Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (2) : 21305    https://doi.org/10.1007/s11467-022-1245-3
TOPICAL REVIEW
Recent advances in laser self-injection locking to high-Q microresonators
Nikita M. Kondratiev1(), Valery E. Lobanov2, Artem E. Shitikov2, Ramzil R. Galiev1, Dmitry A. Chermoshentsev2,3,4, Nikita Yu. Dmitriev2, Andrey N. Danilin2,5, Evgeny A. Lonshakov1, Kirill N. Min’kov2, Daria M. Sokol2,4, Steevy J. Cordette1, Yi-Han Luo6,7, Wei Liang8, Junqiu Liu6,7,9(), Igor A. Bilenko2,5
1. Directed Energy Research Centre, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
2. Russian Quantum Center, Moscow, Russia
3. Skolkovo Institute of Science and Technology, Skolkovo, Russia
4. Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
5. Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
6. Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
7. International Quantum Academy, Shenzhen 518048, China
8. Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
9. Hefei National Laboratory, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(18696 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The stabilization and manipulation of laser frequency by means of an external cavity are nearly ubiquitously used in fundamental research and laser applications. While most of the laser light transmits through the cavity, in the presence of some back-scattered light from the cavity to the laser, the self-injection locking effect can take place, which locks the laser emission frequency to the cavity mode of similar frequency. The self-injection locking leads to dramatic reduction of laser linewidth and noise. Using this approach, a common semiconductor laser locked to an ultrahigh-Q microresonator can obtain sub-Hertz linewidth, on par with state-of-the-art fiber lasers. Therefore it paves the way to manufacture high-performance semiconductor lasers with reduced footprint and cost. Moreover, with high laser power, the optical nonlinearity of the microresonator drastically changes the laser dynamics, offering routes for simultaneous pulse and frequency comb generation in the same microresonator. Particularly, integrated photonics technology, enabling components fabricated via semiconductor CMOS process, has brought increasing and extending interest to laser manufacturing using this method. In this article, we present a comprehensive tutorial on analytical and numerical methods of laser self-injection locking, as well a review of most recent theoretical and experimental achievements.

Keywords self-injection locking      laser stabilization      microresonator      nonlinearity      single-frequency lasing      multi-frequency lasing     
Corresponding Author(s): Nikita M. Kondratiev,Junqiu Liu   
Just Accepted Date: 16 January 2023   Issue Date: 20 February 2023
 Cite this article:   
Nikita M. Kondratiev,Valery E. Lobanov,Artem E. Shitikov, et al. Recent advances in laser self-injection locking to high-Q microresonators[J]. Front. Phys. , 2023, 18(2): 21305.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1245-3
https://academic.hep.com.cn/fop/EN/Y2023/V18/I2/21305
Fig.1  Artistic vision of self-injection locking of a diode laser to a microring resonator, which enables frequency comb generation seeded by its narrowed linewidth emission.
Fig.2  Schematics of laser self-injection locking. (a) Top panel: Schematics of laser self-injection locking to a WGM mode using a prism coupler. Bottom panel: Resonance profiles of the laser cavity (left) and the WGM reflected wave with normal mode splitting (right). A: the laser generation field amplitude. ωLC and κLC: the laser cavity mode frequency and linewidth. κdo: laser output mirror coupling rate. B: back-reflected wave amplitude. SLC and S: laser beam cross-section area at the laser aperture and on the prism surface. τs: round-trip time of feedback ψ: locking phase. A+ and A?: Amplitudes of the forward and backward waves inside microresonator. η: microresonator coupling coefficient. ωm and κm: The microresonator mode frequency and linewidth. ω: laser generation frequency. (b) An optimal self-injection locking curve with ψ=0, κmτs?1, and K0=35. The unstable branches are shown with dashed lines. The locking range is marked with a thick red line. The bi-stable transitions are marked with blue arrows. Panel (a) is reproduced from Ref. [105], and panel (b) from Ref. [106].
Fig.3  Illustration of tuning curve dependence on the locking phase and delay. (a) Tuning curves Eq. (6) for different initial phases ψ. Points I?IV correspond to phases ψ=[0,π/3,2π/3,π] with κτs?1. The envelope for the family of curves with different ψ is shown with the black dash-dotted line. In comparison, the solid green line shows a tuning curve for a free-running laser. (b) Tuning curves I?IV corresponding ψ=0 and long delay, so that κmτs/2=[0,1,2,3]. This figure is reproduced from Ref. [106].
Fig.4  Analytical study of tuning curves with self-injection locking. (a) and (b) show the tuning curves for β=0.1 and β=10 respectively, with K0/β=400 and κmτs=0.011. The red dashed lines show the slope of locking bands, and the red crosses mark the optimal points ζ=ζ0 [see Eq. (18)]. (c) shows the tuning curves for different K0 values. Curves I?III correspond to ψ=π and K0=[5,3,1], respectively. Curves IV-VII correspond to ψ=0 and K0=[0,2,4,6], respectively. All quantities are plotted in dimensionless units. Panels (a, b) are reproduced from Ref. [105], and panel (c) from Ref. [106].
Fig.5  Calculated normalized transmitted power dependence on the detuning of the laser frequency from the WGM frequency for the different locking phases. The sum of the forward and backward locking ranges (FLR and BLR) can be measured experimentally. It is a good approximation of the total locking range δωlock in the case of a high Q factor when the inner overlap band δωin is negligible. This figure is reproduced from Ref. [112].
Fig.6  Experimental and numerical study of optical spectra of a multi-frequency laser with and without self-injection locking. (a) Experimental (blue line) and numerically calculated (red line) emission spectrum of the free-running multi-frequency diode laser [Eq. (9), Eq. (10)]. (b) Experimental (blue line) and numerically calculated (red line) emission spectrum of the self-injection-locked multi-frequency diode laser. (c) Experimentally obtained spectra of the self-injection locked laser at different feedback levels (coloured solid lines) with numerically calculated envelopes (black lines) for Γ1=1×10?2, Γ2=1.2×10?2, Γ3=1.5×10?2, respectively. The green spectrum is not approximated well. (d) Numerically calculated dependence of the single-mode energy concentration η on the feedback level (blue line), and the experimentally obtained energy concentration points (squares). The circle corresponds to the green spectrum in panel (c), and the triangle corresponds to the free-running laser. This figure is reproduced from Ref. [70].
Fig.7  Optical spectra of the multi-frequency emission of the self-injection-locked laser. (a) Two-frequency regime; (b) four-frequency regime; (c) six-frequency regime. Additional feedback is added to corresponding modes. Blue data is the experimental data, orange curve is from the analytic model. (d) Upper panel: Scheme of the laser (red) and WGM (blue) mode frequencies in model. dξ – difference between laser and microresonator intermode distances, cκ – first to second microresonator mode width ratio. Lower panel: Theoretical (red and blue-dashed) and modelled (blue, green, yellow) tuning curves for the same WGM mode widths (left) and different mode widths (right). Panels (a–c) are reproduced from Ref. [70], and panel (d) from Ref. [118].
Fig.8  Numerical study of parameters for optimal self-injection locking. The stabilization coefficient K [panel (a)] and the optimal detuning ζ [panel (b)] for ψ=0, κ0τs=0, κdo/κ0=1000. Panel (c) shows the stabilization coefficient for κ0τs=0.4 and the same other parameters. The solid line is the numerical maximum of K with respect to η. The dashed line is the second optimum branch for the zero-phase case. The dotted line corresponds to β=1. All quantities are plotted in dimensionless units. This figure is reproduced from Ref. [105].
Fig.9  Numerical study of parameters for optimal self-injection locking. The stabilization coefficient K [panel (a)], the optimal detuning ζopt [panel (b)] and optimal ψopt [panel (c)] for κ0τs=0, κdo/κ0=1000. The solid line is the numerical maximum with respect to η. The dashed line is the second optimum branch for the zero-phase case. The dotted line corresponds to β=βcr0.68. All quantities are plotted in dimensionless units. This figure is reproduced from Ref. [105].
Fig.10  Numerically obtained the transmission resonance curves Eq. (8) for the parameters taken from Ref. [21]. The parameter ζ(ξ) was evaluated using Eq. (6) (the dashed lines), and the corresponding LI curves were evaluated for the increasing frequency (the solid lines). The points on the transmission curves mark the optimal detuning values. All quantities are plotted in dimensionless units. This figure is reproduced from Ref. [105].
Fig.11  Schematic of laser self-injection locking with variable optical feedback. (a) The self-injection locking scheme with additional mirror and coupling prism. The amplitudes at the input port coupling point: Bin is the pump amplitude; Bt and Br are amplitudes transmitted through and reflected from the prism coupler. A+ and A? are the amplitudes of counter-circulating modes of the microresonator. (b) Solid lines – left y-axis: Comparison of the stabilization coefficient for the case of absent Rayleigh scattering (red line) and the case of absent mirror coupling (blue line). Dashed lines – right y-axis: Comparison of the |Γ| for the case of absent Rayleigh scattering (red dashed line) and for the case of absent mirror coupling (the blue dashed line). This figure is reproduced from Ref. [123].
Fig.12  Experiments on laser self-injection locking to Fabry?Pérot cavities. (a) Ring-down measurement of the Q factor of a miniature FP cavity. (b) Schematic diagram of the narrow-linewidth laser employing the miniature FP cavity. This figure is reproduced from Ref. [42].
Fig.13  Typical theoretical solutions for tuning (left) and resonance (right) curves are shown for different pump values f (see right panel legend). In the left panel, dashed horizontal lines show the bi-stability start detuning, dotted lines shows the bi-stability end detuning, and dash-dotted lines shows the soliton existence border. This figure is reproduced from Ref. [184].
Fig.14  Tuning curve (left) and resonance curve (right) for different rθ. The cross-modulation coefficient is αx=1. Green dashed, dotted and dash-dotted lines in the left panel define the bi-stability begin, end and soliton region end, respectively, over ζ for rθ=4. This figure is reproduced from Ref. [185].
Fig.15  The diagram of the regimes arising upon pump frequency sweep with anomalous GVD for different combinations of the pump amplitude f and normalized back-scattering coefficient β. The dots show the calculated parameters. The shaded regions mark the extrapolation of the regime type. The white areas are either transient regions, or too far from the plotted points, to be certain. The legend is shown on the right and consists of panels with examples of characteristic regimes. This figure is reproduced from Ref. [110].
Fig.16  The diagram of the regimes arising upon pump frequency sweep with normal GVD for different combinations of the pump amplitude f and normalized back-scattering coefficient β. The dots show the calculated parameters. The shaded regions mark the extrapolation of the regime type. The white areas are either transient regions, or too far from the calculated points to be certain. The legend is shown on the right and consists of panels with examples of characteristic regimes. This figure is reproduced from Ref. [110].
Fig.17  Dual-self-injection-locking concept. Two laser diodes are coupled to an integrated high-Q microresonator. Both lasers are simultaneously self-injection-locked to different frequency modes of the microresonator, resulting in a stable and narrow-linewidth bichromatic output. This figure is reproduced from Ref. [189].
Fig.18  Tuning surface of the dual-laser self-injection locking in different views and a locking region diagram. The surface is calculated for normalized pump amplitudes f+=f?=0.5, where moderate nonlinear effects are present. Color in panels (a–c) represents the “?” laser intracavity detuning ξ?. The black curve in panel (b) and black square in panel (d) correspond f±=0.05, where nonlinear effects are insignificant. The aqua and light-green curves correspond to the “+” and “?” laser individual locking regions. Dashed green line corresponds to ξ+=ζ+. This figure is taken from Ref. [189].
Fig.19  Dynamics of laser self-injection locking to two modes from different mode families. The transmission traces (a, d) and heterodyne spectrograms correspond to the frequency sweep of one laser (the blue laser in the left column and the red laser in the right column). In (b, f) the heterodyne measurement is performed on the same laser as the one being modulated; while in (c,e), on the other laser. This figure is reproduced from Ref. [189].
Fig.20  Frequency comb generation in the self-injection locking regime with a gain-switched laser. Spectra were obtained by means of the heterodyne method. Comb teeth are marked with red circles and red arrows, and green arrows correspond to the interference lines. (a) The 40-kHz-spaced comb. The spacing between adjacent lines is presented on the inset. (b) The 10-MHz-spaced comb with bandwidth wider than 1 GHz. (c) The 0.3-GHz-spaced comb. (d) The 0.5-GHz-spaced comb. (e) The 1-GHz-spaced comb. (f) The 10-GHz-spaced comb. This figure is reproduced from Ref. [203].
Fig.21  Low-noise lasers and turnkey soliton microcombs using laser self-injection locking to chip-based Si3N4 microresonator. (a) Schematic of a tunable, self-injection-locked laser [94]. A DFB laser chip is butt-coupled to a chip-based Si3N4 microresonator. When the laser emission is coupled into the microresonator, backreflected light from the microresonator into the DFB laser can trigger laser self-injection locking that change the laser dynamics. As a result, the DFB laser frequency is locked to a resonance mode of the microresonator, and its linewidth is significantly reduced. Piezoelectric actuators can be integrated directly on the Si3N4 microresonator, offering fast frequency tuning. (b) Close-range photo of self-injection-locked laser consisting a laser diode chip edge-coupled to a Si3N4 chip [85]. (c) Experimental results of laser frequency locked to different microresonator resonances [85]. Top panel shows the transmission spectrum of a Si3N4 microresonator of 1.02 THz FSR, where the fundamental TE mode family is marked with red circles. Bottom panel shows the laser emission spectrum, as well as a typical split resonance that triggers laser self-injection locking. (d) Increasing backreflection, thus to enhance laser self-injection locking, can be realized using a loop mirror in the microresonator drop-port [95]. (e) Images of a self-injection-locked soliton microcomb module in a compact butterfly package [89]. (f) Demonstration of turnkey operation in the soliton module [89]. Top panel shows measured comb power versus time upon power on and off. Bottom panel shows the spectrogram of the measured soliton repetition rate during power switching. Images are reproduced from Ref. [94] [Panel (a)], Ref. [88] [Panels (b, c)], Ref. [95] [Panel (d)], and Ref. [89] [Panels (e, f)].
Fig.22  Theoretical model of the nonlinear self-injection locking. Model parameters for (a?f): the normalized pump amplitude f=1.6, the normalized mode-coupling parameter Γ=0.11, the self-injection locking coefficient K0=44, the locking phase ψ=0.1π. (a, b) Model for the conventional case where the microresonator is pumped by the laser with an optical isolator, and ζ=ξ (dark green line). (c–f) Model for the self-injection locked regime. The solution of Eqs. (6)?(26) from Ref. [169] [thin red curves in (c, e)] is compared with the linear tuning curve ζ=ξ [thin black lines in (c, e)]. While tuning the laser, the actual effective detuning ζ and the intracavity power |a(ξ)|2 will follow red or blue lines with jumps due to the multistability of the tuning curve. The triangular nonlinear resonance curve [thick black in (b)] is deformed when translated from ζ frame to the detuning ξ frame (d, f) with corresponding tuning curve ζ(ξ) (c, e). The width of the locked state is larger for forward scan, but the backward scan can provide larger detuning ζ, which is crucial for the soliton generation. The figure is taken from Ref. [169].
Fig.23  Heterogeneous integration of lasers and modulators on Si3N4 photonic chips. (a) Photographs showing a completed 100-mm-diameter wafer and its zoom-in view of chips and elements [188]. A Si3N4 microring resonator and its interface with silicon is shown. (b) Schematic of laser soliton microcomb devices consisting of DFB lasers, phase tuners, and high-Q microresonators on a monolithic substrate. Bottom panel shows the simplified device cross-section. The laser is based on InP/Si, and the microresonator is based on Si3N4. The intermediate silicon layer with two etch steps is used to deliver light from the InP/Si layer to the Si3N4 layer. (c) False-coloured scanning electron microscope (SEM) image of the Si3N4/AlN device cross-section, showing Al (yellow), AlN (green), Mo (red), Si3N4 (blue) and the optical mode (rainbow) [229]. (d) Left panel shows a false-coloured SEM image of the sample cross-section with a PZT actuator integrated on the Si3N4 photonic circuit. The piezoelectric actuator is composed of Pt (yellow), PZT (green) layers on top of Si3N4 (blue) buried in SiO2 cladding [94]. Right panel shows the optical micrograph of disk-shaped PZT actuator on top of Si3N4 microring with 100 GHz FSR [94]. Images are reproduced from Ref. [188] [Panels (a, b)], Ref. [229] [Panel (c)], and Ref. [94] [Panel (d)].
1 Hadley G. . Injection locking of diode lasers. IEEE J. Quantum Electron., 1986, 22(3): 419
https://doi.org/10.1109/JQE.1986.1072979
2 W. P. Drever R. , L. Hall J. , V. Kowalski F. , Hough J. , M. Ford G. , J. Munley A. , Ward H. . Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 1983, 31(2): 97
https://doi.org/10.1007/BF00702605
3 R. Telle H. . Narrow linewidth laser diodes with broad continuous tuning range. Appl. Phys. B, 1989, 49(3): 217
https://doi.org/10.1007/BF00714639
4 Zhu M. , L. Hall J. . Stabilization of optical phase/frequency of a laser system: Application to a commercial dye laser with an external stabilizer. J. Opt. Soc. Am. B, 1993, 10(5): 802
https://doi.org/10.1364/JOSAB.10.000802
5 Kourogi M. , Ohtsu M. . Novel optical frequency discriminator for FM noise reduction of semiconductor lasers. Opt. Commun., 1991, 81(3−4): 204
https://doi.org/10.1016/0030-4018(91)90639-U
6 Ohta T. , Murakami K. . Reducing negative resistance oscillator noise by self-injection. Electron. Commun. Jpn., 1968, 51-B: 80
7 Ohta T.Makino S.Nakano H.Endo S.Ono S., New self-injection oscillator using directional filter. 1973 3rd European Microwave Conference (1973), Vol. 1, pp 1–4
8 Ota T. , Nata M. . Noise reduction of oscillator by injection locking. Trans. IECEJ, 1970, 53-B: 487
9 C. Chang H. . Phase noise in self-injection-locked oscillators - theory and experiment. IEEE Trans. Microw. Theory Tech., 2003, 51(9): 1994
https://doi.org/10.1109/TMTT.2003.815872
10 C. Chang H. . Stability analysis of self-injection-locked oscillators. IEEE Trans. Microw. Theory Tech., 2003, 51(9): 1989
https://doi.org/10.1109/TMTT.2003.815863
11 J. Choi J. , W. Choi G. . Experimental observation of frequency locking and noise reduction in a self-injection-locked magnetron. IEEE Trans. Electron. Devices, 2007, 54: 3430
https://doi.org/10.1109/TED.2007.908879
12 P. Bliokh Y. , E. Krasik Y. , Felsteiner J. . Self-injection-locked magnetron as an active ring resonator side coupled to a waveguide with a delayed feedback loop. IEEE Trans. Plasma Sci., 2012, 40(1): 78
https://doi.org/10.1109/TPS.2011.2173805
13 Y. Glyavin M. , G. Denisov G. , L. Kulygin M. , V. Novozhilova Y. . Stabilization of gyrotron frequency by reflection from nonresonant and resonant loads. Tech. Phys. Lett., 2015, 41(7): 628
https://doi.org/10.1134/S106378501507007X
14 M. Melnikova M. , G. Rozhnev A. , M. Ryskin N. , V. Tyshkun A. , Y. Glyavin M. , V. Novozhilova Y. . Frequency stabilization of a 0.67-THz gyrotron by self-injection locking. IEEE Trans. Electron Dev., 2016, 63(3): 1288
https://doi.org/10.1109/TED.2015.2512868
15 Zhang L. , K. Poddar A. , L. Rohde U. , S. Daryoush A. . Self-ilpll using optical feedback for phase noise reduction in microwave oscillators. IEEE Photonics Technol. Lett., 2015, 27(6): 624
https://doi.org/10.1109/LPT.2014.2386868
16 Zhang L.K. Poddar A.L. Rohde U.S. Daryoush A., Phase noise reduction in RF oscillators utilizing self-injection locked and phase locked loop, 2015 IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (2015), pp 86–88
17 Dahmani B. , Hollberg L. , Drullinger R. . Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett., 1987, 12(11): 876
https://doi.org/10.1364/OL.12.000876
18 Li H. , B. Abraham N. . Power spectrum of frequency noise of semiconductor lasers with optical feedback from a high-finesse resonator. Appl. Phys. Lett., 1988, 53(23): 2257
https://doi.org/10.1063/1.100271
19 Laurent P. , Clairon A. , Breant C. . Frequency noise analysis of optically self-locked diode lasers. IEEE J. Quantum Electron., 1989, 25(6): 1131
https://doi.org/10.1109/3.29238
20 Liang W. , Ilchenko V. , Savchenkov A. , Matsko A. , Seidel D. , Maleki L. . Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett., 2010, 35(16): 2822
https://doi.org/10.1364/OL.35.002822
21 Liang W. , Ilchenko V. , D. Eliyahu A. , A. Savchenkov A. , B. Matsko A. , Seidel D. , Maleki L. . Ultralow noise miniature external cavity semiconductor laser. Nat. Commun., 2015, 6(1): 7371
https://doi.org/10.1038/ncomms8371
22 Velichanskii V. , Zibrov A. , Kargopol’tsev V. , Molochev V. , Nikitin V. , Sautenkov V. . et al.. Minimum line width of an injection laser. Sov. Tech. Phys. Lett., 1978, 4
23 Lang R. , Kobayashi K. . External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron., 1980, 16(3): 347
https://doi.org/10.1109/JQE.1980.1070479
24 Belenov É. , Velichanskiĭ V. , Zibrov A. , Nikitin V. , Sautenkov V. , Uskov A. . Methods for narrowing the emission line of an injection laser. Sov. J. Quantum Electron., 1983, 13(6): 792
https://doi.org/10.1070/QE1983v013n06ABEH004318
25 Patzak E. , Olesen H. , Sugimura A. , Saito S. , Mukai T. . Spectral linewidth reduction in semiconductor lasers by an external cavity with weak optical feedback. Electron. Lett., 1983, 19: 938
https://doi.org/10.1049/el:19830640
26 Patzak E. , Sugimura A. , Saito S. , Mukai T. , Olesen H. . Semiconductor laser linewidth in optical feedback configurations. Electron. Lett., 1983, 19: 1026
https://doi.org/10.1049/el:19830695
27 Henry C. . Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron., 1982, 18(2): 259
https://doi.org/10.1109/JQE.1982.1071522
28 Agrawal G. . Line narrowing in a single-mode injection laser due to external optical feedback. IEEE J. Quantum Electron., 1984, 20(5): 468
https://doi.org/10.1109/JQE.1984.1072420
29 Tkach R. , Chraplyvy A. . Regimes of feedback effects in 1.5-µm distributed feedback lasers. J. Lightwave Technol., 1986, 4(11): 1655
https://doi.org/10.1109/JLT.1986.1074666
30 Olesen H. , Saito S. , Mukai T. , Saitoh T. , Mikami O. . Solitary spectral linewidth and its reduction with external grating feedback for a 1.55 µm InGaAsP BH laser. Jpn. J. Appl. Phys., 1983, 22(10A): L664
https://doi.org/10.1143/JJAP.22.L664
31 Saito S. , Nilsson O. , Yamamoto Y. . Oscillation center frequency tuning, quantum FM noise, and direct frequency characteristics in external grating loaded semiconductor lasers. IEEE J. Quantum Electron., 1982, 18(6): 961
https://doi.org/10.1109/JQE.1982.1071636
32 Acket G. , Lenstra D. , Den Boef A. , Verbeek B. . The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers. IEEE J. Quantum Electron., 1984, 20(10): 1163
https://doi.org/10.1109/JQE.1984.1072281
33 Petermann K. . External optical feedback phenomena in semiconductor lasers. IEEE J. Sel. Top. Quantum Electron., 1995, 1(2): 480
https://doi.org/10.1109/2944.401232
34 Donati S. . Developing self-mixing interferometry for instrumentation and measurements. Laser Photonics Rev., 2012, 6(3): 393
https://doi.org/10.1002/lpor.201100002
35 Hollberg L. , Ohtsu M. . Modulatable narrow-linewidth semiconductor lasers. Appl. Phys. Lett., 1988, 53(11): 944
https://doi.org/10.1063/1.100077
36 Li H. , B. Abraham N. . Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator. IEEE J. Quantum Electron., 1989, 25(8): 1782
https://doi.org/10.1109/3.34036
37 Hemmerich A. , McIntyre D. , Jr Schropp D. , Meschede D. , Hansch T. . Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy. Opt. Commun., 1990, 75(2): 118
https://doi.org/10.1016/0030-4018(90)90239-P
38 Hemmerich A. , Zimmermann C. , W. Hansch T. . Compact source of coherent blue light. Appl. Opt., 1994, 33(6): 988
https://doi.org/10.1364/AO.33.000988
39 Hemmerich A. , H. McIntyre D. , Zimmermann C. , W. Hansen T. . Second-harmonic generation and optical stabilization of a diode laser in an external ring resonator. Opt. Lett., 1990, 15(7): 372
https://doi.org/10.1364/OL.15.000372
40 R. Hjelme D. , R. Mickelson A. , G. Beausoleil R. . Semiconductor laser stabilization by external optical feedback. IEEE J. Quantum Electron., 1991, 27(3): 352
https://doi.org/10.1109/3.81333
41 Zhao Y. , Peng Y. , Yang T. , Li Y. , Wang Q. , Meng F. , Cao J. , Fang Z. , Li T. , Zang E. . External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry–Pérot cavity optical feedback. Opt. Lett., 2011, 36(1): 34
https://doi.org/10.1364/OL.36.000034
42 Y Liu . Liang W. Compact narrow linewidth external cavity semiconductor laser realized by self-injection locking to Fabry−Pérot cavity. Chin. J. Lasers, 2021, 48: 1715001
https://doi.org/10.3788/CJL202148.1715001
43 Braginsky V. , Gorodetsky M. , Ilchenko V. . Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A, 1989, 137(7−8): 393
https://doi.org/10.1016/0375-9601(89)90912-2
44 A. Savchenkov A. , S. Ilchenko V. , B. Matsko A. , Maleki L. . Kilohertz optical resonances in dielectric crystal cavities. Phys. Rev. A, 2004, 70(5): 051804
https://doi.org/10.1103/PhysRevA.70.051804
45 B. Matsko A. , S. Ilchenko V. . Optical resonators with whispering-gallery modes (part I): basics. IEEE J. Sel. Top. Quantum Electron., 2006, 12(1): 3
https://doi.org/10.1109/JSTQE.2005.862952
46 A. Savchenkov A. , B. Matsko A. , S. Ilchenko V. , Maleki L. . Optical resonators with ten million finesse. Opt. Express, 2007, 15(11): 6768
https://doi.org/10.1364/OE.15.006768
47 Ward J.Benson O., WGM microresonators: Sensing, lasing and fundamental optics with microspheres, Laser Photonics Rev. 5(4), 553 (2011)
48 Lin G. , Diallo S. , Henriet R. , Jacquot M. , K. Chembo Y. . Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor. Opt. Lett., 2014, 39: 6009
https://doi.org/10.1364/OL.39.006009
49 Henriet R. , Lin G. , Coillet A. , Jacquot M. , Furfaro L. , Larger L. , K. Chembo Y. . Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor. Opt. Lett., 2015, 40(7): 1567
https://doi.org/10.1364/OL.40.001567
50 V. Strekalov D. , Marquardt C. , B. Matsko A. , G. L. Schwefel H. , Leuchs G. . Nonlinear and quantum optics with whispering gallery resonators. J. Opt., 2016, 18(12): 123002
https://doi.org/10.1088/2040-8978/18/12/123002
51 S. Grudinin I. , B. Matsko A. , A. Savchenkov A. , Strekalov D. , S. Ilchenko V. , Maleki L. . Ultra high Q crystalline microcavities. Opt. Commun., 2006, 265(1): 33
https://doi.org/10.1016/j.optcom.2006.03.028
52 Lecaplain C. , Javerzac-Galy C. , L. Gorodetsky M. , J. Kippenberg T. . Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials. Nat. Commun., 2016, 7(1): 13383
https://doi.org/10.1038/ncomms13383
53 E. Shitikov A. , A. Bilenko I. , M. Kondratiev N. , E. Lobanov V. , Markosyan A. , L. Gorodetsky M. . Billion Q-factor in silicon WGM resonators. Optica, 2018, 5(12): 1525
https://doi.org/10.1364/OPTICA.5.001525
54 Vassiliev V. , Velichansky V. , Ilchenko V. , Gorodetsky M. , Hollberg L. , Yarovitsky A. . Narrow-line-width diode laser with a high-Q microsphere resonator. Opt. Commun., 1998, 158(1-6): 305
https://doi.org/10.1016/S0030-4018(98)00578-1
55 L. Gorodetsky M. , D. Pryamikov A. , S. Ilchenko V. . Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 2000, 17(6): 1051
https://doi.org/10.1364/JOSAB.17.001051
56 S. Ilchenko V. , S. Yao X. , Maleki L. . High-Q microsphere cavity for laser stabilization and optoelectronic microwave oscillator. Laser Resonators II, 1999, 3611: 190
https://doi.org/10.1117/12.349244
57 N. Oraevsky A. , V. Yarovitsky A. , L. Velichansky V. . Frequency stabilisation of a diode laser by a whispering-gallery mode. Quantum Electron., 2001, 31(10): 897
https://doi.org/10.1070/QE2001v031n10ABEH002073
58 P. Rezac J.T. Rosenberger A., Locking and laser-frequency tracking of a microsphere whispering-gallery mode, Laser Resonators IV 4270, 112 (2001) (SPIE)
59 Bilenko I.Samoilenko A.S. Ilchenko V., Measurement of small stress fluctuations in fused silica fibers using an optical microcavity sensor, Laser Resonators and Beam Control V 4629, 222 (2002) (SPIE)
60 B. Matsko A. , A. Savchenkov A. , Yu N. , Maleki L. . Whispering-gallery-mode resonators as frequency references (I): Fundamental limitations. J. Opt. Soc. Am. B, 2007, 24: 1324
https://doi.org/10.1364/JOSAB.24.001324
61 Kondratiev N. , Gorodetsky M. . Thermorefractive noise in whispering gallery mode microresonators: Analytical results and numerical simulation. Phys. Lett. A, 2018, 382: 2265
https://doi.org/10.1016/j.physleta.2017.04.043
62 Huang D. , A. Tran M. , Guo J. , Peters J. , Komljenovic T. , Malik A. , A. Morton P. , E. Bowers J. . High-power sub-khz linewidth lasers fully integrated on silicon. Optica, 2019, 6(6): 745
https://doi.org/10.1364/OPTICA.6.000745
63 Vassiliev V. , Il’ina S. , Velichansky V. . Diode laser coupled to a high-Q microcavity via a GRIN lens. Appl. Phys. B, 2003, 76(5): 521
https://doi.org/10.1007/s00340-003-1151-5
64 Dale E. , Bagheri M. , Matsko A. , Frez C. , Liang W. , Forouhar S. . et al.. Microresonator stabilized 2µm distributed-feedback GaSb-based diode laser. Opt. Lett., 2016, 41: 5559
https://doi.org/10.1364/OL.41.005559
65 Xie Z. , Liang W. , A. Savchenkov A. , Lim J. , Burkhart J. , McDonald M. , Zelevinsky T. , S. Ilchenko V. , B. Matsko A. , Maleki L. , W. Wong C. . Extended ultrahigh-Q-cavity diode laser. Opt. Lett., 2015, 40(11): 2596
https://doi.org/10.1364/OL.40.002596
66 Savchenkov A. , Eliyahu D. , Heist B. , Matsko A. , Bagheri M. , Frez C. , Forouhar S. . On acceleration sensitivity of 2 µm whispering gallery mode-based semiconductor self-injection locked laser. Appl. Opt., 2019, 58(9): 2138
https://doi.org/10.1364/AO.58.002138
67 Savchenkov A. , Lopez E. , Solomatine I. , Eliyahu D. , Matsko A. , Maleki L. . Spectral purity improvement in flickering self-injection locked lasers. IEEE J. Quantum Electron., 2022, 58(5): 1
https://doi.org/10.1109/JQE.2022.3196704
68 G. Pavlov N. , Koptyaev S. , V. Lihachev G. , S. Voloshin A. , S. Gorodnitskiy A. , V. Ryabko M. , V. Polonsky S. , L. Gorodetsky M. . Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics, 2018, 12(11): 694
https://doi.org/10.1038/s41566-018-0277-2
69 Donvalkar P. , Savchenkov A. , Matsko A. . Self-injection locked blue laser. J. Opt., 2018, 20(4): 045801
https://doi.org/10.1088/2040-8986/aaae4f
70 R. Galiev R. , G. Pavlov N. , M. Kondratiev N. , Koptyaev S. , E. Lobanov V. , S. Voloshin A. , S. Gorodnitskiy A. , L. Gorodetsky M. . Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators. Opt. Express, 2018, 26(23): 30509
https://doi.org/10.1364/OE.26.030509
71 G. Pavlov N. , V. Lihachev G. , S. Voloshin A. , Koptyaev S. , M. Kondratiev N. , E. Lobanov V. . et al.. Narrow linewidth diode laser self-injection locked to a high-Q microresonator. AIP Conf. Proc., 2018, 1936: 020005
https://doi.org/10.1063/1.5025443
72 A. Savchenkov A. , W. Chiow S. , Ghasemkhani M. , Williams S. , Yu N. , C. Stirbl R. , B. Matsko A. . Self-injection locking efficiency of a UV Fabry−Pérot laser diode. Opt. Lett., 2019, 44(17): 4175
https://doi.org/10.1364/OL.44.004175
73 A. Savchenkov A. , E. Christensen J. , Hucul D. , C. Campbell W. , R. Hudson E. , Williams S. , B. Matsko A. . Application of a self-injection locked cyan laser for barium ion cooling and spectroscopy. Sci. Rep., 2020, 10(1): 16494
https://doi.org/10.1038/s41598-020-73373-w
74 Yacoby E. , Goren C. , Goldring S. , Guendelman G. , Pearl S. . Discretely tunable, single mode lasing from a multimode diode laser, locked to silica microsphere resonator. Opt. Laser Technol., 2021, 143: 107343
https://doi.org/10.1016/j.optlastec.2021.107343
75 Ji J. , Wang H. , Ma J. , Guo J. , Zhang J. , Tang D. , Shen D. . Narrow linewidth self-injection locked fiber laser based on a crystalline resonator in add-drop configuration. Opt. Lett., 2022, 47(6): 1525
https://doi.org/10.1364/OL.450458
76 Maleki L., Novel lasers: Whispering-gallery-mode resonators create ultranarrow-linewidth semiconductor lasers, Laser Focus World (2014)
77 Lee H. , Chen T. , Li J. , Y. Yang K. , Jeon S. , Painter O. , J. Vahala K. . Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 2012, 6(6): 369
https://doi.org/10.1038/nphoton.2012.109
78 Y. Yang K. , Beha K. , C. Cole D. , Yi X. , Del’Haye P. , Lee H. , Li J. , Y. Oh D. , A. Diddams S. , B. Papp S. , J. Vahala K. . Broadband dispersion-engineered microresonator on a chip. Nat. Photonics, 2016, 10(5): 316
https://doi.org/10.1038/nphoton.2016.36
79 Wu L. , Wang H. , Yang Q. , Ji Q. , Shen B. , Bao C. , Gao M. , Vahala K. . Greater than one billion Q factor for on-chip microresonators. Opt. Lett., 2020, 45(18): 5129
https://doi.org/10.1364/OL.394940
80 T. Spencer D. , F. Bauters J. , J. R. Heck M. , E. Bowers J. . Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica, 2014, 1(3): 153
https://doi.org/10.1364/OPTICA.1.000153
81 Xuan Y. , Liu Y. , T. Varghese L. , J. Metcalf A. , Xue X. , H. Wang P. , Han K. , A. Jaramillo-Villegas J. , Al Noman A. , Wang C. , Kim S. , Teng M. , J. Lee Y. , Niu B. , Fan L. , Wang J. , E. Leaird D. , M. Weiner A. , Qi M. . High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 2016, 3(11): 1171
https://doi.org/10.1364/OPTICA.3.001171
82 H. P. Pfeiffer M. , Kordts A. , Brasch V. , Zervas M. , Geiselmann M. , D. Jost J. , J. Kippenberg T. . Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica, 2016, 3(1): 20
https://doi.org/10.1364/OPTICA.3.000020
83 Ye Z. , Twayana K. , A. Andrekson P. , Torres-Company V. . High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express, 2019, 27(24): 35719
https://doi.org/10.1364/OE.27.035719
84 Ji X. , Roberts S. , Corato-Zanarella M. , Lipson M. . Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photonics, 2021, 6(7): 071101
https://doi.org/10.1063/5.0057881
85 Stern B. , Ji X. , Okawachi Y. , Gaeta A. , Lipson M. . Battery-operated integrated frequency comb generator. Nature, 2018, 562(7727): 401
https://doi.org/10.1038/s41586-018-0598-9
86 Li Y. , Zhang Y. , Chen H. , Yang S. , Chen M. . Tunable self-injected Fabry–Pérot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator. J. Lightwave Technol., 2018, 36(16): 3269
https://doi.org/10.1109/JLT.2018.2838325
87 Gaeta A. , Lipson M. , Kippenberg T. . Photonic-chip-based frequency combs. Nat. Photonics, 2019, 13(3): 158
https://doi.org/10.1038/s41566-019-0358-x
88 S. Raja A. , S. Voloshin A. , Guo H. , E. Agafonova S. , Liu J. , S. Gorodnitskiy A. , Karpov M. , G. Pavlov N. , Lucas E. , R. Galiev R. , E. Shitikov A. , D. Jost J. , L. Gorodetsky M. , J. Kippenberg T. . Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 2019, 10(1): 680
https://doi.org/10.1038/s41467-019-08498-2
89 Shen B. , Chang L. , Liu J. , Wang H. , F. Yang Q. , Xiang C. , N. Wang R. , He J. , Liu T. , Xie W. , Guo J. , Kinghorn D. , Wu L. , X. Ji Q. , J. Kippenberg T. , Vahala K. , E. Bowers J. . Integrated turnkey soliton microcombs. Nature, 2020, 582(7812): 365
https://doi.org/10.1038/s41586-020-2358-x
90 S. Raja A. , Liu J. , Volet N. , N. Wang R. , He J. , Lucas E. , Bouchandand R. , Morton P. , Bowers J. , J. Kippenberg T. . Chip-based soliton microcomb module using a hybrid semiconductor laser. Opt. Express, 2020, 28(3): 2714
https://doi.org/10.1364/OE.28.002714
91 Kovach A. , Chen D. , He J. , Choi H. , H. Dogan A. , Ghasemkhani M. . et al.. Emerging material systems for integrated optical Kerr frequency combs. Adv. Opt. Photon., 2020, 12: 135
https://doi.org/10.1364/AOP.376924
92 Jin W. , F. Yang Q. , Chang L. , Shen B. , Wang H. , A. Leal M. , Wu L. , Gao M. , Feshali A. , Paniccia M. , J. Vahala K. , E. Bowers J. . Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 2021, 15(5): 346
https://doi.org/10.1038/s41566-021-00761-7
93 Shim E. , Gil-Molina A. , Westreich O. , Dikmelik Y. , Lascola K. , L. Gaeta A. , Lipson M. . Tunable single-mode chip-scale mid-infrared laser. Commun. Phys., 2021, 4(1): 268
https://doi.org/10.1038/s42005-021-00770-6
94 Lihachev G. , Riemensberger J. , Weng W. , Liu J. , Tian H. , Siddharth A. , Snigirev V. , Shadymov V. , Voloshin A. , N. Wang R. , He J. , A. Bhave S. , J. Kippenberg T. . Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun., 2022, 13(1): 3522
https://doi.org/10.1038/s41467-022-30911-6
95 Siddharth A. , Wunderer T. , Lihachev G. , S. Voloshin A. , Haller C. , N. Wang R. . et al.. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photon., 2022, 7: 046108
https://doi.org/10.1063/5.0081660
96 Guo J. , A. McLemore C. , Xiang C. , Lee D. , Wu L. , Jin W. , Kelleher M. , Jin N. , Mason D. , Chang L. , Feshali A. , Paniccia M. , T. Rakich P. , J. Vahala K. , A. Diddams S. , Quinlan F. , E. Bowers J. . Chip-based laser with 1-Hertz integrated linewidth. Sci. Adv., 2022, 8(43): eabp9006
https://doi.org/10.1126/sciadv.abp9006
97 A. Korobko D. , O. Zolotovskii I. , Panajotov K. , V. Spirin V. , A. Fotiadi A. . Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator. Opt. Commun., 2017, 405: 253
https://doi.org/10.1016/j.optcom.2017.08.040
98 V. Spirin V. , L. Bueno Escobedo J. , A. Korobko D. , Mégret P. , A. Fotiadi A. . Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator. Opt. Express, 2020, 28(1): 478
https://doi.org/10.1364/OE.28.000478
99 Shao S. , Li J. , Wu Y. , Yang S. , Chen H. , Chen M. . Modulation bandwidth enhanced self-injection locking laser with an external high-Q microring reflector. Opt. Lett., 2021, 46: 3251
https://doi.org/10.1364/OL.432152
100 Jiang L. , Shi L. , Luo J. , Gao Q. , Lan T. , Huang L. , Zhu T. . Narrow linewidth VCSEL based on resonant optical feedback from an on-chip microring add-drop filter. Opt. Lett., 2021, 46(10): 2320
https://doi.org/10.1364/OL.424496
101 Jiang L. , Shi L. , Luo J. , Gao Q. , Bai M. , Lan T. , I. Iroegbu P. , Dang L. , Huang L. , Zhu T. . Simultaneous self-injection locking of two VCSELs to a single whispering-gallery-mode microcavity. Opt. Express, 2021, 29(23): 37845
https://doi.org/10.1364/OE.441595
102 V. Vasil’ev V. , L. Velichansky V. , L. Gorodetskii M. , S. Il’chenko V. , Holberg L. , V. Yarovitsky A. . High-coherence diode laser with optical feedback via a microcavity with “whispering gallery” modes. Quantum Electron., 1996, 26(8): 657
https://doi.org/10.1070/QE1996v026n08ABEH000747
103 Liang W. , S. Ilchenko V. , Eliyahu D. , Dale E. , A. Savchenkov A. , Seidel D. . et al.. Compact stabilized semiconductor laser for frequency metrology. Appl. Opt., 2015, 54: 3353
https://doi.org/10.1364/AO.54.003353
104 Sprenger B. , G. L. Schwefel H. , J. Wang L. . Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser. Opt. Lett., 2009, 34(21): 3370
https://doi.org/10.1364/OL.34.003370
105 R. Galiev R. , M. Kondratiev N. , E. Lobanov V. , B. Matsko A. , A. Bilenko I. . Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator. Phys. Rev. Appl., 2020, 14(1): 014036
https://doi.org/10.1103/PhysRevApplied.14.014036
106 M. Kondratiev N. , E. Lobanov V. , V. Cherenkov A. , S. Voloshin A. , G. Pavlov N. , Koptyaev S. , L. Gorodetsky M. . Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express, 2017, 25(23): 28167
https://doi.org/10.1364/OE.25.028167
107 Kazarinov R. , Henry C. . The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator. IEEE J. Quantum Electron., 1987, 23(9): 1401
https://doi.org/10.1109/JQE.1987.1073531
108 Osinski M. , Buus J. . Linewidth broadening factor in semiconductor lasers–an overview. IEEE J. Quantum Electron., 1987, 23(1): 9
https://doi.org/10.1109/JQE.1987.1073204
109 M. Kondratiev N.Galiev R.Gorelov I.Shitikov A.Lobanov V., Strong-feedback regime of self-injection locking and external cavity laser, Eds. : M. Sciamanna, K. Panajotov, and S. Hofling, Semiconductor Lasers and Laser Dynamics X. International Society for Optics and Photonics (SPIE) (2022), Vol. 12141, 121410K
110 M. Kondratiev N. , E. Lobanov V. , A. Lonshakov E. , Y. Dmitriev N. , S. Voloshin A. , A. Bilenko I. . Numerical study of solitonic pulse generation in the self-injection locking regime at normal and anomalous group velocity dispersion. Opt. Express, 2020, 28(26): 38892
https://doi.org/10.1364/OE.411544
111 E. Shitikov A. , I. Lykov I. , V. Benderov O. , A. Chermoshentsev D. , K. Gorelov I. , N. Danilin A. , R. Galiev R. , M. Kondratiev N. , J. Cordette S. , V. Rodin A. , V. Masalov A. , E. Lobanov V. , A. Bilenko I. . Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator: Experimental study. Opt. Express, 2023, 31(1): 313
https://doi.org/10.1364/OE.478009
112 E. Shitikov A. , V. Benderov O. , M. Kondratiev N. , E. Lobanov V. , V. Rodin A. , A. Bilenko I. . Microresonator and laser parameter definition via self-injection locking. Phys. Rev. Appl., 2020, 14(6): 064047
https://doi.org/10.1103/PhysRevApplied.14.064047
113 P. Bogatov A. , G. Eliseev P. , N. Sverdlov B. . Anomalous interaction of spectral modes in a semiconductor laser. Sov. J. Quantum Electron., 1975, 4(10): 1275
https://doi.org/10.1070/QE1975v004n10ABEH011736
114 Bogatov A. , Eliseev P. , Sverdlov B. . Anomalous interaction of spectral modes in a semiconductor laser. IEEE J. Quantum Electron., 1975, 11(7): 510
https://doi.org/10.1109/JQE.1975.1068658
115 Yamada M. . Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers. J. Appl. Phys., 1989, 66(1): 81
https://doi.org/10.1063/1.343860
116 Yamada M. , Suematsu Y. . Analysis of gain suppression in undoped injection lasers. J. Appl. Phys., 1981, 52(4): 2653
https://doi.org/10.1063/1.329064
117 Ishikawa H. , Yano M. , Takusagawa M. . Mechanism of asymmetric longitudinal mode competition in InGaAsP/InP lasers. Appl. Phys. Lett., 1982, 40(7): 553
https://doi.org/10.1063/1.93176
118 M. Kondratiev N.R. Galiev R.E. Lobanov V.A. Bilenko I., Multimode laser diode self-injection locking to a whispering gallery mode microresonator modeling, Frontiers in Optics + Laser Science 2021 (Optica Publishing Group) (2021), JTu1A. 119
119 A. Demchenko Y. , L. Gorodetsky M. . Analytical estimates of eigenfrequencies, dispersion, and field distribution in whispering gallery resonators. J. Opt. Soc. Am. B, 2013, 30(11): 3056
https://doi.org/10.1364/JOSAB.30.003056
120 Lucas E. , Lihachev G. , Bouchand R. , G. Pavlov N. , S. Raja A. , Karpov M. , L. Gorodetsky M. , J. Kippenberg T. . Spatial multiplexing of soliton microcombs. Nat. Photonics, 2018, 12(11): 699
https://doi.org/10.1038/s41566-018-0256-7
121 Spano P. , Piazzolla S. , Tamburrini M. . Theory of noise in semiconductor lasers in the presence of optical feedback. IEEE J. Quantum Electron., 1984, 20(4): 350
https://doi.org/10.1109/JQE.1984.1072403
122 Savchenkov A. , Williams S. , Matsko A. . On stiffness of optical self-injection locking. Photonics, 2018, 5(4): 43
https://doi.org/10.3390/photonics5040043
123 R. Galiev R. , M. Kondratiev N. , E. Lobanov V. , B. Matsko A. , A. Bilenko I. . Mirror-assisted self-injection locking of a laser to a whispering-gallery-mode microresonator. Phys. Rev. Appl., 2021, 16(6): 064043
https://doi.org/10.1103/PhysRevApplied.16.064043
124 Corato-Zanarella M.Gil-Molina A.Ji X.C. Shin M.Mohanty A.Lipson M., Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths, Nat. Photonics (2022)
125 Cumis M. Siciliani de , Borri S. , Insero G. , Galli I. , Savchenkov A. , Eliyahu D. . et al.. Microcavity-stabilized quantum cascade laser. Laser Photon. Rev., 2016, 10: 153
https://doi.org/10.1002/lpor.201500214
126 Lim J. , A. Savchenkov A. , Dale E. , Liang W. , Eliyahu D. , Ilchenko V. , B. Matsko A. , Maleki L. , W. Wong C. . Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat. Commun., 2017, 8(1): 8
https://doi.org/10.1038/s41467-017-00021-9
127 Savchenkov A. , Matsko A. . Calcium fluoride whispering gallery mode optical resonator with reduced thermal sensitivity. J. Opt., 2018, 20(3): 035801
https://doi.org/10.1088/2040-8986/aaa6f9
128 Zhao Q. , O. Behunin R. , T. Rakich P. , Chauhan N. , Isichenko A. , Wang J. , Hoyt C. , Fertig C. , Lin M. , J. Blumenthal D. . Low-loss low thermo-optic coefficient Ta2O5 on crystal quartz planar optical waveguides. APL Photonics, 2020, 5(11): 116103
https://doi.org/10.1063/5.0024743
129 Fu M. , Zheng Y. , Li G. , Hu H. , Pu M. , K. Oxenløwe L. , H. Frandsen L. , Li X. , Guan X. . High-Q titanium dioxide micro-ring resonators for integrated nonlinear photonics. Opt. Express, 2020, 28(26): 39084
https://doi.org/10.1364/OE.404821
130 Hegeman I. , Dijkstra M. , B. Segerink F. , Lee W. , M. Garcia-Blanco S. . Development of low-loss TiO2 waveguides. Opt. Express, 2020, 28(5): 5982
https://doi.org/10.1364/OE.380793
131 He L. , F. Xiao Y. , Dong C. , Zhu J. , Gaddam V. , Yang L. . Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating. Appl. Phys. Lett., 2008, 93(20): 201102
https://doi.org/10.1063/1.3030986
132 Guha B. , Cardenas J. , Lipson M. . Athermal silicon microring resonators with titanium oxide cladding. Opt. Express, 2013, 21(22): 26557
https://doi.org/10.1364/OE.21.026557
133 S. Djordjevic S.Shang K.Guan B.T. S. Cheung S.Liao L.Basak J.F. Liu H.J. B. Yoo S., CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide, Opt. Express 21(12), 13958 (2013)
134 Qiu F. , M. Spring A. , Yokoyama S. . Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique. ACS Photonics, 2015, 2(3): 405
https://doi.org/10.1021/ph500450n
135 Ling J. , He Y. , Luo R. , Li M. , Liang H. , Lin Q. . Athermal lithium niobate microresonator. Opt. Express, 2020, 28(15): 21682
https://doi.org/10.1364/OE.398363
136 Yang Z. , Wang Z. , Zhang R. , Xu P. , Zhang W. , Kang Z. , Wang R. . Athermal chalcogenide microresonator cladded with polymer. IEEE Photonics J., 2022, 14(5): 1
https://doi.org/10.1109/JPHOT.2022.3203731
137 J. Wang T. , K. Chen P. , T. Li Y. , N. Sung A. . Athermal high-Q tantalum-pentoxide-based microresonators on silicon substrates. Opt. Laser Technol., 2021, 138: 106925
https://doi.org/10.1016/j.optlastec.2021.106925
138 Wang M. , J. Perez-Morelo D. , Aksyuk V. . Overcoming thermo-optical dynamics in broadband nanophotonic sensing. Microsyst. Nanoeng., 2021, 7(1): 52
https://doi.org/10.1038/s41378-021-00281-y
139 Levin Y. . Fluctuation–dissipation theorem for thermo-refractive noise. Phys. Lett. A, 2008, 372(12): 1941
https://doi.org/10.1016/j.physleta.2007.11.007
140 L. Gorodetsky M. , S. Grudinin I. . Fundamental thermal fluctuations in microspheres. J. Opt. Soc. Am. B, 2004, 21(4): 697
https://doi.org/10.1364/JOSAB.21.000697
141 Duan L. . General treatment of the thermal noises in optical fibers. Phys. Rev. A, 2012, 86(2): 023817
https://doi.org/10.1103/PhysRevA.86.023817
142 Huang G. , Lucas E. , Liu J. , S. Raja A. , Lihachev G. , L. Gorodetsky M. , J. Engelsen N. , J. Kippenberg T. . Thermorefractive noise in silicon−nitride microresonators. Phys. Rev. A, 2019, 99(6): 061801
https://doi.org/10.1103/PhysRevA.99.061801
143 I. Pavlov V.Y. Blinov I.P. Khatyrev N.M. Kondratiev N.A. Bilenko I., Numerical simulation of influence of the thermal and mechanical fluctuations in the coupling elements of microresonators, 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS) (2021), pp 1–4
144 Panuski C. , Englund D. , Hamerly R. . Fundamental thermal noise limits for optical microcavities. Phys. Rev. X, 2020, 10(4): 041046
https://doi.org/10.1103/PhysRevX.10.041046
145 Li B. , Jin W. , Wu L. , Chang L. , Wang H. , Shen B. , Yuan Z. , Feshali A. , Paniccia M. , J. Vahala K. , E. Bowers J. . Reaching fiber-laser coherence in integrated photonics. Opt. Lett., 2021, 46(20): 5201
https://doi.org/10.1364/OL.439720
146 Merkel B. , Repp D. , Reiserer A. . Laser stabilization to a cryogenic fiber ring resonator. Opt. Lett., 2021, 46(2): 444
https://doi.org/10.1364/OL.413847
147 Moille G. , Lu X. , Rao A. , Li Q. , A. Westly D. , Ranzani L. . et al.. Kerr-microresonator soliton frequency combs at cryogenic temperatures. Phys. Rev. Appl., 2019, 12: 034057
https://doi.org/10.1103/PhysRevApplied.12.034057
148 B. Matsko A. , A. Savchenkov A. , S. Ilchenko V. , Seidel D. , Maleki L. . Self-referenced stabilization of temperature of an optomechanical microresonator. Phys. Rev. A, 2011, 83(2): 021801
https://doi.org/10.1103/PhysRevA.83.021801
149 A. Savchenkov A. , B. Matsko A. , S. Ilchenko V. , Yu N. , Maleki L. . Whispering-gallery-mode resonators as frequency references (ii): Stabilization. J. Opt. Soc. Am. B, 2007, 24: 2988
https://doi.org/10.1364/JOSAB.24.002988
150 Lim J. , Liang W. , A. Savchenkov A. , B. Matsko A. , Maleki L. , W. Wong C. . Probing 10 µk stability and residual drifts in the cross-polarized dual-mode stabilization of single-crystal ultrahigh-Q optical resonators. Light Sci. Appl., 2019, 8(1): 1
https://doi.org/10.1038/s41377-018-0109-7
151 Zhao Q. , W. Harrington M. , Isichenko A. , Liu K. , O. Behunin R. , B. Papp S. , T. Rakich P. , W. Hoyt C. , Fertig C. , J. Blumenthal D. . Integrated reference cavity with dual-mode optical thermometry for frequency correction. Optica, 2021, 8(11): 1481
https://doi.org/10.1364/OPTICA.432194
152 Loh W. , Yegnanarayanan S. , O’Donnell F. , W. Juodawlkis P. . Ultra-narrow linewidth brillouin laser with nanokelvin temperature self-referencing. Optica, 2019, 6(2): 152
https://doi.org/10.1364/OPTICA.6.000152
153 Sun X. , Luo R. , C. Zhang X. , Lin Q. . Squeezing the fundamental temperature fluctuations of a high-Q microresonator. Phys. Rev. A, 2017, 95(2): 023822
https://doi.org/10.1103/PhysRevA.95.023822
154 E. Drake T. , R. Stone J. , C. Briles T. , B. Papp S. . Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photonics, 2020, 14(8): 480
https://doi.org/10.1038/s41566-020-0651-8
155 Lei F. , Ye Z. , Torres-Company V. . Thermal noise reduction in soliton microcombs via laser self-cooling. Opt. Lett., 2022, 47(3): 513
https://doi.org/10.1364/OL.447349
156 Ilchenko V. , L. Gorodetskii M. . Thermal nonlinear effects in optical whispering gallery microresonators. Laser Phys., 1992, 2: 1004
157 Liang W. , Eliyahu D. , S. Ilchenko V. , A. Savchenkov A. , B. Matsko A. , Seidel D. , Maleki L. . High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 2015, 6(1): 7957
https://doi.org/10.1038/ncomms8957
158 D. Ludlow A. , Huang X. , Notcutt M. , Zanon-Willette T. , M. Foreman S. , M. Boyd M. , Blatt S. , Ye J. . Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15. Opt. Lett., 2007, 32(6): 641
https://doi.org/10.1364/OL.32.000641
159 Zhao Y.Li Y.Wang Q.Meng F.Lin Y.Wang S., et al.., 100-Hz linewidth diode laser with external optical feedback, IEEE Photon. Technol. Lett. 24, 1795 (2012)
160 Zhao Y. , Wang Q. , Meng F. , Lin Y. , Wang S. , Li Y. , Lin B. , Cao S. , Cao J. , Fang Z. , Li T. , Zang E. . High-finesse cavity external optical feedback DFB laser with hertz relative linewidth. Opt. Lett., 2012, 37(22): 4729
https://doi.org/10.1364/OL.37.004729
161 Newman Z. , Maurice V. , Drake T. , Stone J. , Briles T. , Spencer D. , Fredrick C. , Li Q. , Westly D. , R. Ilic B. , Shen B. , G. Suh M. , Y. Yang K. , Johnson C. , M. S. Johnson D. , Hollberg L. , J. Vahala K. , Srinivasan K. , A. Diddams S. , Kitching J. , B. Papp S. , T. Hummon M. . Architecture for the photonic integration of an optical atomic clock. Optica, 2019, 6(5): 680
https://doi.org/10.1364/OPTICA.6.000680
162 Lewoczko-Adamczyk W. , Pyrlik C. , Hager J. , Schwertfeger S. , Wicht A. , Peters A. , Erbert G. , Tränkle G. . Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Pérot cavity. Opt. Express, 2015, 23(8): 9705
https://doi.org/10.1364/OE.23.009705
163 Christopher H.Arar B.Bawamia A.Kurbis C.Lewoczko-Adamczyk W.Schiemangk M., et al.., Narrow linewidth micro-integrated high power diode laser module for deployment in space, 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS) (IEEE) (2017), pp 150–153
164 Liang W.Liu Y., Compact sub-Hz linewidth laser enabled by self injection lock to a sub-mL FP cavity, arXiv: 2212.00426 (2022)
165 Favre F. , Guen D. . Spectral properties of a semiconductor laser coupled to a single mode fiber resonator. IEEE J. Quantum Electron., 1985, 21(12): 1937
https://doi.org/10.1109/JQE.1985.1072600
166 Hao L. , Wang X. , Guo D. , Jia K. , Fan P. , Guo J. , Ni X. , Zhao G. , Xie Z. , Zhu S. . Narrow-linewidth self-injection locked diode laser with a high-Q fiber Fabry–Pérot resonator. Opt. Lett., 2021, 46(6): 1397
https://doi.org/10.1364/OL.415859
167 Jia K. , Wang X. , Kwon D. , Wang J. , Tsao E. , Liu H. , Ni X. , Guo J. , Yang M. , Jiang X. , Kim J. , Zhu S. , Xie Z. , W. Huang S. . Photonic flywheel in a monolithic fiber resonator. Phys. Rev. Lett., 2020, 125(14): 143902
https://doi.org/10.1103/PhysRevLett.125.143902
168 Jia K.Yi X.Wang X.Liu Y.W. Huang S.Jiang X., et al.., Automated turnkey microcomb for low-noise microwave synthesis, arXiv: 2211.10031 (2022)
169 S. Voloshin A. , M. Kondratiev N. , V. Lihachev G. , Liu J. , E. Lobanov V. , Y. Dmitriev N. , Weng W. , J. Kippenberg T. , A. Bilenko I. . Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun., 2021, 12(1): 235
https://doi.org/10.1038/s41467-020-20196-y
170 Y. Dmitriev N. , N. Koptyaev S. , S. Voloshin A. , M. Kondratiev N. , N. Min’kov K. , E. Lobanov V. . et al.. Hybrid integrated dual-microcomb source. Phys. Rev. Appl., 2022, 18: 034068
https://doi.org/10.1103/PhysRevApplied.18.034068
171 Kondratiev N.Lobanov V.Dmitriev N.Cordette S.Bilenko I., Detailed analysis of ultimate soliton microcomb generation efficiency, arXiv: 2209.03707 (2022)
172 Lihachev G. , Weng W. , Liu J. , Chang L. , Guo J. , He J. , N. Wang R. , H. Anderson M. , Liu Y. , E. Bowers J. , J. Kippenberg T. . Platicon microcomb generation using laser self-injection locking. Nat. Commun., 2022, 13(1): 1771
https://doi.org/10.1038/s41467-022-29431-0
173 Lobanov V. , Lihachev G. , J. Kippenberg T. , Gorodetsky M. . Frequency combs and platicons in optical microresonators with normal GVD. Opt. Express, 2015, 23(6): 7713
https://doi.org/10.1364/OE.23.007713
174 E. Lobanov V. , M. Kondratiev N. , E. Shitikov A. , R. Galiev R. , A. Bilenko I. . Generation and dynamics of solitonic pulses due to pump amplitude modulation at normal group-velocity dispersion. Phys. Rev. A, 2019, 100(1): 013807
https://doi.org/10.1103/PhysRevA.100.013807
175 Xue X. , Xuan Y. , H. Wang P. , Liu Y. , E. Leaird D. , Qi M. . et al.. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev., 2015, 9: L23
https://doi.org/10.1002/lpor.201500107
176 E. Fomin A. , L. Gorodetsky M. , S. Grudinin I. , S. Ilchenko V. . Nonstationary nonlinear effects in optical microspheres. J. Opt. Soc. Am. B, 2005, 22(2): 459
https://doi.org/10.1364/JOSAB.22.000459
177 Carmon T. , Yang L. , J. Vahala K. . Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 2004, 12(20): 4742
https://doi.org/10.1364/OPEX.12.004742
178 Diallo S. , Lin G. , K. Chembo Y. . Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators. Opt. Lett., 2015, 40: 3834
https://doi.org/10.1364/OL.40.003834
179 Leshem A. , Qi Z. , F. Carruthers T. , R. Menyuk C. , Gat O. . Thermal instabilities, frequency-comb formation, and temporal oscillations in Kerr microresonators. Phys. Rev. A, 2021, 103(1): 013512
https://doi.org/10.1103/PhysRevA.103.013512
180 Herr T. , Brasch V. , D. Jost J. , Y. Wang C. , M. Kondratiev N. , L. Gorodetsky M. , J. Kippenberg T. . Temporal solitons in optical microresonators. Nat. Photonics, 2014, 8(2): 145
https://doi.org/10.1038/nphoton.2013.343
181 Bao C. , Xuan Y. , A. Jaramillo-Villegas J. , E. Leaird D. , Qi M. , M. Weiner A. . Direct soliton generation in microresonators. Opt. Lett., 2017, 42(13): 2519
https://doi.org/10.1364/OL.42.002519
182 E. Lobanov V. , M. Kondratiev N. , A. Bilenko I. . Thermally induced generation of platicons in optical microresonators. Opt. Lett., 2021, 46(10): 2380
https://doi.org/10.1364/OL.422988
183 M. Kondratiev N. , E. Lobanov V. . Modulational instability and frequency combs in whispering-gallery-mode microresonators with backscattering. Phys. Rev. A, 2020, 101: 013816
https://doi.org/10.1103/PhysRevA.101.013816
184 M. Kondratiev N. , E. Agafonova S. , S. Gorodnitskiy A. , S. Voloshin A. , E. Lobanov V. . Modification of the self-injection locking effect due to the microresonator nonlinearity. AIP Conf. Proc., 2020, 2241: 020021
https://doi.org/10.1063/5.0011461
185 M. Kondratiev N.R. Galiev R.E. Lobanov V., Thermal influence on laser self-injection locking to nonlinear microresonator, Eds. : M. Bertolotti, A. V. Zayats, and A. M. Zheltikov, Nonlinear Optics and Applications XII, International Society for Optics and Photonics (SPIE) (2021), Vol. 11770, 117700Q
186 E. Lobanov V. , V. Lihachev G. , G. Pavlov N. , V. Cherenkov A. , J. Kippenberg T. , L. Gorodetsky M. . Harmonization of chaos into a soliton in Kerr frequency combs. Opt. Express, 2016, 24(24): 27382
https://doi.org/10.1364/OE.24.027382
187 Guo H. , Karpov M. , Lucas E. , Kordts A. , H. P. Pfeiffer M. , Brasch V. , Lihachev G. , E. Lobanov V. , L. Gorodetsky M. , J. Kippenberg T. . Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 2017, 13(1): 94
https://doi.org/10.1038/nphys3893
188 Xiang C. , Liu J. , Guo J. , Chang L. , N. Wang R. , Weng W. , Peters J. , Xie W. , Zhang Z. , Riemensberger J. , Selvidge J. , J. Kippenberg T. , E. Bowers J. . Laser soliton microcombs heterogeneously integrated on silicon. Science, 2021, 373(6550): 99
https://doi.org/10.1126/science.abh2076
189 A. Chermoshentsev D. , E. Shitikov A. , A. Lonshakov E. , V. Grechko G. , A. Sazhina E. , M. Kondratiev N. , V. Masalov A. , A. Bilenko I. , I. Lvovsky A. , E. Ulanov A. . Dual-laser self-injection locking to an integrated microresonator. Opt. Express, 2022, 30(10): 17094
https://doi.org/10.1364/OE.454687
190 Liu J. , Lucas E. , S. Raja A. , He J. , Riemensberger J. , N. Wang R. , Karpov M. , Guo H. , Bouchand R. , J. Kippenberg T. . Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 2020, 14(8): 486
https://doi.org/10.1038/s41566-020-0617-x
191 H. Khan M. , Shen H. , Xuan Y. , Zhao L. , Xiao S. , E. Leaird D. , M. Weiner A. , Qi M. . Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photonics, 2010, 4(2): 117
https://doi.org/10.1038/nphoton.2009.266
192 Hu X. , Wang W. , Wang L. , Zhang W. , Wang Y. , Zhao W. . Numerical simulation and temporal characterization of dual-pumped microring-resonator-based optical frequency combs. Photon. Res., 2017, 5(3): 207
https://doi.org/10.1364/PRJ.5.000207
193 Wang W. , T. Chu S. , E. Little B. , Pasquazi A. , Wang Y. , Wang L. , Zhang W. , Wang L. , Hu X. , Wang G. , Hu H. , Su Y. , Li F. , Liu Y. , Zhao W. . Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci. Rep., 2016, 6(1): 28501
https://doi.org/10.1038/srep28501
194 Wen J. , Duan L. , Fan W. . Influences of pump power and high-order dispersion on dual-pumped silicon-on-insulator micro-ring resonator-based optical frequency combs. Mod. Phys. Lett. B, 2019, 33(10): 1950117
https://doi.org/10.1142/S0217984919501173
195 Wen J. , Duan L. , Ma C. , Fan W. . Numerical investigation of dual-pumped optical frequency combs based on silicon-on-insulator microring resonator. Microw. Opt. Technol. Lett., 2019, 61(11): 2640
https://doi.org/10.1002/mop.31939
196 Okawachi Y. , Yu M. , Luke K. , O. Carvalho D. , Ramelow S. , Farsi A. . et al.. Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator. Opt. Lett., 2015, 40: 5267
https://doi.org/10.1364/OL.40.005267
197 Okawachi Y. , Yu M. , Luke K. , O. Carvalho D. , Lipson M. , L. Gaeta A. . Quantum random number generator using a microresonator-based Kerr oscillator. Opt. Lett., 2016, 41: 4194
https://doi.org/10.1364/OL.41.004194
198 D. Vaidya V. , Morrison B. , G. Helt L. , Shahrokshahi R. , H. Mahler D. , J. Collins M. , Tan K. , Lavoie J. , Repingon A. , Menotti M. , Quesada N. , C. Pooser R. , E. Lita A. , Gerrits T. , W. Nam S. , Vernon Z. . Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv., 2020, 6(39): eaba9186
https://doi.org/10.1126/sciadv.aba9186
199 M. Arrazola J. , Bergholm V. , Bradler K. , R. Bromley T. , J. Collins M. , Dhand I. , Fumagalli A. , Gerrits T. , Goussev A. , G. Helt L. , Hundal J. , Isacsson T. , B. Israel R. , Izaac J. , Jahangiri S. , Janik R. , Killoran N. , P. Kumar S. , Lavoie J. , E. Lita A. , H. Mahler D. , Menotti M. , Morrison B. , W. Nam S. , Neuhaus L. , Y. Qi H. , Quesada N. , Repingon A. , K. Sabapathy K. , Schuld M. , Su D. , Swinarton J. , Száva A. , Tan K. , Tan P. , D. Vaidya V. , Vernon Z. , Zabaneh Z. , Zhang Y. . Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 2021, 591(7848): 54
https://doi.org/10.1038/s41586-021-03202-1
200 Zhao Y. , Okawachi Y. , K. Jang J. , Ji X. , Lipson M. , L. Gaeta A. . Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett., 2020, 124(19): 193601
https://doi.org/10.1103/PhysRevLett.124.193601
201 Okawachi Y. , Yu M. , K. Jang J. , Ji X. , Zhao Y. , Y. Kim B. , Lipson M. , L. Gaeta A. . Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass. Nat. Commun., 2020, 11(1): 4119
https://doi.org/10.1038/s41467-020-17919-6
202 Taheri H. , B. Matsko A. , Maleki L. , Sacha K. . All-optical dissipative discrete time crystals. Nat. Commun., 2022, 13(1): 848
https://doi.org/10.1038/s41467-022-28462-x
203 E. Shitikov A. , E. Lobanov V. , M. Kondratiev N. , S. Voloshin A. , A. Lonshakov E. , A. Bilenko I. . Self-injection locking of a gain-switched laser diode. Phys. Rev. Appl., 2021, 15(6): 064066
https://doi.org/10.1103/PhysRevApplied.15.064066
204 Shao S. , Li J. , Chen H , Yang S. , Chen M. . Gain-switched optical frequency comb source using a hybrid integrated self-injection locking DFB laser. IEEE Photon. J., 2022, 14: 1
https://doi.org/10.1109/JPHOT.2022.3141424
205 J. Kippenberg T. , L. Gaeta A. , Lipson M. , L. Gorodetsky M. . Dissipative Kerr solitons in optical microresonators. Science, 2018, 361(6402): eaan8083
https://doi.org/10.1126/science.aan8083
206 Li Q. , Davanço M. , Srinivasan K. . Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photonics, 2016, 10: 406
https://doi.org/10.1038/nphoton.2016.64
207 Gundavarapu S. , M. Brodnik G. , Puckett M. , Huffman T. , Bose D. , Behunin R. , Wu J. , Qiu T. , Pinho C. , Chauhan N. , Nohava J. , T. Rakich P. , D. Nelson K. , Salit M. , J. Blumenthal D. . Sub-Hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photonics, 2019, 13(1): 60
https://doi.org/10.1038/s41566-018-0313-2
208 Ji X. , Liu J. , He J. , N. Wang R. , Qiu Z. , Riemensberger J. , J. Kippenberg T. . Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun. Phys., 2022, 5(1): 1
https://doi.org/10.1038/s42005-022-00851-0
209 Ye Z. , Lei F. , Twayana K. , Girardi M. , A. Andrekson P. , Torres-Company V. . Integrated, ultra-compact high-Q silicon nitride microresonators for low-repetition-rate soliton microcombs. Laser Photon. Rev., 2021, 16(3): 2100147
https://doi.org/10.1002/lpor.202100147
210 Snigirev V.Riedhauser A.Lihachev G.Riemensberger J.N. Wang R.Moehl C., et al.., Ultrafast tunable lasers using lithium niobate integrated photonics, arXiv: 2112.02036 (2021)
211 Gondarenko A. , S. Levy J. , Lipson M. . High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express, 2009, 17(14): 11366
https://doi.org/10.1364/OE.17.011366
212 S. Levy J.Gondarenko A.A. Foster M.C. Turner-Foster A.L. Gaeta A.Lipson M., CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects, Nat. Photonics 4(1), 37 (2010)
213 Ji X. , A. S. Barbosa F. , P. Roberts S. , Dutt A. , Cardenas J. , Okawachi Y. , Bryant A. , L. Gaeta A. , Lipson M. . Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 2017, 4(6): 619
https://doi.org/10.1364/OPTICA.4.000619
214 Wu K. , W. Poon A. . Stress-released si3n4 fabrication process for dispersion-engineered integrated silicon photonics. Opt. Express, 2020, 28(12): 17708
https://doi.org/10.1364/OE.390171
215 Liu J. , Huang G. , N. Wang R. , He J. , S. Raja A. , Liu T. , J. Engelsen N. , J. Kippenberg T. . High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 2021, 12(1): 2236
https://doi.org/10.1038/s41467-021-21973-z
216 J. Moss D. , Morandotti R. , L. Gaeta A. , Lipson M. . New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 2013, 7(8): 597
https://doi.org/10.1038/nphoton.2013.183
217 Xiang C. , Jin W. , E. Bowers J. . Silicon nitride passive and active photonic integrated circuits: Trends and prospects. Photon. Res., 2022, 10(6): A82
https://doi.org/10.1364/PRJ.452936
218 H. Henry C. , F. Kazarinov R. , J. Lee H. , J. Orlowsky K. , E. Katz L. . Low loss Si3N4–SiO2 optical waveguides on Si. Appl. Opt., 1987, 26(13): 2621
https://doi.org/10.1364/AO.26.002621
219 Gyger F. , Liu J. , Yang F. , He J. , S. Raja A. , N. Wang R. , A. Bhave S. , J. Kippenberg T. , Thévenaz L. . Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides. Phys. Rev. Lett., 2020, 124(1): 013902
https://doi.org/10.1103/PhysRevLett.124.013902
220 Stern B. , Ji X. , Dutt A. , Lipson M. . Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett., 2017, 42(21): 4541
https://doi.org/10.1364/OL.42.004541
221 Fan Y. , van Rees A. , J. M. van der Slot P. , Mak J. , M. Oldenbeuving R. , Hoekman M. , Geskus D. , G. H. Roeloffzen C. , J. Boller K. . Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express, 2020, 28(15): 21713
https://doi.org/10.1364/OE.398906
222 Liu J. , S. Raja A. , Karpov M. , Ghadiani B. , H. P. Pfeiffer M. , Du B. , J. Engelsen N. , Guo H. , Zervas M. , J. Kippenberg T. . Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 2018, 5(10): 1347
https://doi.org/10.1364/OPTICA.5.001347
223 Brasch V. , Geiselmann M. , H. P. Pfeiffer M. , J. Kippenberg T. . Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express, 2016, 24: 29312
https://doi.org/10.1364/OE.24.029312
224 Li Q. , C. Briles T. , A. Westly D. , E. Drake T. , R. Stone J. , R. Ilic B. , A. Diddams S. , B. Papp S. , Srinivasan K. . Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 2017, 4(2): 193
https://doi.org/10.1364/OPTICA.4.000193
225 R. Stone J. , C. Briles T. , E. Drake T. , T. Spencer D. , R. Carlson D. , A. Diddams S. , B. Papp S. . Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett., 2018, 121(6): 063902
https://doi.org/10.1103/PhysRevLett.121.063902
226 Zhou H. , Geng Y. , Cui W. , W. Huang S. , Zhou Q. , Qiu K. , Wei Wong C. . Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 2019, 8(1): 50
https://doi.org/10.1038/s41377-019-0161-y
227 P. Yu S.Lucas E.Zang J.B. Papp S., A continuum of bright and dark-pulse states in a photonic-crystal resonator, Nat. Commun. 13(1), 3134 (2022)
228 Wang H. , Shen B. , Yu Y. , Yuan Z. , Bao C. , Jin W. , Chang L. , A. Leal M. , Feshali A. , Paniccia M. , E. Bowers J. , Vahala K. . Self-regulating soliton switching waves in microresonators. Phys. Rev. A, 2022, 106(5): 053508
https://doi.org/10.1103/PhysRevA.106.053508
229 Liu J. , Tian H. , Lucas E. , S. Raja A. , Lihachev G. , N. Wang R. , He J. , Liu T. , H. Anderson M. , Weng W. , A. Bhave S. , J. Kippenberg T. . Monolithic piezoelectric control of soliton microcombs. Nature, 2020, 583(7816): 385
https://doi.org/10.1038/s41586-020-2465-8
230 Xiang C. , Guo J. , Jin W. , Wu L. , Peters J. , Xie W. , Chang L. , Shen B. , Wang H. , F. Yang Q. , Kinghorn D. , Paniccia M. , J. Vahala K. , A. Morton P. , E. Bowers J. . High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun., 2021, 12(1): 6650
https://doi.org/10.1038/s41467-021-26804-9
231 Komljenovic T. , Davenport M. , Hulme J. , Y. Liu A. , T. Santis C. , Spott A. , Srinivasan S. , J. Stanton E. , Zhang C. , E. Bowers J. . Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol., 2016, 34(1): 20
https://doi.org/10.1109/JLT.2015.2465382
232 Park H. , Zhang C. , A. Tran M. , Komljenovic T. . Heterogeneous silicon nitride photonics. Optica, 2020, 7(4): 336
https://doi.org/10.1364/OPTICA.391809
233 Xiang C. , Jin W. , Guo J. , D. Peters J. , J. Kennedy M. , Selvidge J. . et al.. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 2020, 7: 20
https://doi.org/10.1364/OPTICA.384026
234 Joshi C. , K. Jang J. , Luke K. , Ji X. , A. Miller S. , Klenner A. . et al.. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett., 2016, 41: 2565
https://doi.org/10.1364/OL.41.002565
235 Xue X. , Xuan Y. , Wang C. , H. Wang P. , Liu Y. , Niu B. , E. Leaird D. , Qi M. , M. Weiner A. . Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt. Express, 2016, 24(1): 687
https://doi.org/10.1364/OE.24.000687
236 Liang G. , Huang H. , Mohanty A. , C. Shin M. , Ji X. , J. Carter M. , Shrestha S. , Lipson M. , Yu N. . Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photonics, 2021, 15(12): 908
https://doi.org/10.1038/s41566-021-00891-y
237 Arbabi A. , L. Goddard L. . Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances. Opt. Lett., 2013, 38(19): 3878
https://doi.org/10.1364/OL.38.003878
238 Komma J. , Schwarz C. , Hofmann G. , Heinert D. , Nawrodt R. . Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett., 2012, 101(4): 041905
https://doi.org/10.1063/1.4738989
239 Tian H. , Liu J. , Dong B. , C. Skehan J. , Zervas M. , J. Kippenberg T. , A. Bhave S. . Hybrid integrated photonics using bulk acoustic resonators. Nat. Commun., 2020, 11(1): 3073
https://doi.org/10.1038/s41467-020-16812-6
240 Huang M. . Stress effects on the performance of optical waveguides. Int. J. Solids Struct., 2003, 40(7): 1615
https://doi.org/10.1016/S0020-7683(03)00037-4
241 J. M. van der Slot P. , A. G. Porcel M. , J. Boller K. . Surface acoustic waves for acousto-optic modulation in buried silicon nitride waveguides. Opt. Express, 2019, 27(2): 1433
https://doi.org/10.1364/OE.27.001433
242 Hosseini N. , Dekker R. , Hoekman M. , Dekkers M. , Bos J. , Leinse A. , Heideman R. . Stress-optic modulator in TriPlex platform using a piezoelectric lead zirconate titanate (PZT) thin film. Opt. Express, 2015, 23(11): 14018
https://doi.org/10.1364/OE.23.014018
243 Alexander K. , P. George J. , Verbist J. , Neyts K. , Kuyken B. , Van Thourhout D. , Beeckman J. . Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun., 2018, 9(1): 3444
https://doi.org/10.1038/s41467-018-05846-6
244 Jin W. , G. Polcawich R. , A. Morton P. , E. Bowers J. . Piezoelectrically tuned silicon nitride ring resonator. Opt. Express, 2018, 26: 3174
https://doi.org/10.1364/OE.26.003174
245 H. Lai Y.E. Amili A.Eliyahu D.Moss R.Ganji S.Singer S., et al.., Ultra-narrow-linewidth lasers for quantum applications. Conference on Lasers and Electro-Optics (Optica Publishing Group) (2022), STu5O.2
246 Wunderer T.Siddharth A.M. Johnson N.L. Chua C.Teepe M.Yang Z., et al.., Low-noise hybrid photonic integrated violet and blue lasers for quantum applications, 2022 IEEE Research and Applications of Photonics in Defense Conference (RAPID) (2022), pp 1–2
247 Geng J. , Yang L. , Zhao S. , Zhang Y. . Resonant micro-optical gyro based on self-injection locking. Opt. Express, 2020, 28(22): 32907
https://doi.org/10.1364/OE.405974
248 Geng J. , Yang L. , Liang J. , Liu S. , Zhang Y. . Stability in self-injection locking of the DFB laser through a fiber optic resonator. Opt. Commun., 2022, 505: 127531
https://doi.org/10.1016/j.optcom.2021.127531
249 Zhang Y. , Geng J. , Li L. , Wang Y. , Yang L. . Exceptional-point-enhanced Brillouin micro-optical gyroscope based on self-injection locking. Opt. Commun., 2023, 528: 129008
https://doi.org/10.1016/j.optcom.2022.129008
250 Dale E.Liang W.Eliyahu D.Savchenkov A.Ilchenko V.B. Matsko A., et al.., Ultra-narrow line tunable semiconductor lasers for coherent lidar applications, Imaging and Applied Optics 2014 (Optical Society of America) (2014), JTu2C.3
251 A. Lopez-Mercado C. , A. Korobko D. , O. Zolotovskii I. , A. Fotiadi A. . Application of dual-frequency self-injection locked DFB laser for Brillouin optical time domain analysis. Sensors (Basel), 2021, 21(20): 6859
https://doi.org/10.3390/s21206859
252 Karim F. , F. Mitul A. , Zhou B. , Han M. . High-sensitivity demodulation of fiber-optic acoustic emission sensor using self-injection locked diode laser. IEEE Photonics J., 2022, 14(4): 1
https://doi.org/10.1109/JPHOT.2022.3192806
253 J. Blumenthal D., Integrated ultra-narrow linewidth stabilized SBS lasers. Optical Fiber Communication Conference (OFC) 2022 (Optica Publishing Group) (2022), Tu3D. 1
254 H. Lai Y.Love S.Savchenkov A.Eliyahu D.Moss R.Maleki L., 871 nm ultra-narrow-linewidth laser for Yb+ clock, Conference on Lasers and Electro-Optics (Optica Publishing Group) (2021), SF2P. 3
255 Amin R.Greenberg J.Heffernan B.Nagatsuma T.Rolland A., Exceeding octave tunable terahertz waves with zepto-second level timing noise, arXiv: 2207.07750 (2022)
256 Amin R.Greenberg J.M. Heffernan B.Rolland A., 0.5 THz wave based on two wavelength difference beat with self-injected diode lasers, 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (2022), pp 1–2
257 J. Kippenberg T. , Holzwarth R. , A. Diddams S. . Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555
https://doi.org/10.1126/science.1193968
258 Pasquazi A. , Peccianti M. , Razzari L. , J. Moss D. , Coen S. , Erkintalo M. , K. Chembo Y. , Hansson T. , Wabnitz S. , Del’Haye P. , Xue X. , M. Weiner A. , Morandotti R. . Micro-combs: A novel generation of optical sources. Phys. Rep., 2018, 729: 1
https://doi.org/10.1016/j.physrep.2017.08.004
259 Papp S. , Beha K. , Del’Haye P. , Quinlan F. , Lee H. , Vahala K. , A. Diddams S. . Microresonator frequency comb optical clock. Optica, 2014, 1(1): 10
https://doi.org/10.1364/OPTICA.1.000010
260 G. Suh M. , F. Yang Q. , Yang K. , Yi X. , Vahala K. . Microresonator soliton dual-comb spectroscopy. Science, 2016, 354(6312): 600
https://doi.org/10.1126/science.aah6516
261 F. Yang Q. , Shen B. , Wang H. , Tran M. , Zhang Z. , Y. Yang K. , Wu L. , Bao C. , Bowers J. , Yariv A. , Vahala K. . Vernier spectrometer using counterpropagating soliton microcombs. Science, 2019, 363(6430): 965
https://doi.org/10.1126/science.aaw2317
262 G. Suh M. , J. Vahala K. . Soliton microcomb range measurement. Science, 2018, 359(6378): 884
https://doi.org/10.1126/science.aao1968
263 Trocha P. , Karpov M. , Ganin D. , H. P. Pfeiffer M. , Kordts A. , Wolf S. , Krockenberger J. , Marin-Palomo P. , Weimann C. , Randel S. , Freude W. , J. Kippenberg T. , Koos C. . Ultrafast optical ranging using microresonator soliton frequency combs. Science, 2018, 359(6378): 887
https://doi.org/10.1126/science.aao3924
264 G. Suh M. , Yi X. , H. Lai Y. , Leifer S. , S. Grudinin I. , Vasisht G. , C. Martin E. , P. Fitzgerald M. , Doppmann G. , Wang J. , Mawet D. , B. Papp S. , A. Diddams S. , Beichman C. , Vahala K. . Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 2019, 13(1): 25
https://doi.org/10.1038/s41566-018-0312-3
265 Obrzud E.Rainer M.Harutyunyan A.H. Anderson M.Liu J.Geiselmann M.Chazelas B.Kundermann S.Lecomte S.Cecconi M.Ghedina A.Molinari E.Pepe F.Wildi F.Bouchy F.J. Kippenberg T.Herr T., A microphotonic astrocomb, Nat. Photonics 13(1), 31 (2019)
266 Marin-Palomo P. , N. Kemal J. , Karpov M. , Kordts A. , Pfeifle J. , H. P. Pfeiffer M. , Trocha P. , Wolf S. , Brasch V. , H. Anderson M. , Rosenberger R. , Vijayan K. , Freude W. , J. Kippenberg T. , Koos C. . Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546(7657): 274
https://doi.org/10.1038/nature22387
267 Fölöp A. , Mazur M. , Lorences-Riesgo A. , Helgason Ó. , H. Wang P. , Xuan Y. . et al.. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 2018, 9(1): 1598
https://doi.org/10.1038/s41467-018-04046-6
268 B. Helgason Ó. , Fülöp A. , Schröder J. , A. Andrekson P. , M. Weiner A. , Torres-Company V. . Superchannel engineering of microcombs for optical communications. J. Opt. Soc. Am. B, 2019, 36(8): 2013
https://doi.org/10.1364/JOSAB.36.002013
269 Y. Kim B. , Okawachi Y. , K. Jang J. , Yu M. , Ji X. , Zhao Y. , Joshi C. , Lipson M. , L. Gaeta A. . Turnkey, high-efficiency Kerr comb source. Opt. Lett., 2019, 44(18): 4475
https://doi.org/10.1364/OL.44.004475
270 Liu H. , W. Huang S. , Wang W. , Yang J. , Yu M. , L. Kwong D. , Colman P. , W. Wong C. . Stimulated generation of deterministic platicon frequency microcombs. Photon. Res., 2022, 10(8): 1877
https://doi.org/10.1364/PRJ.459403
271 Ling J.Staffa J.Wang H.Shen B.Chang L.A. Javid U., et al.., Self-injection-locked second-harmonic integrated source, arXiv: 2207.03071 (2022)
272 W. Bruch A. , Liu X. , Gong Z. , B. Surya J. , Li M. , L. Zou C. , X. Tang H. . Pockels soliton microcomb. Nat. Photonics, 2021, 15(1): 21
https://doi.org/10.1038/s41566-020-00704-8
273 Liu X. , Gong Z. , W. Bruch A. , B. Surya J. , Lu J. , X. Tang H. . Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun., 2021, 12(1): 5428
https://doi.org/10.1038/s41467-021-25751-9
274 Jung H. , P. Yu S. , R. Carlson D. , E. Drake T. , C. Briles T. , B. Papp S. . Tantala Kerr nonlinear integrated photonics. Optica, 2021, 8(6): 811
https://doi.org/10.1364/OPTICA.411968
275 J. Wilson D. , Schneider K. , Honl S. , Anderson M. , Baumgartner Y. , Czornomaz L. , J. Kippenberg T. , Seidler P. . Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 2020, 14(1): 57
https://doi.org/10.1038/s41566-019-0537-9
276 Pu M. , Ottaviano L. , Semenova E. , Yvind K. . Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 2016, 3(8): 823
https://doi.org/10.1364/OPTICA.3.000823
277 Chang L. , Xie W. , Shu H. , F. Yang Q. , Shen B. , Boes A. , D. Peters J. , Jin W. , Xiang C. , Liu S. , Moille G. , P. Yu S. , Wang X. , Srinivasan K. , B. Papp S. , Vahala K. , E. Bowers J. . Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 2020, 11(1): 1331
https://doi.org/10.1038/s41467-020-15005-5
278 A. Guidry M. , M. Lukin D. , Y. Yang K. , Trivedi R. , Vučković J. . Quantum optics of soliton microcombs. Nat. Photonics, 2022, 16(1): 52
https://doi.org/10.1038/s41566-021-00901-z
279 Wang C. , Li J. , Yi A. , Fang Z. , Zhou L. , Wang Z. , Niu R. , Chen Y. , Zhang J. , Cheng Y. , Liu J. , H. Dong C. , Ou X. . Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform. Light Sci. Appl., 2022, 11(1): 341
https://doi.org/10.1038/s41377-022-01042-w
280 Xia D. , Yang Z. , Zeng P. , Zhang B. , Wu J. , Wang Z. , Zhao J. , Huang J. , Luo L. , Liu D. , Yang S. , Guo H. , Li Z. . Integrated chalcogenide photonics for microresonator soliton combs. Laser Photon. Rev., 2022, 2200219
https://doi.org/10.1002/lpor.202200219
281 Xue X. , Zheng X. , Zhou B. . Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photonics, 2019, 13(9): 616
https://doi.org/10.1038/s41566-019-0436-0
282 M. C. Boggio J. , Bodenmuller D. , Ahmed S. , Wabnitz S. , Modotto D. , Hansson T. . Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling. Nat. Commun., 2022, 13(1): 1292
https://doi.org/10.1038/s41467-022-28927-z
283 B. Helgason O.Girardi M.Ye Z.Lei F.Schröder J.T. Company V., Power-efficient soliton microcombs, arXiv: 2202.09410 (2022)
[1] Lu Bo, Xiao-Fei Liu, Chuan Wang, Tie-Jun Wang. Spinning microresonator-induced chiral optical transmission[J]. Front. Phys. , 2023, 18(1): 12305-.
[2] Ling-Juan Feng, Li Yan, Shang-Qing Gong. Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities[J]. Front. Phys. , 2023, 18(1): 12304-.
[3] Cui Kong, Jibing Liu, Hao Xiong. Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect[J]. Front. Phys. , 2023, 18(1): 12501-.
[4] Jiu Liu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Logic Bell state concentration with parity check measurement[J]. Front. Phys. , 2019, 14(2): 21601-.
[5] Ye LIU(刘晔), Fei QIN(秦飞), Fei ZHOU(周飞), Qing-bo MENG(孟庆波), Dao-zhong ZHANG (张道中), Zhi-yuan LI (李志远), . Ultrafast optical switching in Kerr nonlinear photonic crystals[J]. Front. Phys. , 2010, 5(3): 220-244.
[6] Bin GUO (郭彬), Hua GUAN (管桦), Qu LIU (刘曲), Yao HUANG (黄垚), Wan-cheng QU (屈万成), Xue-ren HUANG (黄学人), Ke-lin GAO (高克林). Preliminary frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+ ion[J]. Front. Phys. , 2009, 4(2): 144-154.
[7] NIU Yue-ping, QIAN Jun, FENG Xun-li, GONG Shang-qing. Enhancement of Kerr nonlinearity and its application to entangled state discrimination[J]. Front. Phys. , 2007, 2(4): 403-409.
[8] GONG Qi-huang, HU Xiao-yong. Ultrafast photonic crystal optical switching[J]. Front. Phys. , 2006, 1(2): 171-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed