|
|
Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks |
Bai-Jiong Lin, Xiang-Ru Li( ), Wo-Liang Yu |
South China Normal University, Guangzhou 510631, China |
|
|
Abstract This work investigates the detection of binary neutron stars gravitational wave based on convolutional neural network (CNN). To promote the detection performance and efficiency, we proposed a scheme based on wavelet packet (WP) decomposition and CNN. The WP decomposition is a time-frequency method and can enhance the discriminant features between gravitational wave signal and noise before detection. The CNN conducts the gravitational wave detection by learning a function mapping relation from the data under being processed to the space of detection results. This function-mapping-relation style detection scheme can detection efficiency significantly. In this work, instrument effects are considered, and the noise are computed from a power spectral density (PSD) equivalent to the Advanced LIGO design sensitivity. The quantitative evaluations and comparisons with the state-of-art method matched filtering show the excellent performances for BNS gravitational wave detection. On efficiency, the current experiments show that this WP-CNN-based scheme is more than 960 times faster than the matched filtering.
|
Keywords
gravitational waves
algorithms
astrostatistics techniques
|
Corresponding Author(s):
Xiang-Ru Li
|
Issue Date: 22 November 2019
|
|
1 |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116(6), 061102 (2016)
|
2 |
J. Aasi, B. P. Abbott, R. Abbott, et al., Advanced ligo, Class. Quantum Grav. 32(7), 074001 (2015)
|
3 |
B. P. Abbott, R. Abbott, T. D. Abbott, Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X 6(4), 041015 (2016)
|
4 |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett. 116(24), 241103 (2016)
|
5 |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118(22), 221101 (2017)
|
6 |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170608: Observation of a 19 solar-mass binary black hole coalescence, Astrophys. J. Lett. 851(2), L35 (2017)
|
7 |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett. 119(14), 141101 (2017)
|
8 |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X 9(3), 031040 (2019)
|
9 |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced Virgo, arXiv: 1811.12940 (2018)
|
10 |
F. Acernese, M. Agathos, K. Agatsuma, et al., Advanced Virgo: A second-generation interferometric gravitational wave detector, Class. Quantum Grav. 32(2), 024001 (2015)
|
11 |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119(16), 161101 (2017)
|
12 |
B. P. Abbott, R. Abbott, and R. X. Adhikari, et al., Multi-messenger observations of a binary neutron star merger, Astrophys. J. Lett. 848(2), L12 (2017)
|
13 |
B. D. Metzger, Welcome to the multi-messenger era! Lessons from a neutron star merger and the landscape ahead, arXiv: 1710.05931 (2017)
|
14 |
B. Zhang, The delay time of gravitational wave — gamma-ray burst associations, Front. Phys. 14(6), 64402 (2019)
https://doi.org/10.1007/s11467-019-0913-4
|
15 |
G. González, A. Viceré, and L. Q. Wen, Gravitational wave astronomy, Front. Phys. 8(6), 771 (2013)
https://doi.org/10.1007/s11467-013-0329-5
|
16 |
B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries, Phys. Rev. D 85(12), 122006 (2012)
https://doi.org/10.1103/PhysRevD.85.122006
|
17 |
L. Blanchet, Gravitational radiation from post- Newtonian sources and inspiralling compact binaries, Living Rev. Rel. 17(1), 2 (2014)
https://doi.org/10.12942/lrr-2014-2
|
18 |
A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan, and B. S. Sathyaprakash, Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors, Phys. Rev. D 80(8), 084043 (2009)
https://doi.org/10.1103/PhysRevD.80.084043
|
19 |
Y. Pan, A. Buonanno, M. Boyle, L. T. Buchman, L. E. Kidder, H. P. Pfeiffer, and M. A. Scheel, Inspiral-mergerringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism, Phys. Rev. D 84(12), 124052 (2011)
https://doi.org/10.1103/PhysRevD.84.124052
|
20 |
E. Barausse and A. Buonanno, Improved effective-onebody Hamiltonian for spinning black-hole binaries, Phys. Rev. D 81, 084024 (2010)
https://doi.org/10.1103/PhysRevD.81.084024
|
21 |
T. Damour and A. Nagar, The effective-one-body approach to the general relativistic two body problem, Astrophysical Black Holes, pp 273–312, Springer (2016)
https://doi.org/10.1007/978-3-319-19416-5_7
|
22 |
T. Chu, H. Fong, P. Kumar, H. P. Pfeiffer, M. Boyle, D. A. Hemberger, L. E. Kidder, M. A. Scheel, and B. Szilagyi, On the accuracy and precision of numerical waveforms: Effect of waveform extraction methodology, Class. Quantum Grav. 33(16), 165001 (2016)
https://doi.org/10.1088/0264-9381/33/16/165001
|
23 |
S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J. Forteza, and A. Bohé, Frequency-domain gravitational waves from nonprecessing black-hole binaries (I): New numerical waveforms and anatomy of the signal, Phys. Rev. D 93(4), 044006 (2016)
https://doi.org/10.1103/PhysRevD.93.044006
|
24 |
A. H. Mroué, M. A. Scheel, B. Szilagyi, et al., Catalog of 174 binary black hole simulations for gravitational wave astronomy, Phys. Rev. Lett. 111(24), 241104 (2013)
https://doi.org/10.1103/PhysRevLett.111.241104
|
25 |
D. George, H. Y. Shen, and E. A. Huerta, Deep transfer learning: A new deep learning glitch classification method for advanced LIGO, Phys. Rev. D 97(10), 101501 (2018)
https://doi.org/10.1103/PhysRevD.97.101501
|
26 |
M. Razzano and E. Cuoco, Image-based deep learning for classification of noise transients in gravitational wave detectors, Class. Quantum Grav. 35(9), 095016 (2018)
https://doi.org/10.1088/1361-6382/aab793
|
27 |
S. Bahaadini, N. Rohani, S. Coughlin, M. Zevin, V. Kalogera, and A. K. Katsaggelos, Deep multi-view models for glitch classification, IEEE ICASSP, 2931–2935 (2017)
https://doi.org/10.1109/ICASSP.2017.7952693
|
28 |
H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Matching matched filtering with deep networks for gravitational-wave astronomy, Phys. Rev. Lett. 120(14), 141103 (2018)
https://doi.org/10.1103/PhysRevLett.120.141103
|
29 |
D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation: Results with advanced LIGO data, Phys. Lett. B 778, 64 (2018)
https://doi.org/10.1016/j.physletb.2017.12.053
|
30 |
X. R. Li, W. L. Yu, X. L. Fan, A method of detecting gravitational wave based on time-frequency analysis and convolutional neural networks, arXiv: 1712.00356 (2017)
|
31 |
T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schölkopf, Convolutional neural networks: A magic bullet for gravitational-wave detection? Phys. Rev. D 100(6), 063015 (2019)
https://doi.org/10.1103/PhysRevD.100.063015
|
32 |
W. Wei and E. A. Huerta, Gravitational wave denoising of binary black hole mergers with deep learning, arXiv: 1901.00869 (2019)
|
33 |
A. Torres-Forné, A. Marquina, J. Font, and J. Ibáñez, Denoising of gravitational wave signals via dictionary learning algorithms, Phys. Rev. D 94(12), 124040 (2016)
https://doi.org/10.1103/PhysRevD.94.124040
|
34 |
H. Y. Shen, D. George, E. A. Huerta, and Z. Z. Zhao, Denoising gravitational waves using deep learning with recurrent denoising autoencoders, arXiv: 1711.09919 (2017)
|
35 |
Y. Bouffanais and E. K. Porter, Bayesian inference for binary neutron star inspirals using a Hamiltonian Monte Carlo Algorithm, arXiv: 1810.07443 (2018)
https://doi.org/10.1103/PhysRevD.100.104023
|
36 |
C. M. Bishop, Pattern Recognition and Machine Learning, Berlin: Springer-Verlag, Berlin Heidelberg, 2006
|
37 |
A. Nitz, I. Harry, C. M. Biwer, D. Brown, Josh Willis, T. D. Canton, L. Pekowsky, T. Dent, A. R. Williamson, C. Capano, P. Kumar, S. De, M. Cabero, T. Massinger, A. Lenon, S. Fairhurst, B. Machenschalk, A. Nielsen, S. Reyes, L. Singer, S. Babak, D. Macleod, L. M. Zertuche, J. Veitch, P. Couvares, B. Bockelman, V. Tewari, and S. Khan, ligo-cbc/pycbc: O2 Production Release 9, 2017
|
38 |
S. A. Usman, A. H. Nitz, I. W. Harry, et al., The Py- CBC search for gravitational waves from compact binary coalescence, Class. Quantum Grav. 33(21), 215004 (2016)
https://doi.org/10.1088/0264-9381/33/21/215004
|
39 |
B. Allen, χ2 time-frequency discriminator for gravitational wave detection,Phys. Rev. D 71(6), 062001 (2005)
https://doi.org/10.1103/PhysRevD.71.062001
|
40 |
A. H. Nitz, T. Dent, T. Dal Canton, S. Fairhurst, and D. A. Brown, Detecting binary compact-object mergers with gravitational waves: Understanding and Improving the sensitivity of the PyCBC search, Astrophys. J. 849(2), 118 (2017)
https://doi.org/10.3847/1538-4357/aa8f50
|
41 |
T. Dal Canton, A. H. Nitz, A. P. Lundgren, et al., Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors, Phys. Rev. D 90(8), 082004 (2014)
https://doi.org/10.1103/PhysRevD.90.082004
|
42 |
T. Hinderer, A. Taracchini, F. Foucart, et al., Effects of neutron-star dynamic tides on gravitational waveforms within the effective-one-body approach, Phys. Rev. Lett. 116(18), 181101 (2016)
https://doi.org/10.1103/PhysRevLett.116.181101
|
43 |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., Properties of the binary neutron star merger GW170817, Phys. Rev. X 9(1), 011001 (2019)
|
44 |
B. J. Owen, B. S. Sathyaprakash, Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement, Phys. Rev. D 60(2), 022002 (1999)
https://doi.org/10.1103/PhysRevD.60.022002
|
45 |
E. Cuoco, G. Cella, G. M. Guidi, Whitening of nonstationary noise from gravitational wave detectors, Class. Quantum Grav. 21(5), S801 (2004)
https://doi.org/10.1088/0264-9381/21/5/061
|
46 |
E. Cuoco, G. Losurdo, G. Calamai, L. Fabbroni, M. Mazzoni, R. Stanga, G. Guidi, and F. Vetrano, Noise parametric identification and whitening for LIGO 40-m interferometer data, Phys. Rev. D 64(12), 122002 (2001)
https://doi.org/10.1103/PhysRevD.64.122002
|
47 |
P. Welch, The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust 15(2), 70–73, (1967)
https://doi.org/10.1109/TAU.1967.1161901
|
48 |
S. Blanco, A. Figliola, R. Q. Quiroga, O. A. Rosso, and E. Serrano, Time-frequency analysis of electroencephalogram series (III): Wavelet packets and information cost function, Phys. Rev. E 57(1), 932 (1998)
https://doi.org/10.1103/PhysRevE.57.932
|
49 |
S. Mallat, A Wavelet Tour of Signal Processing, Boston: Academic Press, 2009
|
50 |
X. R. Li, Y. Lu, G. Comte, A. L. Luo, Y. H. Zhao, and Y. J. Wang, Linearly supporting feature extraction for automated estimation of stellar atmospheric parameters, Astrophys. J. Suppl. 218(1), 3 (2015)
https://doi.org/10.1088/0067-0049/218/1/3
|
51 |
I. Daubechies, Ten Lectures on Wavelets, Philadelphia: Society for Industrial and Applied Mathematics, 1992
https://doi.org/10.1137/1.9781611970104
|
52 |
Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521(7553), 436 (2015)
https://doi.org/10.1038/nature14539
|
53 |
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Cambridge: MIT Press, 2016
|
54 |
V. Nair and G. E. Hinton, Rectified linear units improve restricted Boltzmann machines, ICML-10, 807–814 (2010)
|
55 |
P. T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, A tutorial on the cross-entropy method, Ann. Oper. Res. 134(1), 19 (2005)
https://doi.org/10.1007/s10479-005-5724-z
|
56 |
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature 323(6088), 533 (1986)
https://doi.org/10.1038/323533a0
|
57 |
M. Abadi, P. Barham, J. M. Chen, et al., Tensorflow: A system for large-scale machine learning, 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 265–283 (2016)
|
58 |
D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv: 1412.6980 (2014)
|
59 |
M. Vallisneri, J. Kanner, R. Williams, A. Weinstein, and B. Stephens, The LIGO open science center, J. Phys. Conf. Ser. 610(1), 012021 (2015)
https://doi.org/10.1088/1742-6596/610/1/012021
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|