Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 52202    https://doi.org/10.1007/s11467-024-1402-y
Information transmission through parallel multi-task-based recognition of high-resolution multiplexed orbital angular momentum
Jingwen Zhou1, Yaling Yin1(), Jihong Tang1, Yong Xia1,2,3(), Jianping Yin1
1. State key laboratory of precision spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3. NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
 Download: PDF(7779 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Orbital angular momentums (OAMs) greatly enhance the channel capacity in free-space optical communication. However, demodulation of superposed OAM to recognize them separately is always difficult, especially upon multiplexing more OAMs. In this work, we report a directly recognition of multiplexed fractional OAM modes, without separating them, at a resolution of 0.1 with high accuracy, using a multi-task deep learning (MTDL) model, which has not been reported before. Namely, two-mode, four-mode, and eight-mode superposed OAM beams, experimentally generated with a hologram carrying both phase and amplitude information, are well recognized by the suitable MTDL model. Two applications in information transmission are presented: the first is for 256-ary OAM shift keying via multiplexed fractional OAMs; the second is for OAM division multiplexed information transmission in an eightfold speed. The encouraging results will expand the capacity in future free-space optical communication.

Keywords information transmission      orbital angular momentum      multi-task deep learning      holographic multiplexing      structured light     
Corresponding Author(s): Yaling Yin,Yong Xia   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 22 April 2024
 Cite this article:   
Jingwen Zhou,Yaling Yin,Jihong Tang, et al. Information transmission through parallel multi-task-based recognition of high-resolution multiplexed orbital angular momentum[J]. Front. Phys. , 2024, 19(5): 52202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1402-y
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/52202
Fig.1  The first row: experimental setup for multiplexed fractional OAM modes. ISO: optical isolator; OL: objective lens; L: lens; M: mirror; HWP: half wave plate; BS: beam splitter; SLM: spatial light modulator; CCD: charge-coupled device; z: the distance between SLM and CCD. The second row: MTDL to transmit “The Self-Portrait of Van Gogh”: encoding and decoding.
Fig.2  Optical intensity distributions of two-mode OAM superposition at different combinations of l1 and l2. Horizontal images are at different l1. Vertical images are at different l2. EXP: experimental data; THE: theoretical data.
Fig.3  Image recognition of fractional multiplexed OAMs by the MTDL. (a) Building blocks in Layers II of ResNeXt 50; (b) building blocks in Layers III of ResNeXt 50; (c) building blocks in Layers IV of ResNeXt 50; (d) building blocks in Layers V of ResNeXt 50. A layer is denoted as a filter size and output channels.
Fig.4  Training and validation of the MTDL model on four-mode multiplexing OAM beams. (a) Accuracy curves; (b) loss function curves. Solid lines are from the training set and dotted lines are from the validation set.
Fig.5  Confusion matrixes for two-mode fractional OAM multiplexing. (a) l1 and (b) l2. The horizontal axis represents the experimental/known OAM modes, and the vertical axis presents the to-be-predicted OAM modes.
Fig.6  Confusion matrix for four-mode fractional OAM multiplexing. (a) l1, (b) l2, (c) l3 and (d) l4. The horizontal axis represents the experimental/known OAM modes, and the vertical axis presents the to-be-predicted OAM modes.
Fig.7  Confusion matrix for eight-mode fractional OAM multiplexing. (a) l1, (b) l2, (c) l3, (d) l4, (e) l5, (f) l6, (g) l7 and (h) l8. The horizontal axis represents the experimental/known OAM modes, and the vertical axis presents the to-be- predicted OAM modes.
Fig.8  Coding mechanism of superposed OAM states. GS: grayscale. (a) For two-mode multiplexing. (b) For four-mode multiplexing. (c) For eight-mode multiplexing.
Fig.9  Received image with a size of 160 pixel × 160 pixel by (a) two-mode multiplexing, (b) four-mode multiplexing, and (c) eight-mode multiplexing. (d) PER (%) dependence on the sizes of image and the numbers of multiplexed OAMs.
Fig.10  Illustration of MTDL-based OAM-DM optical information transmission for (a) the general single task way and (b) our eightfold transmission. There are eight-pixel points in the red rectangular box and one pixel point in each red square box. Using a single task model, to transmits the unit of eight-pixel points following the general way [for (a)], each pixel needs to be coded into a light intensity image. For a 160 pixel × 160 pixel image, a total of 25 600 images are required. As for the eightfold transmission way [for (b)], the unit of eight-pixel points is coded into a light intensity image, so only requires 3200 images for the MTDL model.
1 E. Willner A. , Huang H. , Yan Y. , Ren Y. , Ahmed N. , Xie G. , Bao C. , Li L. , Cao Y. , Zhao Z. , Wang J. , P. J. Lavery M. , Tur M. , Ramachandran S. , F. Molisch A. , Ashrafi N. , Ashrafi S. . Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 2015, 7(1): 66
https://doi.org/10.1364/AOP.7.000066
2 Rubinsztein-Dunlop H. , Forbes A. , V. Berry M. , R. Dennis M. , L. Andrews D. , Mansuripur M. , Denz C. , Alpmann C. , Banzer P. , Bauer T. , Karimi E. , Marrucci L. , Padgett M. , Ritsch-Marte M. , M. Litchinitser N. , P. Bigelow N. , Rosales-Guzmán C. , Belmonte A. , P. Torres J. , W. Neely T. , Baker M. , Gordon R. , B. Stilgoe A. , Romero J. , G. White A. , Fickler R. , E. Willner A. , Xie G. , McMorran B. , M. Weiner A. . Roadmap on structured light. J. Opt., 2017, 19(1): 013001
https://doi.org/10.1088/2040-8978/19/1/013001
3 Allen L. , Beijersbergen M. , Spreeuw R. , Woerdman J. . Orbital angular momentum of light and transformation of Laguerre‒Gaussian laser modes. Phys. Rev. A, 1992, 45(11): 8185
https://doi.org/10.1103/PhysRevA.45.8185
4 P. Yin J. , J. Gao W. , F. Zhu Y. . Generation of dark hollow beams and their applications. Prog. Opt., 2003, 45(11): 119
https://doi.org/10.1016/S0079-6638(03)80005-7
5 J. Padgett M., Orbital angular momentum 25 years on, Opt. Express 25(10), 11265 (2017) (Invited)
6 J. Shen Y. , J. Wang X. , W. Xie Z. , J. Min C. , Fu X. , Liu Q. , L. Gong M. , C. Yuan X. . Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 2019, 8(1): 90
https://doi.org/10.1038/s41377-019-0194-2
7 Forbes A. , Ramachandran S. , W. Zhan Q. . Photonic angular momentum: Progress and perspectives. Nanophotonics, 2022, 11(4): 625
https://doi.org/10.1515/nanoph-2022-0035
8 J. Li S. , Y. Li Z. , S. Huang G. , B. Liu X. , Q. Li R. , Y. Cao X. . Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys., 2022, 17(6): 62501
https://doi.org/10.1007/s11467-022-1179-9
9 Jin L. , W. Huang Y. , W. Jin Z. , C. Devlin R. , G. Dong Z. , T. Mei S. , H. Jiang M. , T. Chen W. , Wei Z. , Liu H. , H. Teng J. , Danner A. , P. Li X. , M. Xiao S. , Zhang S. , Y. Yu C. , K. W. Yang J. , Capasso F. , W. Qiu C. . Dielectric multi-momentum meta-transformer in the visible. Nat. Commun., 2019, 10(1): 4789
https://doi.org/10.1038/s41467-019-12637-0
10 Y. Fang X. , J. Wang H. , C. Yang H. , L. Ye Z. , M. Wang Y. , Zhang Y. , P. Hu X. , N. Zhu S. , Xiao M. . Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal. Phys. Rev. A, 2020, 102(4): 043506
https://doi.org/10.1103/PhysRevA.102.043506
11 J. Guo J. , P. Zhang Y. , Ye H. , Y. Wang L. , C. Chen P. , J. Mao D. , Z. Xie C. , H. Chen Z. , W. Wu X. , Xiao M. , Zhang Y. . Spatially structured-mode multiplexing holography for high-capacity security encryption. ACS Photonics, 2023, 10(3): 757
https://doi.org/10.1021/acsphotonics.2c01943
12 E. Willner A. , Zhao Z. , Liu C. , Zhang R. , Song H. , Pang K. , Manukyan K. , Song H. , Su X. , Xie G. , Ren Y. , Yan Y. , Tur M. , F. Molisch A. , W. Boyd R. , Zhou H. , Hu N. , Minoofar A. , Huang H. . Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams. APL Photonics, 2021, 6(3): 030901
https://doi.org/10.1063/5.0031230
13 Lin J. , C. Yuan X. , H. Tao S. , E. Burge R. . Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states. Appl. Opt., 2007, 46(21): 4680
https://doi.org/10.1364/AO.46.004680
14 Wang J. , Y. Yang J. , M. Fazal I. , Ahmed N. , Yan Y. , Huang H. , X. Ren Y. , Yue Y. , Dolinar S. , Tur M. , E. Willner A. . Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 2012, 6(7): 488
https://doi.org/10.1038/nphoton.2012.138
15 Bozinovic N. , Yue Y. , Ren Y. , Tur M. , Kristensen P. , Huang H. , E. Willner A. , Ramachandran S. . Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545
https://doi.org/10.1126/science.1237861
16 Vallone G. , D’Ambrosio V. , Sponselli A. , Slussarenko S. , Marrucci L. , Sciarrino F. , Villoresi P. . Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett., 2014, 113(6): 060503
https://doi.org/10.1103/PhysRevLett.113.060503
17 Huang H.Xie G.Yan Y.Ahmed N.Ren Y.Yue Y.Rogawski D.J. Willner M.I. Erkmen B.M. Birnbaum K.J. Dolinar S.P. J. Lavery M.J. Padgett M.Tur M.E. Willner A., 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wave-length, Opt. Lett. 39(2), 197 (2014)
18 Krenn M. , Fickler R. , Fink M. , Handsteiner J. , Malik M. , Scheidl T. , Ursin R. , Zeilinger A. . Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 2014, 16(11): 113028
https://doi.org/10.1088/1367-2630/16/11/113028
19 J. Willner A. , Ren Y. , Xie G. , Zhao Z. , Cao Y. , Li L. , Ahmed N. , Wang Z. , Yan Y. , Liao P. , Liu C. , Mirhosseini M. , W. Boyd R. , Tur M. , E. Willner A. . Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes. Opt. Lett., 2015, 40(24): 5810
https://doi.org/10.1364/OL.40.005810
20 Krenn M. , Handsteiner J. , Fink M. , Fickler R. , Ursin R. , Malik M. , Zeilinger A. . Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. USA, 2016, 113(48): 13648
https://doi.org/10.1073/pnas.1612023113
21 Zhang H. , Zeng J. , Y. Lu X. , Y. Wang Z. , L. Zhao C. , J. Cai Y. . Review on fractional vortex beam. Nanophotonics, 2022, 11(2): 241
https://doi.org/10.1515/nanoph-2021-0616
22 W. Liu Z. , Yan S. , G. Liu H. , F. Chen X. . Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 2019, 123(18): 183902
https://doi.org/10.1103/PhysRevLett.123.183902
23 Na Y. , K. Ko D. . Adaptive demodulation by deep-learning-based identification of fractional orbital angular momentum modes with structural distortion due to atmospheric turbulence. Sci. Rep., 2021, 11(1): 23505
https://doi.org/10.1038/s41598-021-03026-z
24 Leach J. , Padgett M. , Barnett S. , Franke-Arnold S. , Courtial J. . Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett., 2002, 88(25): 257901
https://doi.org/10.1103/PhysRevLett.88.257901
25 Berkhout G. , Lavery M. , Courtial J. , Beijersbergen M. , Padgett M. . Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 2010, 105(15): 153601
https://doi.org/10.1103/PhysRevLett.105.153601
26 Mirhosseini M. , Malik M. , Shi Z. , Boyd R. . Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun., 2013, 4(1): 2781
https://doi.org/10.1038/ncomms3781
27 H. Wen Y. , Chremmos I. , J. Chen Y. , B. Zhu J. , F. Zhang Y. , Y. Yu S. . Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett., 2018, 120(19): 193904
https://doi.org/10.1103/PhysRevLett.120.193904
28 Gibson G. , Courtial J. , J. Padgett M. , Vasnetsov M. , Pas’ko V. , M. Barnett S. , Franke-Arnold S. . Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 2004, 12(22): 5448
https://doi.org/10.1364/OPEX.12.005448
29 Doster T. , T. Watnik A. . Machine learning approach to OAM beam demultiplexing via convolutional neural networks. Appl. Opt., 2017, 56(12): 3386
https://doi.org/10.1364/AO.56.003386
30 Lohani S. , M. Knutson E. , O’Donnell M. , D. Huver S. , T. Glasser R. . On the use of deep neural networks in optical communications. Appl. Opt., 2018, 57(15): 4180
https://doi.org/10.1364/AO.57.004180
31 Park S. , Cattell L. , Nichols J. , Watnik A. , Doster T. , Rohde G. . De-multiplexing vortex modes in optical communications using transport-based pattern recognition. Opt. Express, 2018, 26(4): 4004
https://doi.org/10.1364/OE.26.004004
32 Li J. , Zhang M. , S. Wang D. . Adaptive demodulator using machine learning for orbital angular momentum shift keying. IEEE Photonics Technol. Lett., 2017, 29(17): 1455
https://doi.org/10.1109/LPT.2017.2726139
33 S. Zhao Q. , Q. Hao S. , Wang Y. , Wang L. , F. Wan X. , L. Xu C. . Mode detection of misaligned orbital angular momentum beams based on convolutional neural network. Appl. Opt., 2018, 57(35): 10152
https://doi.org/10.1364/AO.57.010152
34 Lohani S. , T. Glasser R. . Turbulence correction with artificial neural networks. Opt. Lett., 2018, 43(11): 2611
https://doi.org/10.1364/OL.43.002611
35 H. Tian Q. , Li Z. , Hu K. , Zhu L. , L. Pan X. , Zhang Q. , J. Wang Y. , Tian F. , L. Yin X. , J. Xin X. . Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator. Opt. Express, 2018, 26(21): 27849
https://doi.org/10.1364/OE.26.027849
36 Li J. , Zhang M. , S. Wang D. , J. Wu S. , Y. Zhan Y. . Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM‒FSO communication. Opt. Express, 2018, 26(8): 10494
https://doi.org/10.1364/OE.26.010494
37 Z. Shi Y. , H. Ma Z. , Y. Chen H. , G. Ke Y. , Chen Y. , X. Zhou X. . High-resolution recognition of FOAM modes via an improved EfficientNet V2 based convolutional neural network. Front. Phys., 2024, 19(3): 32205
https://doi.org/10.1007/s11467-023-1373-4
38 Luan H.Lin D.Li K.Meng W.Gu M.Fang X., 768-ary Laguerre‒Gaussian-mode shift keying free-space optical communication based on convolutional neural networks, Opt. Express 29(13), 19807 (2021)
39 Maurer A. , Pontil M. , Paredes B. . The benefit of multitask representation learning. J. Mach. Learn. Res., 2016, 17(1): 2853
https://doi.org/10.5555/2946645.3007034
40 X. Mao Z. , Y. Yu H. , Xia M. , Z. Pan S. , Wu D. , L. Yin Y. , Xia Y. , P. Yin J. . Broad bandwidth and highly efficient recognition of optical vortex modes achieved by the neural-network approach. Phys. Rev. Appl., 2020, 13(3): 034063
https://doi.org/10.1103/PhysRevApplied.13.034063
41 Davis J. , Cottrell D. , Campos J. , Yzuel M. , Moreno I. . Encoding amplitude information onto phase-only filters. Appl. Opt., 1999, 38(23): 5004
https://doi.org/10.1364/AO.38.005004
42 Bolduc E. , Bent N. , Santamato E. , Karimi E. , W. Boyd R. . Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. Opt. Lett., 2013, 38(18): 3546
https://doi.org/10.1364/OL.38.003546
43 Thung K.Wee C., A brief review on multi-task learning, Multimedia Tools Appl. 77(22), 29705 (2018)
44 Zhang Y. , Yang Q. . An overview of multi-task learning. Natl. Sci. Rev., 2018, 5(1): 30
https://doi.org/10.1093/nsr/nwx105
45 Szegedy C.Wei L.Yangqing J.Sermanet P.Reed S.Anguelov D.Erhan D.Vanhoucke V.Rabinovich A., Going deeper with convolutions, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 1 (2015)
46 Xie S.B. Girshick R.Dollár P.Tu Z.He K., Aggregated residual transformations for deep neural networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 5987 (2017)
47 Collobert R.Weston J., A unified architecture for natural language processing: deep neural networks with multitask learning, in: Proceedings of the 25th International Conference on Machine Learning, Association for Computing Machinery: Helsinki, Finland, 160–167 (2008)
48 Cui X. , Zhang W. , Finkler U. , Saon G. , Picheny M. , Kung D. . Distributed training of deep neural network acoustic models for automatic speech recognition: A comparison of current training strategies. IEEE Signal Process. Mag., 2020, 37(3): 39
https://doi.org/10.1109/MSP.2020.2969859
49 B. Girshick R.C. N. N. Fast R., IEEE International Conference on Computer Vision (ICCV), 1440 (2015)
50 L. Li B. , T. Luan H. , Y. Li K. , Y. Chen Q. , J. Meng W. , Cheng K. , Gu M. , Y. Fang X. . Orbital angular momentum optical communications enhanced by artificial intelligence. J. Opt., 2022, 24(9): 094003
https://doi.org/10.1088/2040-8986/ac8108
51 S. Wan Z. , Wang H. , Liu Q. , Fu X. , J. Shen Y. . Ultra-degree-of-freedom structured light for ultracapacity information carriers. ACS Photonics, 2023, 10(7): 2149
https://doi.org/10.1021/acsphotonics.2c01640
[1] Zhanlei Hao, Haojie Chen, Yuhang Yin, Cheng-Wei Qiu, Shan Zhu, Huanyang Chen. Efficient conversion of acoustic vortex using extremely anisotropic metasurface[J]. Front. Phys. , 2024, 19(4): 42202-.
[2] Si Jia Li, Zhuo Yue Li, Guo Shai Huang, Xiao Bin Liu, Rui Qi Li, Xiang Yu Cao. Digital coding transmissive metasurface for multi-OAM-beam[J]. Front. Phys. , 2022, 17(6): 62501-.
[3] Hai-Yun Wang, Zhao-Hui Yang, Kun Liu, Ya-Hong Chen, Lin Liu, Fei Wang, Yang-Jian Cai. Generalized high-order twisted partially coherent beams and their propagation characteristics[J]. Front. Phys. , 2022, 17(5): 52506-.
[4] Zhucheng Zhang, Jiancheng Pei, Yi-Ping Wang, Xiaoguang Wang. Measuring orbital angular momentum of vortex beams in optomechanics[J]. Front. Phys. , 2021, 16(3): 32503-.
[5] Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng. Compound plasmonic vortex generation based on spiral nanoslits[J]. Front. Phys. , 2021, 16(3): 33503-.
[6] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed