Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 53601    https://doi.org/10.1007/s11467-023-1272-8
VIEW & PERSPECTIVE
Moisture influence in emerging neuromorphic device
Wenhua Wang, Guangdong Zhou()
College of Artificial Intelligence, Southwest University, Chongqing 400715, China
 Download: PDF(5114 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Conduction filament formation, redox reaction, and mobile ion migration in solid electrolytes underpin the memristive devices, all of which are partially influenced or fully dominated by the moisture. The moisture-based physical-chemistry mechanism provides an electric tunable method to create enough dissociate conductance states for neuromorphic computing, but overconcentration moisture will corrode electrode and then causes device invalidation. This perspective goal is that surveys the moisture-dependency of dynamic at interfaces or/and switching function layer, clarifies the bottlenecks that the memristive device facing in terms of water molecule-related reaction, and gives the possible solutions.

Keywords memristor      moisture      redox reaction      oxide      interface engineering     
Corresponding Author(s): Guangdong Zhou   
Issue Date: 26 April 2023
 Cite this article:   
Wenhua Wang,Guangdong Zhou. Moisture influence in emerging neuromorphic device[J]. Front. Phys. , 2023, 18(5): 53601.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1272-8
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/53601
Fig.1  (a) Schematic diagram of the reaction of water molecules with oxygen vacancies at the surface and interface [35]. Copyright ? 2018, Wiley. (b) Schematic diagram of the distribution of surface oxygen vacancies (Vosur) and subsurface oxygen vacancies (Vosub) in oxides [39]. Copyright ? 2014, American Physical Society. (c) The reaction of water molecules with nanostructures leading to a decrease in electron concentration [33]. Copyright ? 2020, Nano Energy. (d) Switching of water molecules to modulate the valence state change of M under UV light. Mx+, My+ and H+ are represented by blue, cyan and white balls, top and bottom electrodes are represented by yellow and gray balls, respectively. a.u., arbitrary units [41]. Copyright ? 2019, Springer Nature.
Fig.2  (a) Schematic diagram of redox reactions in electrochemical metallization memories forming conductive paths. Mx+ and M are represented by cyan and blue balls, top and bottom electrodes are represented by blue and yellow balls, respectively. a.u., arbitrary units [27, 43]. Copyright ? 2021 and 2013, ACS Publications. (b) The evolution of the memristor from capacitive to memristor state [33]. Copyright ? 2020, Nano Energy. (c) Water molecules induce oxidation and reduction peaks in the memristor. (d) The time evolution of the discharge current after SET and RESET operation is shown. Inset: simplified equivalent circuit model of a ReRAM device [46, 48]. Copyright ? 2013, Springer Nature & Copyright ? 2022, Cell Press.
Fig.3  Schematic diagram of the role of moisture for memristor applications [31, 39, 49, 55, 56]. Moisture induced memristor evolution stage. Copyright ? 2020, Nano Energy; The water-based reaction in chip packaging. Copyright ? 2021, ACS publications; Effect of moisture on memristor in logic operations. Copyright ? 2019, the Royal Society of Chemistry; Water molecule assisted neuromorphic vision sensor system. Copyright ? 2019, Springer Nature; Preparation of self-powered memristor using the influence of water molecules. Copyright ? 2019, Nano Energy.
Fig.4  Issues, suggested measures and investigation of water molecules in memristor.
1 R. Wang Z.Li C.H. Song W.Y. Rao M.Belkin D.N. Li Y.Yan P.Jiang H.Lin P.Hu M.P. Strachan J.Ge N.Barnell M.Wu Q.G. Bartos A.R. Qiu Q.S. Williams R.F. Xia Q.J. Yang J., Reinforcement learning with analogue memristor arrays, Nat. Electron. 459(2036), 2 (3), 115 (2019)
2 F. Pei Y. , Q. Li Z. , Li B. , Zhao Y. , He H. , Yan L. , Y. Li X. , J. Wang J. , Zhao Z. , Sun Y. , Y. Zhou Z. , H. Zhao J. , Guo R. , S. Chen J. , B. Yan X. . A multifunctional and efficient artificial visual perception nervous system with Sb2Se3/CdS‐Core/Shell (SC) nanorod arrays optoelectronic memristor. Adv. Funct. Mater., 2022, 32(29): 2203454
https://doi.org/10.1002/adfm.202203454
3 C. Zhou Z. , Y. Yang F. , Wang S. , Wang L. , F. Wang X. , Wang C. , Xie Y. , Liu Q. . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
https://doi.org/10.1007/s11467-021-1114-5
4 J. Wan C. , Chen G. , M. Fu Y. , Wang M. , Matsuhisa N. , W. Pan S. , Pan L. , Yang H. , Wan Q. , Q. Zhu L. , D. Chen X. . An artificial sensory neuron with tactile perceptual learning. Adv. Mater., 2018, 30(30): 1801291
https://doi.org/10.1002/adma.201801291
5 Liu X. , Zheng J. , Wang D. , Musavigharavi P. , A. Stach E. , III Olsson R. , Jariwala D. . Aluminum scandium nitride-based metal-ferroelectric-metal diode memory devices with high on/off ratios. Appl. Phys. Lett., 2021, 118(20): 202901
https://doi.org/10.1063/5.0051940
6 B. Ji S.J. Wan C.Wang T.S. Li Q.Chen G.W. Wang J.Y. Liu Z.Yang H.J. Liu X.D. Chen X., Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring, Adv. Mater. 32, 2001496 (26) (2020)
7 A. He N. , M. Sun Y. , Z. Wen D. . Synaptic behavior of Ni-Co layered double hydroxide-based memristor. Appl. Phys. Lett., 2021, 118(17): 173503
https://doi.org/10.1063/5.0049349
8 W. Ke S. , Jiang L. , F. Zhao Y. , Y. Xiao Y. , Jiang B. , Cheng G. , C. Wu F. , S. Cao G. , H. Peng Z. , Zhu M. , Ye C. . Brain-like synaptic memristor based on lithiumdoped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508
https://doi.org/10.1007/s11467-022-1173-2
9 D. Zhou G. , D. Yang X. , H. Xiao L. , Sun B. , K. Zhou A. . Investigation of a submerging redox behavior in Fe2O3 solid electrolyte for resistive switching memory. Appl. Phys. Lett., 2006, 96(11): 110404
https://doi.org/10.1007/s11467-022-1173-2
10 Lee S. , T. Lee Y. , G. Park S. , H. Lee K. , W. Kim S. , K. Hwang D. , Lee K. . Dimensional crossover transport induced by substitutional atomic doping in SnSe2. Adv. Electron. Mater., 2018, 4(4): 1700563
https://doi.org/10.1002/aelm.201700563
11 Gao B. , F. Kang J. , F. Liu L. , Y. Liu X. , Yu B. . A physical model for bipolar oxide-based resistive switching memory based on ion-transport-recombination effect. Appl. Phys. Lett., 2011, 98(23): 232108
https://doi.org/10.1063/1.3599490
12 D. Zhou G. , Wang Z. , Sun B. , Zhou F. , Sun L. , Zhao H. , Hu X. , Peng X. , Yan J. , Wang H. , Wang W. , Li J. , Yan B. , Kuang D. , Wang Y. , Wang L. , Duan S. . Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Electron. Mater., 2022, 8(7): 2101127
https://doi.org/10.1002/aelm.202101127
13 Valov I. , N. Kozicki M. . Cation-based resistance change memory. J. Phys. D, 2013, 46(7): 074005
https://doi.org/10.1088/0022-3727/46/7/074005
14 Goux L. , Valov I. . Electrochemical processes and device improvement in conductive bridge RAM cells. Phys. Status Solidi. A, 2016, 213(2): 274
https://doi.org/10.1002/pssa.201532813
15 Messerschmitt F. , Jansen M. , Rupp J. . When memristance crosses the path with Humidity sensing — About the importance of protons and its opportunities in valence change memristors. Adv. Electron. Mater., 2018, 4: 1800282
https://doi.org/10.1002/aelm.201800282
16 N. Du L. , C. Wang Z. , Z. Zhao G. . Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17(2): 23602
https://doi.org/10.1007/s11467-022-1152-7
17 Matsuhisa N. , Jiang Y. , Y. Liu Z. , Chen G. , J. Wan C. , Kim Y. , Kang J. , Tran H. , C. Wu H. , You I. , A. Bao Z. , D. Chen X. . High-transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv. Electron. Mater., 2019, 5(8): 1900347
https://doi.org/10.1002/aelm.201900347
18 M. Sun Y. , Z. Wen D. . Logic function and random number generator build based on perovskite resistive switching memory and performance conversion via flexible bending. ACS Appl. Electron. Mater., 2018, 112: 102905
https://doi.org/10.1021/acsaelm.9b00836
19 D. Luo Z. , Apachitei G. , M. Yang M. , J. P. Peters J. , M. Sanchez A. , Alexe M. . Bi-ferroic memristive properties of multiferroic tunnel junctions. Appl. Phys. Lett., 2020, 2: 618
https://doi.org/10.1063/1.5023877
20 Zhu S. , Sun B. , D. Zhou G. , Guo T. , Ke C. , Chen Y. , Yang F. , Zhang Y. , Shao J. , Zhao Y. . In-depth physical mechanism analysis and wearable applications of HfOx-based flexible memristors. ACS Appl. Mater. Interfaces, 2023, 15(4): 5420
https://doi.org/10.1021/acsami.2c16569
21 R. Wang Z. , Rao M. , W. Han J. , M. Zhang J. , Lin P. , Li Y. , Li C. , Song W. , Asapu S. , Midya R. , Zhuo Y. , Jiang H. , H. Yoon J. , K. Upadhyay N. , Joshi S. , Hu M. , P. Strachan J. , Barnell M. , Wu Q. , Wu H. , Qiu Q. , S. Williams R. , Xia Q. , J. Yang J. . Capacitive neural network with neurotransistors. Nat. Commun., 2018, 9(1): 3208
https://doi.org/10.1038/s41467-018-05677-5
22 D. Zhou G. , G. Wu J. , D. Wang L. , Sun B. , J. Ren Z. , Y. Xu C. , Q. Yao Y. , P. Liao L. , Wang G. , H. Zheng S. , Mazumder P. , K. Duan S. , L. Song Q. . Evolution map of the memristor: From pure capacitive state to resistive switching state. Nanoscale, 2019, 11(37): 17222
https://doi.org/10.1039/C9NR05550A
23 C. Zhou Z.Y. Yang F.Wang S.Wang L.F. Wang X.Wang C.Xie Y.Liu Q., Emerging of two-dimensional materials in novel memristor, Front. Phys. 17(2), 14, 23204 (2022)
24 B. Yan X. , D. He H. , J. Liu G. , Zhao Z. , F. Pei Y. , Liu P. , H. Zhao J. , Y. Zhou Z. , Y. Wang K. , W. Yan H. . A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3−CeO2 films on silicon. Adv. Mater., 2022, 34(23): 2110343
https://doi.org/10.1002/adma.202110343
25 D. Zhou G. , Sun B. , Hu X. , Sun L. , Zou Z. , Xiao B. , Qiu W. , Wu B. , Li J. , Han J. , Liao L. , Xu C. , Xiao G. , Xiao L. , Cheng J. , Zheng S. , Wang L. , Song Q. , Duan S. . Negative photoconductance effect: An extension function of the TiOx‐based memristor. Adv. Sci. (Weinh.), 2021, 8(13): 2003765
https://doi.org/10.1002/advs.202003765
26 R. Wang Z. , Joshi S. , Savel’ev S. , H. Song W. , Midya R. , N. Li Y. , Y. Rao M. , Yan P. , Asapu S. , Zhuo Y. , Jiang H. , Lin P. , Li C. , H. Yoon J. , K. Upadhyay N. , Zhang J. , Hu M. , P. Strachan J. , Barnell M. , Wu Q. , Wu H. , S. Williams R. , Xia Q. , J. Yang J. . Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron., 2018, 1(2): 137
https://doi.org/10.1038/s41928-018-0023-2
27 Hu X. , Wang W. , Sun B. , Wang Y. , Li J. , Zhou G. . Refining the negative differential resistance effect in a TiOx-based memristor. J. Phys. Chem. Lett., 2021, 12(22): 5377
https://doi.org/10.1021/acs.jpclett.1c01420
28 Wang W. , D. Zhou G. , Wang Y. , Sun B. , Zhou M. , Fang C. , Xu C. , Don J. , Wang F. , Duan S. , L. Song Q. . An analogue memristor made of silk fibroin polymer. J. Mater. Chem. C, 2021, 9(41): 14583
https://doi.org/10.1039/D1TC03315H
29 Valov I. , Tsuruoka T. . Effects of moisture and redox reactions in VCM and ECM resistive switching memories. J. Phys. D, 2018, 51(41): 413001
https://doi.org/10.1088/1361-6463/aad581
30 V. Valov A. , V. Golovin S. , V. Shcherbakov V. , S. Kuznetsov D. . Thermoporoelastic model for the cement sheath failure in a cased and cemented wellbore. J. Petrol. Sci. Eng., 2022, 210: 109916
https://doi.org/10.1016/j.petrol.2021.109916
31 T. Guo, J. Ge, Y. Jiao, Y. Teng, B. Sun, W. Huang, H. Asgarimoghaddam, K. P. Musselman, Y. Fang, Y. N. Zhou, and Y. A. Wu, Intelligent matter endows reconfigurable temperature and humidity sensations for in-sensor computing, Mater. Horiz., doi: (2023)
32 Sun B. , Chen Y. , Xiao M. , Zhou G. , Ranjan S. , Hou W. , Zhu X. , Zhao Y. , A. T. Redfern S. , N. Zhou Y. . A unified capacitive-coupled memristive model for the nonpinched current-voltage hysteresis loop. Nano Lett., 2019, 19(9): 6461
https://doi.org/10.1021/acs.nanolett.9b02683
33 D. Zhou G. , Ren Z. , Sun B. , Wu J. , Zou Z. , Zheng S. , Wang L. , Duan S. , Song Q. . Capacitive effect: An original of the resistive switching memory. Nano Energy, 2020, 68: 104386
https://doi.org/10.1016/j.nanoen.2019.104386
34 Messerschmitt F. , Kubicek M. , L. M. Rupp J. . How does moisture affect the physical property of memristance for anionic-electronic resistive switching memories. Adv. Funct. Mater., 2015, 25(32): 5117
https://doi.org/10.1002/adfm.201501517
35 Zhou G. , Duan S. , Li P. , Sun B. , Wu B. , Yao Y. , Yang X. , Han J. , Wu J. , Wang G. , Liao L. , Lin C. , Hu W. , Xu C. , Liu D. , Chen T. , Chen L. , Zhou A. , Song Q. . Coexistence of negative differential resistance and resistive switching memory at room temperature in TiOx modulated by moisture. Adv. Electron. Mater., 2018, 4(4): 1700567
https://doi.org/10.1002/aelm.201700567
36 Tsuruoka T. , Valov I. , Tappertzhofen S. , van den Hurk J. , Hasegawa T. , Waser R. , Aono M. , reactions at Cu Redox . Ag/Ta2O5 interfaces and the effects of Ta2O5 film density on the forming process in atomic switch structures. Adv. Funct. Mater., 2015, 25(40): 6374
https://doi.org/10.1002/adfm.201500853
37 Milano G. , Luebben M. , Laurenti M. , Boarino L. , Ricciardi C. , Valov I. . Structure-dependent influence of moisture on resistive switching behavior of ZnO thin Films. Adv. Mater. Interfaces, 2021, 8(16): 2100915
https://doi.org/10.1002/admi.202100915
38 Lübben M. , Wiefels S. , Waser R. , Valov I. . Processes and effects of oxygen and moisture in resistively switching TaOx and HfOx. Adv. Electron. Mater., 2018, 4(1): 1700458
https://doi.org/10.1002/aelm.201700458
39 Li Y. , Gao Y. . Interplay between water and TiO2 anatase (101) surface with subsurface oxygen vacancy. Phys. Rev. Lett., 2014, 112(20): 206101
https://doi.org/10.1103/PhysRevLett.112.206101
40 Lübben M. , Menzel S. , G. Park S. , Yang M. , Waser R. , Valov I. . Set kinetics of electrochemical metallization cells: Influence of counter-electrodes in SiO2/Ag based systems. Nanotechnology, 2017, 28(13): 135205
https://doi.org/10.1088/1361-6528/aa5e59
41 Zhou F. , Zhou Z. , Chen J. , H. Choy T. , Wang J. , Zhang N. , Lin Z. , Yu S. , Kang J. , P. Wong H. , Chai Y. . Optoelectronic resistive random-access memory for neuromorphic vision sensors. Nat. Nanotechnol., 2019, 14(8): 776
https://doi.org/10.1038/s41565-019-0501-3
42 F. Liu Y. , Yobas L. . Microfluidic emulsification through a monolithic integrated glass micronozzle suspended inside a flow-focusing geometry. Appl. Phys. Lett., 2015, 106(17): 174101
https://doi.org/10.1063/1.4919444
43 Tappertzhofen S. , Valov I. , Tsuruoka T. , Hasegawa T. , Waser R. , Aono M. . Generic relevance of counter charges for cation-based nanoscale resistive switching memories. ACS Nano, 2013, 7(7): 6396
https://doi.org/10.1021/nn4026614
44 Tsuruoka T. , Terabe K. , Hasegawa T. , Valov I. , Waser R. , Aono M. . Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater., 2012, 22(1): 70
https://doi.org/10.1002/adfm.201101846
45 D. Pickett M. , Medeiros-Ribeiro G. , S. Williams R. . A scalable neuristor built with Mott memristors. Nat. Mater., 2013, 12(2): 114
https://doi.org/10.1038/nmat3510
46 Valov I. , Linn E. , Tappertzhofen S. , Schmelzer S. , van den Hurk J. , Lentz F. , Waser R. . Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun., 2013, 4(1): 1771
https://doi.org/10.1038/ncomms2784
47 Valov I. , Waser R. , R. Jameson J. , N. Kozicki M. . Electrochemical metallization memories-fundamentals, applications, prospects. Nanotechnology, 2011, 22(25): 254003
https://doi.org/10.1088/0957-4484/22/25/254003
48 D. Zhou G. , Ji X. , Li J. , Zhou F. , Dong Z. , Yan B. , Sun B. , Wang W. , Hu X. , Song Q. , Wang L. , Duan S. . Second-order associative memory circuit hardware implemented by the evolution from battery-like capacitance to resistive switching memory. iScience, 2022, 25(10): 105240
https://doi.org/10.1016/j.isci.2022.105240
49 Hong X. , Hoffman J. , Posadas A. , Zou K. , H. Ahn C. , Zhu J. . Unusual resistance hysteresis in n-layer graphene field effect transistors fabricated on ferroelectric Pb(Zr0.2Ti0.8)O3. Appl. Phys. Lett., 2010, 97(3): 033114
https://doi.org/10.1063/1.3467450
50 Guo Z. , D. Guan Y. , Luo Q. , M. Hong J. , You L. . Ferroelectric-nanocrack switches for memory and complementary logic with zero off-current and low operating voltage. Adv. Electron. Mater., 2021, 7(6): 2100023
https://doi.org/10.1002/aelm.202100023
51 Kang Q. , Wang C. , Zhou S. , Li G. , Lu T. , Tian Y. , He P. . Low-temperature co-hydroxylated Cu/SiO2 hybrid bonding strategy for a memory-centric chip architecture. ACS Appl. Mater. Interfaces, 2021, 13(32): 38866
https://doi.org/10.1021/acsami.1c09796
52 Pedisius N. , Praspaliauskas M. , Pedisius J. , Dzenajaviciene E. . Analysis of wood chip characteristics for energy production in lithuania. Energies, 2021, 14(13): 3931
https://doi.org/10.3390/en14133931
53 Hu M. , E. Graves C. , Li C. , Li Y. , Ge N. , Montgomery E. , Davila N. , Jiang H. , S. Williams R. , J. Yang J. , Xia Q. , P. Strachan J. . Memristor-based analog computation and neural network classification with a dot product engine. Adv. Mater., 2018, 30(9): 1705914
https://doi.org/10.1002/adma.201705914
54 J. Jr Ellsworth M. , F. Goth G. , J. Zoodsma R. , Arvelo A. , A. Campbell L. , J. Anderl W. . An overview of the IBM power 775 supercomputer water cooling system. J. Electron. Packag., 2012, 134(2): 020906
https://doi.org/10.1115/1.4006140
55 Milano G. , Miranda E. , Fretto M. , Valov I. , Ricciardi C. . Experimental and modeling study of metal-insulator interfaces to control the electronic transport in single nanowire memristive devices. ACS Appl. Mater. Interfaces, 2022, 14(47): 53027
https://doi.org/10.1021/acsami.2c11022
56 C. Akgun O. , Nanbakhsh K. , Giagka V. , A. Serdijn W. . A chip integrity monitor for evaluating moisture/ion ingress in mm-sized single-chip implants. IEEE Trans. Biomed. Circuits Syst., 2020, 14(4): 658
https://doi.org/10.1109/TBCAS.2020.3007484
57 Mannequin C. , Tsuruoka T. , Hasegawa T. , Aono M. . Composition of thin Ta2O5 films deposited by different methods and the effect of humidity on their resistive switching behavior. Jpn. J. Appl. Phys., 2016, 55(6S1): 06GG08
https://doi.org/10.7567/JJAP.55.06GG08
58 D. Zhou G. , Sun B. , J. Ren Z. , D. Wang L. , Y. Xu C. , Wu B. , Li P. , Q. Yao Y. , Duan S. . Resistive switching behaviors and memory logic functions in single MnOx nanorod modulated by moisture. Chem. Commun. (Camb.), 2019, 55(67): 9915
https://doi.org/10.1039/C9CC04069B
59 D. Zhou G. , Ren Z. , Wang L. , Wu J. , Sun B. , Zhou A. , Zhang G. , Zheng S. , Duan S. , Song Q. . Resistive switching memory integrated with amorphous carbonbased nanogenerators for self-powered device. Nano Energy, 2019, 63: 103793
https://doi.org/10.1016/j.nanoen.2019.05.079
60 Li J. , Qian Y. , Li W. , Lin Y. , Qian H. , Zhang T. , Sun K. , Wang J. , Zhou J. , Chen Y. , Zhu J. , Zhang G. , Yi M. , Huang W. . Humidity-enabled organic artificial synaptic devices with ultrahigh moisture resistivity. Adv. Electron. Mater., 2022, 8(10): 2200320
https://doi.org/10.1002/aelm.202200320
61 Ji X. , Dong Z. , Lai C. , Zhou G. , Qi D. . A physics-oriented memristor model with the coexistence of NDR effect and RS memory behavior for bio-inspired computing. Mater. Today Adv., 2022, 16: 100293
https://doi.org/10.1016/j.mtadv.2022.100293
[1] Sixian Liu, Jianmin Zeng, Qilai Chen, Gang Liu. Recent advances in halide perovskite memristors: From materials to applications[J]. Front. Phys. , 2024, 19(2): 23501-.
[2] Wanting Yang, Shuang Zhu, Xiong Luo, Xiaoxuan Ma, Chenfei Shi, Huan Song, Zhiqiang Sun, Yefei Guo, Yuriy Dedkov, Baojuan Kang, Jin-Ke Bao, Shixun Cao. Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal[J]. Front. Phys. , 2024, 19(2): 23203-.
[3] Hao Chen, Xin-Gui Tang, Zhihao Shen, Wen-Tao Guo, Qi-Jun Sun, Zhenhua Tang, Yan-Ping Jiang. Emerging memristors and applications in reservoir computing[J]. Front. Phys. , 2024, 19(1): 13401-.
[4] Xiaobing Yan, Zixuan Zhang, Zhiyuan Guan, Ziliang Fang, Yinxing Zhang, Jianhui Zhao, Jiameng Sun, Xu Han, Jiangzhen Niu, Lulu Wang, Xiaotong Jia, Yiduo Shao, Zhen Zhao, Zhenqiang Guo, Bing Bai. A high-speed true random number generator based on Ag/SiNx/n-Si memristor[J]. Front. Phys. , 2024, 19(1): 13202-.
[5] Wenbiao Niu, Guanglong Ding, Ziqi Jia, Xin-Qi Ma, JiYu Zhao, Kui Zhou, Su-Ting Han, Chi-Ching Kuo, Ye Zhou. Recent advances in memristors based on two-dimensional ferroelectric materials[J]. Front. Phys. , 2024, 19(1): 13402-.
[6] Jie Yang, Zixuan Jian, Zhongrong Wang, Jianhui Zhao, Zhenyu Zhou, Yong Sun, Mengmeng Hao, Linxia Wang, Pan Liu, Jingjuan Wang, Yifei Pei, Zhen Zhao, Wei Wang, Xiaobing Yan. HfAlO-based ferroelectric memristors for artificial synaptic plasticity[J]. Front. Phys. , 2023, 18(6): 63603-.
[7] Xiaobing Yan, Xu Han, Ziliang Fang, Zhen Zhao, Zixuan Zhang, Jiameng Sun, Yiduo Shao, Yinxing Zhang, Lulu Wang, Shiqing Sun, Zhenqiang Guo, Xiaotong Jia, Yupeng Zhang, Zhiyuan Guan, Tuo Shi. Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing[J]. Front. Phys. , 2023, 18(6): 63301-.
[8] Shanwu Ke, Li Jiang, Yifan Zhao, Yongyue Xiao, Bei Jiang, Gong Cheng, Facai Wu, Guangsen Cao, Zehui Peng, Min Zhu, Cong Ye. Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing[J]. Front. Phys. , 2022, 17(5): 53508-.
[9] Wencheng Fan, Haiyang Chen, Gang Zhao, Xiaoxuan Ma, Ramki Chakaravarthy, Baojuan Kang, Wenlai Lu, Wei Ren, Jincang Zhang, Shixun Cao. Thermal control magnetic switching dominated by spin reorientation transition in Mn-doped PrFeO3 single crystals[J]. Front. Phys. , 2022, 17(3): 33504-.
[10] Zhican Zhou, Fengyou Yang, Shu Wang, Lei Wang, Xiaofeng Wang, Cong Wang, Yong Xie, Qian Liu. Emerging of two-dimensional materials in novel memristor[J]. Front. Phys. , 2022, 17(2): 23204-.
[11] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[12] Meng Wu, Shanquan Chen, Chuanwei Huang, Xing Ye, Haiping Zhou, Xiaochun Huang, Kelvin H. L. Zhang, Wensheng Yan, Lihua Zhang, Kisslinger Kim, Yingge Du, Scott Chambers, Jin-Cheng Zheng, Hui-Qiong Wang. Modulation of the electronic states of perovskite SrCrO3 thin films through protonation via low-energy hydrogen plasma implantation approaches[J]. Front. Phys. , 2020, 15(1): 13601-.
[13] Hangwen Guo, Mohammad Saghayezhian, Zhen Wang, Yimei Zhu, Jiandi Zhang, Ward Plummer. Visualizing quantum phenomena at complex oxide interfaces: An atomic view from scanning transmission electron microscopy[J]. Front. Phys. , 2020, 15(1): 13401-.
[14] Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting[J]. Front. Phys. , 2019, 14(5): 53403-.
[15] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed