large-area graphene. Sci. Adv., 2017, 3(9): e1603231
https://doi.org/10.1126/sciadv.1603231
110 Yang S. . Scanning transmission electron microscopy (STEM) study on novel two-dimensional materials. Microsc. Microanal., 2020, 26(S2): 2372
https://doi.org/10.1017/S1431927620021364
111 de Graaf S. , J. Kooi B. . Radiation damage and defect dynamics in 2D WS2: A low-voltage scanning transmission electron microscopy study. 2D Mater., 2021, 9(1): 015009
https://doi.org/10.1088/2053-1583/ac3377/meta
112 Kim S. , Moon D. , R. Jeon B. , Yeon J. , Li X. , Kim S. . Accurate atomic-scale imaging of two-dimensional lattices using atomic force microscopy in ambient conditions. Nanomaterials (Basel), 2022, 12(9): 1542
https://doi.org/10.3390/nano12091542
113 S. Wastl D. , J. Weymouth A. , J. Giessibl F. . Atomically resolved graphitic surfaces in air by atomic force microscopy. ACS Nano, 2014, 8(5): 5233
https://doi.org/10.1021/nn501696q
114 Tu Q. , Lange B. , Parlak Z. , M. J. Lopes J. , Blum V. , Zauscher S. . Quantitative subsurface atomic structure fingerprint for 2D materials and heterostructures by first-principles-calibrated contact-resonance atomic force microscopy. ACS Nano, 2016, 10(7): 6491
https://doi.org/10.1021/acsnano.6b02402
115 Lee C. , Yan H. , E. Brus L. , F. Heinz T. , Hone J. , Ryu S. . Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4(5): 2695
https://doi.org/10.1021/nn1003937
116 L. Silva D. , L. E. Campos J. , F. Fernandes T. , N. Rocha J. , R. P. Machado L. , M. Soares E. , R. Miquita D. , Miranda H. , Rabelo C. , P. Vilela Neto O. , Jorio A. , G. Cançado L. . Raman spectroscopy analysis of number of layers in mass-produced graphene flakes. Carbon, 2020, 161: 181
https://doi.org/10.1016/j.carbon.2020.01.050
117 Stenger I. , Schué L. , Boukhicha M. , Berini B. , Plaçais B. , Loiseau A. , Barjon J. . Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals. 2D Mater., 2017, 4(3): 031003
https://doi.org/10.1088/2053-1583/aa77d4
118 H. Ni Z. , M. Wang H. , Kasim J. , M. Fan H. , Yu T. , H. Wu Y. , P. Feng Y. , X. Shen Z. . Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett., 2007, 7(9): 2758
https://doi.org/10.1021/nl071254m
119 Frisenda R. , Niu Y. , Gant P. , J. Molina-Mendoza A. , Schmidt R. , Bratschitsch R. , Liu J. , Fu L. , Dumcenco D. , Kis A. , P. De Lara D. , Castellanos-Gomez A. . Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials. J. Phys. D Appl. Phys., 2017, 50(7): 074002
https://doi.org/10.1088/1361-6463/aa5256
120 Y. Zeng S. , Li F. , Tan C. , Yang L. , G. Wang Z. . Defect repairing in two-dimensional transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53604
https://doi.org/10.1007/s11467-023-1290-6
121 Ziatdinov M. , Dyck O. , Maksov A. , Li X. , Sang X. , Xiao K. , R. Unocic R. , Vasudevan R. , Jesse S. , V. Kalinin S. . Deep learning of atomically resolved scanning transmission electron microscopy images: Chemical identification and tracking local transformations. ACS Nano, 2017, 11(12): 12742
https://doi.org/10.1021/acsnano.7b07504
122 Madsen J.Liu P.Kling J.B. Wagner J.W. Hansen T.Winther O.Schiøtz J., A deep learning approach to identify local structures in atomic-resolution transmission electron microscopy images, Adv. Theory Simul. 1(8), 1800037 (2018)
123 Maksov A. , Dyck O. , Wang K. , Xiao K. , B. Geohegan D. , G. Sumpter B. , K. Vasudevan R. , Jesse S. , V. Kalinin S. , Ziatdinov M. . Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. npj Comput. Mater., 2019, 5(1): 12
https://doi.org/10.1038/s41524-019-0152-9
124 H. Yang D. , S. Chu Y. , F. N. Okello O. , Y. Seo S. , Moon G. , H. Kim K. , H. Jo M. , Shin D. , Mizoguchi T. , Yang S. , Y. Choi S. . Full automation of point defect detection in transition metal dichalcogenides through a dual mode deep learning algorithm. Mater. Horiz., 2024, 11(3): 747
https://doi.org/10.1039/D3MH01500A
125 H. Yang S. , Choi W. , W. Cho B. , O. T. Agyapong-Fordjour F. , Park S. , J. Yun S. , J. Kim H. , K. Han Y. , H. Lee Y. , K. Kim K. , M. Kim Y. . Deep learning-assisted quantification of atomic dopants and defects in 2D materials. Adv. Sci. (Weinh.), 2021, 8(16): 2101099
https://doi.org/10.1002/advs.202101099
126 H. Lee C. , Khan A. , Luo D. , P. Santos T. , Shi C. , E. Janicek B. , Kang S. , Zhu W. , A. Sobh N. , Schleife A. , K. Clark B. , Y. Huang P. . Deep learning enabled strain mapping of single-atom defects in two-dimensional transition metal dichalcogenides with sub-picometer precision. Nano Lett., 2020, 20(5): 3369
https://doi.org/10.1021/acs.nanolett.0c00269
127 Chu T.Zhou L.Zhang B.Z. Xuan F., Accurate atomic scanning transmission electron microscopy analysis enabled by deep learning, Nano Res., doi: 10.1007/s12274-023-6104-1 (2023)
128 Wu B.Wang L.Gao Z., A two-dimensional material recognition image algorithm based on deep learning, in: Proceedings of the 2019 International Conference on Information Technology and Computer Application (ITCA), IEEE, 2019
129 Saito Y. , Shin K. , Terayama K. , Desai S. , Onga M. , Nakagawa Y. , M. Itahashi Y. , Iwasa Y. , Yamada M. , Tsuda K. . Deep-learning-based quality filtering of mechanically exfoliated 2D crystals. npj Computat. Mater., 2019, 5(1): 124
https://doi.org/10.1038/s41524-019-0262-4
130 Han B. , Lin Y. , Yang Y. , Mao N. , Li W. , Wang H. , Yasuda K. , Wang X. , Fatemi V. , Zhou L. , I. J. Wang J. , Ma Q. , Cao Y. , Rodan-Legrain D. , Q. Bie Y. , Navarro-Moratalla E. , Klein D. , MacNeill D. , Wu S. , Kitadai H. , Ling X. , Jarillo-Herrero P. , Kong J. , Yin J. , Palacios T. . Deep-learning-enabled fast optical identification and characterization of 2D materials. Adv. Mater., 2020, 32(29): 2000953
https://doi.org/10.1002/adma.202000953
131 Masubuchi S. , Watanabe E. , Seo Y. , Okazaki S. , Sasagawa T. , Watanabe K. , Taniguchi T. , Machida T. . Deep-learning-based image segmentation integrated with optical microscopy for automatically searching for two-dimensional materials. npj 2D Mater. Appl., 2020, 4(1): 3
https://doi.org/10.1038/s41699-020-0137-z
132 Y. Lin T.Maire M.Belongie S., et al.., Microsoft coco: Common objects in context, in: Proceedings of the Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6‒12, 2014, Proceedings, Part V 13, Springer, 2014
133 Mahjoubi S. , Ye F. , Bao Y. , Meng W. , Zhang X. . Identification and classification of exfoliated graphene flakes from microscopy images using a hierarchical deep convolutional neural network. Eng. Appl. Artif. Intell., 2023, 119: 105743
https://doi.org/10.1016/j.engappai.2022.105743
134 Zhang Y. , Zhang H. , Zhou S. , Liu G. , Zhu J. . Deep learning-based layer identification of 2D nanomaterials. Coatings, 2022, 12(10): 1551
https://doi.org/10.3390/coatings12101551
135 Zhao H.Shi J.Qi X., et al.., Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017
136 Qin X.Zhang Z.Huang C.Dehghan M.R. Zaiane O.Jagersand M., U2-net: Going deeper with nested U-structure for salient object detection, Pattern Recognit. 106, 107404 (2020)
137 Dong X. , Zhang Y. , Li H. , Yan Y. , Li J. , Song J. , Wang K. , Jakobi M. , K. Yetisen A. , W. Koch A. . Microscopic image deblurring by a generative adversarial network for 2D nanomaterials: Implications for wafer-scale semiconductor characterization. ACS Appl. Nano Mater., 2022, 5(9): 12855
https://doi.org/10.1021/acsanm.2c02725
138 Zhu L. , Tang J. , Li B. , Hou T. , Zhu Y. , Zhou J. , Wang Z. , Zhu X. , Yao Z. , Cui X. , Watanabe K. , Taniguchi T. , Li Y. , V. Han Z. , Zhou W. , Huang Y. , Liu Z. , C. Hone J. , Hao Y. . Artificial neuron networks enabled identification and characterizations of 2D materials and van der Waals heterostructures. ACS Nano, 2022, 16(2): 2721
https://doi.org/10.1021/acsnano.1c09644
139 Dong X. , Li H. , Wang K. , Menze B. , Jakobi M. , K. Yetisen A. , W. Koch A. . Multispectral microscopic multiplexed (3M) imaging of atomically-thin crystals using deep learning. Adv. Opt. Mater., 2024, 12(2): 2300860
https://doi.org/10.1002/adom.202300860
140 A. Nemnes G. , L. Mitran T. , Manolescu A. . Gap prediction in hybrid graphene-hexagonal boron nitride nanoflakes using artificial neural networks. J. Nanomater., 2019, 2019: 6960787
https://doi.org/10.1155/2019/6960787
141 Dong Y. , Wu C. , Zhang C. , Liu Y. , Cheng J. , Lin J. . Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride. npj Comput. Mater., 2019, 5(1): 26
https://doi.org/10.1038/s41524-019-0165-4
142 Cortes C. , Vapnik V. . Support-vector networks. Mach. Learn., 1995, 20(3): 273
https://doi.org/10.1007/BF00994018
143 Ma Y. , Lu S. , Zhang Y. , Zhang T. , Zhou Q. , Wang J. . Accurate energy prediction of large-scale defective two-dimensional materials via deep learning. Appl. Phys. Lett., 2022, 120(21): 213103
https://doi.org/10.1063/5.0091994
144 Dewapriya M. , Rajapakse R. , Dias W. . Characterizing fracture stress of defective graphene samples using shallow and deep artificial neural networks. Carbon, 2020, 163: 425
https://doi.org/10.1016/j.carbon.2020.03.038
145 C. Hsu Y. , H. Yu C. , J. Buehler M. . Using deep learning to predict fracture patterns in crystalline solids. Matter, 2020, 3(1): 197
https://doi.org/10.1016/j.matt.2020.04.019
146 J Lew A. , H. Yu C. , C. Hsu Y. , J. Buehler M. . Deep learning model to predict fracture mechanisms of grapheme. npj 2D Mater. Appl., 2021, 5(1): 48
https://doi.org/10.1038/s41699-021-00228-x
147 Zhang T. , Li X. , Kadkhodaei S. , Gao H. . Flaw insensitive fracture in nanocrystalline graphene. Nano Lett., 2012, 12(9): 4605
https://doi.org/10.1021/nl301908b
148 H. Yu C. , Y. Wu C. , J. Buehler M. . Deep learning based design of porous graphene for enhanced mechanical resilience. Comput. Mater. Sci., 2022, 206: 111270
https://doi.org/10.1016/j.commatsci.2022.111270
149 S. Elapolu M.I. R. Shishir M.Tabarraei A., A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms, Comput. Mater. Sci. 201, 110878 (2022)
150 S. Elapolu M. , Tabarraei A. . Mechanical and fracture properties of polycrystalline graphene with hydrogenated grain boundaries. J. Phys. Chem. C, 2021, 125(20): 11147
https://doi.org/10.1021/acs.jpcc.1c01328
151 Shekhawat A. , O. Ritchie R. . Toughness and strength of nanocrystalline graphene. Nat. Commun., 2016, 7(1): 10546
https://doi.org/10.1038/ncomms10546
152 I. R. Shishir M. , Tabarraei A. . Traction–separation laws of graphene grain boundaries. Phys. Chem. Chem. Phys., 2021, 23(26): 14284
https://doi.org/10.1039/D1CP01569A
153 I. R. Shishir M.S. R. Elapolu M.Tabarraei A., A deep learning model for predicting mechanical properties of polycrystalline graphene, Comput. Mater. Sci. 218, 111924 (2023)
154 Shen Y. , Zhu S. . Machine learning mechanical properties of defect-engineered hexagonal boron nitride. Comput. Mater. Sci., 2023, 220: 112030
https://doi.org/10.1016/j.commatsci.2023.112030
155 Yang H. , Zhang Z. , Zhang J. , C. Zeng X. . Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride. Nanoscale, 2018, 10(40): 19092
https://doi.org/10.1039/C8NR05703F
156 Wan J. , W. Jiang J. , S. Park H. . Machine learning-based design of porous graphene with low thermal conductivity. Carbon, 2020, 157: 262
https://doi.org/10.1016/j.carbon.2019.10.037
157 Liu Q. , Gao Y. , Xu B. . Transferable, deep-learning-driven fast prediction and design of thermal transport in mechanically stretched graphene flakes. ACS Nano, 2021, 15(10): 16597
https://doi.org/10.1021/acsnano.1c06340
158 Zhang X. , Chen A. , Zhou Z. . High-throughput computational screening of layered and two-dimensional materials. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2019, 9(1): e1385
https://doi.org/10.1002/wcms.1385
159 Wang V. , Tang G. , C. Liu Y. , T. Wang R. , Mizuseki H. , Kawazoe Y. , Nara J. , T. Geng W. . High-throughput computational screening of two-dimensional semiconductors. J. Phys. Chem. Lett., 2022, 13(50): 11581
https://doi.org/10.1021/acs.jpclett.2c02972
160 Sarikurt S. , Kocabaş T. , Sevik C. . High-throughput computational screening of 2D materials for thermoelectrics. J. Mater. Chem. A, 2020, 8(37): 19674
https://doi.org/10.1039/D0TA04945J
161 O. Pyzer-Knapp E. , Suh C. , Gómez-Bombarelli R. , Aguilera-Iparraguirre J. , Aspuru-Guzik A. . What is high-throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res., 2015, 45(1): 195
https://doi.org/10.1146/annurev-matsci-070214-020823
162 Y. Ma X. , P. Lewis J. , B. Yan Q. , Su G. . Accelerated discovery of two-dimensional optoelectronic octahedral oxyhalides via high-throughput ab initio calculations and machine learning. J. Phys. Chem. Lett., 2019, 10(21): 6734
https://doi.org/10.1021/acs.jpclett.9b02420
163 G. Van de Walle C. , Neugebauer J. . First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys., 2004, 95(8): 3851
https://doi.org/10.1063/1.1682673
164 K. Shoichet B. . Virtual screening of chemical libraries. Nature, 2004, 432(7019): 862
https://doi.org/10.1038/nature03197
165 Ghosh S. , Nie A. , An J. , Huang Z. . Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol., 2006, 10(3): 194
https://doi.org/10.1016/j.cbpa.2006.04.002
166 Foscato M. , Occhipinti G. , Venkatraman V. , K. Alsberg B. , R. Jensen V. . Automated design of realistic organometallic molecules from fragments. J. Chem. Inf. Model., 2014, 54(3): 767
https://doi.org/10.1021/ci4007497
167 Mauser H. , Stahl M. . Chemical fragment spaces for de novo design. J. Chem. Inf. Model., 2007, 47(2): 318
https://doi.org/10.1021/ci6003652
168 R. Schleder G. , C. Padilha A. , M. Acosta C. , Costa M. , Fazzio A. . From DFT to machine learning: recent approaches to materials science – A review. J. Phys.: Mater., 2019, 2(3): 032001
https://doi.org/10.1088/2515-7639/ab084b
169 Dong Y. , Li D. , Zhang C. , Wu C. , Wang H. , Xin M. , Cheng J. , Lin J. . Inverse design of two-dimensional graphene/h-BN hybrids by a regressional and conditional GAN. Carbon, 2020, 169: 9
https://doi.org/10.1016/j.carbon.2020.07.013
170 Fung V. , Zhang J. , Hu G. , Ganesh P. , G. Sumpter B. . Inverse design of two-dimensional materials with invertible neural networks. npj Computat. Mater., 2021, 7(1): 200
https://doi.org/10.1038/s41524-021-00670-x
171 Wu S. , Wang Z. , Zhang H. , Cai J. , Li J. . Deep learning accelerates the discovery of two-dimensional catalysts for hydrogen evolution reaction. Energy & Environm. Mater., 2023, 6(1): e12259
https://doi.org/10.1002/eem2.12259
172 S. Chong S. , S. Ng Y. , Q. Wang H. , C. Zheng J. . Advances of machine learning in materials science: Ideas and techniques. Front. Phys., 2024, 19(1): 13501
https://doi.org/10.1007/s11467-023-1325-z
173 Ryu B. , Wang L. , Pu H. , K. Y. Chan M. , Chen J. . Understanding, discovery, and synthesis of 2D materials enabled by machine learning. Chem. Soc. Rev., 2022, 51(6): 1899
https://doi.org/10.1039/D1CS00503K
174 Yin H. , Sun Z. , Wang Z. , Tang D. , H. Pang C. , Yu X. , S. Barnard A. , Zhao H. , Yin Z. . The data-intensive scientific revolution occurring where two-dimensional materials meet machine learning. Cell Rep. Phys. Sci., 2021, 2(7): 100482
https://doi.org/10.1016/j.xcrp.2021.100482
175 Si Z.Zhou D.Yang J.Lin X., 2D material property characterizations by machine-learning-assisted microscopies, Appl. Phys. A 129(4), 248 (2023)
[1] Jingwen Zhou, Yaling Yin, Jihong Tang, Yong Xia, Jianping Yin. Information transmission through parallel multi-task-based recognition of high-resolution multiplexed orbital angular momentum[J]. Front. Phys. , 2024, 19(5): 52202-.
[2] Youzhi Shi, Zuhai Ma, Hongyu Chen, Yougang Ke, Yu Chen, Xinxing Zhou. High-resolution recognition of FOAM modes via an improved EfficientNet V2 based convolutional neural network[J]. Front. Phys. , 2024, 19(3): 32205-.
[3] Kun Chen, Qianpeng Zhang, Yin Liang, Jiepeng Song, Chun Li, Shi Chen, Fang Li, Qing Zhang. Quasi-two dimensional Ruddlesden−Popper halide perovskites for laser applications[J]. Front. Phys. , 2024, 19(2): 23502-.
[4] Xiulian Fan, Ruifeng Xin, Li Li, Bo Zhang, Cheng Li, Xilong Zhou, Huanzhi Chen, Hongyan Zhang, Fangping OuYang, Yu Zhou. Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions[J]. Front. Phys. , 2024, 19(2): 23401-.
[5] Na Sa, Meng Wu, Hui-Qiong Wang. Review of the role of ionic liquids in two-dimensional materials[J]. Front. Phys. , 2023, 18(4): 43601-.
[6] Rong Guo, Yilv Guo, Yehui Zhang, Xiaoshu Gong, Tingbo Zhang, Xing Yu, Shijun Yuan, Jinlan Wang. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer[J]. Front. Phys. , 2023, 18(4): 43304-.
[7] Tao Zhu, Yao Zhang, Xin Wei, Man Jiang, Hua Xu. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics[J]. Front. Phys. , 2023, 18(3): 33601-.
[8] Linwei Sai, Li Fu, Qiuying Du, Jijun Zhao. Graph attention network for global search of atomic clusters: A case study of Agn (n = 14−26) clusters[J]. Front. Phys. , 2023, 18(1): 13306-.
[9] Pengyue Gao, Bo Gao, Shaohua Lu, Hanyu Liu, Jian Lv, Yanchao Wang, Yanming Ma. Structure search of two-dimensional systems using CALYPSO methodology[J]. Front. Phys. , 2022, 17(2): 23203-.
[10] Shurui Li, Jianqin Xu, Jing Qian, Weiping Zhang. Revisiting the dynamics of Bose–Einstein condensates in a double well by deep learning with a hybrid network[J]. Front. Phys. , 2022, 17(2): 22504-.
[11] Haoyu Dong, Le Lei, Shuya Xing, Jianfeng Guo, Feiyue Cao, Shangzhi Gu, Yanyan Geng, Shuo Mi, Hanxiang Wu, Yan Jun Li, Yasuhiro Sugawara, Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng. Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film[J]. Front. Phys. , 2021, 16(6): 63502-.
[12] Yulou Ouyang, Cuiqian Yu, Gang Yan, Jie Chen. Machine learning approach for the prediction and optimization of thermal transport properties[J]. Front. Phys. , 2021, 16(4): 43200-.
[13] Wen Tong, Qun Wei, Hai-Yan Yan, Mei-Guang Zhang, Xuan-Min Zhu. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes[J]. Front. Phys. , 2020, 15(6): 63501-.
[14] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[15] Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen, Qing-Guo Huang. Extraction of gravitational wave signals with optimized convolutional neural network[J]. Front. Phys. , 2020, 15(1): 14601-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed