|
|
Preparing quantum states by measurement-feedback control with Bayesian optimization |
Yadong Wu1,2,3,4, Juan Yao5,6,7, Pengfei Zhang1,8( ) |
1. Department of Physics, Fudan University, Shanghai 200438, China 2. State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China 3. Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China 4. Shanghai Qi Zhi Institute, AI Tower, Xuhui District, Shanghai 200232, China 5. Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 6. International Quantum Academy, Shenzhen 518048, China 7. Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 8. Walter Burke Institute for Theoretical Physics & Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA |
|
|
Abstract The preparation of quantum states is crucial for enabling quantum computations and simulations. In this work, we present a general framework for preparing ground states of many-body systems by combining the measurement-feedback control process (MFCP) with machine learning techniques. Specifically, we employ Bayesian optimization (BO) to enhance the efficiency of determining the measurement and feedback operators within the MFCP. As an illustration, we study the ground state preparation of the one-dimensional Bose−Hubbard model. Through BO, we are able to identify optimal parameters that can effectively drive the system towards low-energy states with a high probability across various quantum trajectories. Our results open up new directions for further exploration and development of advanced control strategies for quantum computations and simulations.
|
Keywords
state preparation
feedback control
Bayesian optimization
|
Corresponding Author(s):
Pengfei Zhang
|
About author: * These authors contributed equally to this work. |
Issue Date: 30 June 2023
|
|
1 |
M. Geremia J. , K. Stockton J. , Mabuchi H. . Real-time quantum feedback control of atomic spin-squeezing. Science, 2004, 304(5668): 270
https://doi.org/10.1126/science.1095374
|
2 |
M. Geremia J. . Deterministic and nondestructively verifiable preparation of photon number states. Phys. Rev. Lett., 2006, 97(7): 073601
https://doi.org/10.1103/PhysRevLett.97.073601
|
3 |
Yanagisawa M. . Quantum feedback control for deterministic entangled photon generation. Phys. Rev. Lett., 2006, 97(19): 190201
https://doi.org/10.1103/PhysRevLett.97.190201
|
4 |
Negretti A. , V. Poulsen U. , Mølmer K. . Quantum superposition state production by continuous observations and feedback. Phys. Rev. Lett., 2007, 99(22): 223601
https://doi.org/10.1103/PhysRevLett.99.223601
|
5 |
Sayrin C. , Dotsenko I. , Zhou X. , Peaudecerf B. , Rybarczyk T. , Gleyzes S. , Rouchon P. , Mirrahimi M. , Amini H. , Brune M. , M. Raimond J. , Haroche S. . Real-time quantum feedback prepares and stabilizes photon number states. Nature, 2011, 477(7362): 73
https://doi.org/10.1038/nature10376
|
6 |
Zhou X. , Dotsenko I. , Peaudecerf B. , Rybarczyk T. , Sayrin C. , Gleyzes S. , M. Raimond J. , Brune M. , Haroche S. . Field locked to a Fock state by quantum feedback with single photon corrections. Phys. Rev. Lett., 2012, 108(24): 243602
https://doi.org/10.1103/PhysRevLett.108.243602
|
7 |
Ristè D. , Dukalski M. , A. Watson C. , de Lange G. , J. Tiggelman M. , M. Blanter Ya. , W. Lehnert K. , N. Schouten R. , DiCarlo L. . Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature, 2013, 502(7471): 350
https://doi.org/10.1038/nature12513
|
8 |
Inoue R. , I. R. Tanaka S. , Namiki R. , Sagawa T. , Takahashi Y. . Unconditional quantumnoise suppression via measurement-based quantum feedback. Phys. Rev. Lett., 2013, 110(16): 163602
https://doi.org/10.1103/PhysRevLett.110.163602
|
9 |
C. J. Wade A. , F. Sherson J. , Mølmer K. . Squeezing and entanglement of density oscillations in a Bose-Einstein condensate. Phys. Rev. Lett., 2015, 115(6): 060401
https://doi.org/10.1103/PhysRevLett.115.060401
|
10 |
C. Cox K. , P. Greve G. , M. Weiner J. , K. Thompson J. . Deterministic squeezed states with collective measurements and feedback. Phys. Rev. Lett., 2016, 116(9): 093602
https://doi.org/10.1103/PhysRevLett.116.093602
|
11 |
Gajdacz M. , J. Hilliard A. , A. Kristensen M. , L. Pedersen P. , Klempt C. , J. Arlt J. , F. Sherson J. . Preparation of ultracold atom clouds at the shot noise level. Phys. Rev. Lett., 2016, 117(7): 073604
https://doi.org/10.1103/PhysRevLett.117.073604
|
12 |
Lammers J. , Weimer H. , Hammerer K. . Open-system many-body dynamics through interferometric measurements and feedback. Phys. Rev. A, 2016, 94(5): 052120
https://doi.org/10.1103/PhysRevA.94.052120
|
13 |
Sudhir V. , J. Wilson D. , Schilling R. , Schütz H. , A. Fedorov S. , H. Ghadimi A. , Nunnenkamp A. , J. Kippenberg T. . Appearance and disappearance of quantum correlations in measurement-based feedback control of a mechanical oscillator. Phys. Rev. X, 2017, 7(1): 011001
https://doi.org/10.1103/PhysRevX.7.011001
|
14 |
J. Briegel H. , Raussendorf R. . Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., 2001, 86(5): 910
https://doi.org/10.1103/PhysRevLett.86.910
|
15 |
Raussendorf R. , Bravyi S. , Harrington J. . Long-range quantum entanglement in noisy cluster states. Phys. Rev. A, 2005, 71(6): 062313
https://doi.org/10.1103/PhysRevA.71.062313
|
16 |
Verresen R.Tantivasadakarn N.Vishwanath A., Efficiently preparing Schrödinger’s cat, fractons and non-Abelian topological order in quantum devices, arXiv: 2112.03061 (2021)
|
17 |
Tantivasadakarn N.Thorngren R.Vishwanath A.Verresen R., Long-range entanglement from measuring symmetry-protected topological phases, arXiv: 2112.01519 (2021)
|
18 |
Y. Zhu G.Tantivasadakarn N.Vishwanath A.Trebst S.Verresen R., Nishimori’s cat: Stable long-range entanglement from finite-depth unitaries and weak measurements, arXiv: 2208.11136 (2022)
|
19 |
Y. Lee J.Ji W.Bi Z.Fisher M., Measurement-prepared quantum criticality: From Ising model to gauge theory, and beyond, arXiv: 2208.11699 (2022)
|
20 |
Tantivasadakarn N.Vishwanath A.Verresen R., A hierarchy of topological order from finite depth unitaries, measurement and feedforward, arXiv: 2209.06202 (2022)
|
21 |
Bravyi S.Kim I.Kliesch A.Koenig R., Adaptive constant-depth circuits for manipulating non-Abelian anyons, arXiv: 2205.01933 (2022)
|
22 |
C. Lu T.A. Lessa L.H. Kim I.H. Hsieh T., Measurement as a shortcut to long-range entangled quantum matter, arXiv: 2206.13527 (2022)
|
23 |
Wu S.Cai Z., Feedback-induced interactive dynamics: Unitary but dissipative evolution, arxiv: 2211.09291 (2022)
|
24 |
M. Wiseman H. . Quantum theory of continuous feedback. Phys. Rev. A, 1994, 49(3): 2133
https://doi.org/10.1103/PhysRevA.49.2133
|
25 |
Zhang J. , Liu Y. , B. Wu R. , Jacobs K. , Nori F. . Quantum feedback: Theory, experiments, and applications. Phys. Rep., 2017, 679: 1
https://doi.org/10.1016/j.physrep.2017.02.003
|
26 |
K. Thomsen L. , Mancini S. , M. Wiseman H. . Spin squeezing via quantum feedback. Phys. Rev. A, 2002, 65(6): 061801
https://doi.org/10.1103/PhysRevA.65.061801
|
27 |
A. Muschik C. , Hammerer K. , S. Polzik E. , J. Cirac I. . Quantum teleportation of dynamics and effective interactions between remote systems. Phys. Rev. Lett., 2013, 111(2): 020501
https://doi.org/10.1103/PhysRevLett.111.020501
|
28 |
L. Grimsmo A. , S. Parkins A. , S. Skagerstam B. . Rapid steady-state convergence for quantum systems using time-delayed feedback control. New J. Phys., 2014, 16(6): 065004
https://doi.org/10.1088/1367-2630/16/6/065004
|
29 |
C. Emary, E. Schöll , T. Brandes. W. Kopylov . Time-delayed feedback control of the Dicke–Hepp–Lieb superradiant quantum phase transition. New J. Phys., 2015, 17(1): 013040
https://doi.org/10.1088/1367-2630/17/1/013040
|
30 |
Mazzucchi G. , F. Caballero-Benitez S. , A. Ivanov D. , B. Mekhov I. . Quantum optical feedback control for creating strong correlations in many-body systems. Optica, 2016, 3(11): 1213
https://doi.org/10.1364/OPTICA.3.001213
|
31 |
Shankar A. , P. Greve G. , Wu B. , K. Thompson J. , Holland M. . Continuous real-time tracking of a quantum phase below the standard quantum limit. Phys. Rev. Lett., 2019, 122(23): 233602
https://doi.org/10.1103/PhysRevLett.122.233602
|
32 |
A. Ivanov D. , Y. Ivanova T. , F. Caballero-Benitez S. , B. Mekhov I. . Cavityless self-organization of ultracold atoms due to the feedback-induced phase transition. Sci. Rep., 2020, 10(1): 10550
https://doi.org/10.1038/s41598-020-67280-3
|
33 |
A. Ivanov D. , Yu. Ivanova T. , F. Caballero-Benitez S. , B. Mekhov I. . Feedback-induced quantum phase transitions using weak measurements. Phys. Rev. Lett., 2020, 124(1): 010603
https://doi.org/10.1103/PhysRevLett.124.010603
|
34 |
Kroeger K. , Dogra N. , Rosa-Medina R. , Paluch M. , Ferri F. , Donner T. , Esslinger T. . Continuous feedback on a quantum gas coupled to an optical cavity. New J. Phys., 2020, 22(3): 033020
https://doi.org/10.1088/1367-2630/ab73cc
|
35 |
H. Muñoz-Arias M. , M. Poggi P. , S. Jessen P. , H. Deutsch I. . Simulating nonlinear dynamics of collective spins via quantum measurement and feedback. Phys. Rev. Lett., 2020, 124(11): 110503
https://doi.org/10.1103/PhysRevLett.124.110503
|
36 |
H. Muñoz-Arias M. , H. Deutsch I. , S. Jessen P. , M. Poggi P. . Simulation of the complex dynamics of mean-field p-spin models using measurement-based quantum feedback control. Phys. Rev. A, 2020, 102(2): 022610
https://doi.org/10.1103/PhysRevA.102.022610
|
37 |
M. Hurst H. , Guo S. , B. Spielman I. . Feedback induced magnetic phases in binary Bose-Einstein condensates. Phys. Rev. Res., 2020, 2(4): 043325
https://doi.org/10.1103/PhysRevResearch.2.043325
|
38 |
A. Ivanov D. , Yu. Ivanova T. , F. Caballero-Benitez S. , B. Mekhov I. . Tuning the universality class of phase transitions by feedback: Open quantum systems beyond dissipation. Phys. Rev. A, 2021, 104(3): 033719
https://doi.org/10.1103/PhysRevA.104.033719
|
39 |
M. Hurst H. , B. Spielman I. . Measurement-induced dynamics and stabilization of spinor-condensate domain walls. Phys. Rev. A, 2019, 99(5): 053612
https://doi.org/10.1103/PhysRevA.99.053612
|
40 |
T. Young J. , V. Gorshkov A. , B. Spielman I. . Feedback-stabilized dynamical steady states in the bosehubbard model. Phys. Rev. Res., 2021, 3(4): 043075
https://doi.org/10.1103/PhysRevResearch.3.043075
|
41 |
M. Wiseman H.J. Milburn G., Quantum Measurement and Control, Cambridge University Press, 2009
|
42 |
Shen H. , Liu J. , Fu L. . Self-learning Monte Carlo with deep neural networks. Phys. Rev. B, 2018, 97(20): 205140
https://doi.org/10.1103/PhysRevB.97.205140
|
43 |
Wang C. , Zhai H. . Machine learning of frustrated classical spin models (i): Principal component analysis. Phys. Rev. B, 2017, 96(14): 144432
https://doi.org/10.1103/PhysRevB.96.144432
|
44 |
Zhang P. , Shen H. , Zhai H. . Machine learning topological invariants with neural networks. Phys. Rev. Lett., 2018, 120(6): 066401
https://doi.org/10.1103/PhysRevLett.120.066401
|
45 |
Wang C. , Zhai H. . Machine learning of frustrated classical spin models (ii): Kernel principal component analysis. Front. Phys., 2018, 13(5): 130507
https://doi.org/10.1007/s11467-018-0798-7
|
46 |
Sun N. , Yi J. , Zhang P. , Shen H. , Zhai H. . Deep learning topological invariants of band insulators. Phys. Rev. B, 2018, 98(8): 085402
https://doi.org/10.1103/PhysRevB.98.085402
|
47 |
Song T. , Lee H. . Accelerated continuous time quantum Monte Carlo method with machine learning. Phys. Rev. B, 2019, 100(4): 045153
https://doi.org/10.1103/PhysRevB.100.045153
|
48 |
Wang C. , Zhai H. , Z. You Y. . Emergent Schrödinger equation in an introspective machine learning architecture. Sci. Bull. (Beijing), 2019, 64(17): 1228
https://doi.org/10.1016/j.scib.2019.07.014
|
49 |
Zhang Y. , Mesaros A. , Fujita K. , D. Edkins S. , H. Hamidian M. , Ch’ng K. , Eisaki H. , Uchida S. , C. S. Davis J. , Khatami E. , A. Kim E. . Machine learning in electronic-quantum-matter imaging experiments. Nature, 2019, 570(7762): 484
https://doi.org/10.1038/s41586-019-1319-8
|
50 |
S. Rem B. , Käming N. , Tarnowski M. , Asteria L. , Fläschner N. , Becker C. , Sengstock K. , Weitenberg C. . Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys., 2019, 15(9): 917
https://doi.org/10.1038/s41567-019-0554-0
|
51 |
Bohrdt A. , S. Chiu C. , Ji G. , Xu M. , Greif D. , Greiner M. , Demler E. , Grusdt F. , Knap M. . Classifying snapshots of the doped Hubbard model with machine learning. Nat. Phys., 2019, 15(9): 921
https://doi.org/10.1038/s41567-019-0565-x
|
52 |
Yao J. , Wu Y. , Koo J. , Yan B. , Zhai H. . Active learning algorithm for computational physics. Phys. Rev. Res., 2020, 2(1): 013287
https://doi.org/10.1103/PhysRevResearch.2.013287
|
53 |
Torlai G. , Timar B. , P. L. van Nieuwenburg E. , Levine H. , Omran A. , Keesling A. , Bernien H. , Greiner M. , Vuletić V. , D. Lukin M. , G. Melko R. , Endres M. . Integrating neural networks with a quantum simulator for state reconstruction. Phys. Rev. Lett., 2019, 123(23): 230504
https://doi.org/10.1103/PhysRevLett.123.230504
|
54 |
M. Palmieri A. , Kovlakov E. , Bianchi F. , Yudin D. , Straupe S. , D. Biamonte J. , Kulik S. . Experimental neural network enhanced quantum tomography. npj Quantum Inf., 2020, 6(1): 20
https://doi.org/10.1038/s41534-020-0248-6
|
55 |
Wu Y. , Meng Z. , Wen K. , Mi C. , Zhang J. , Zhai H. . Active learning approach to optimization of experimental control. Chin. Phys. Lett., 2020, 37(10): 103201
https://doi.org/10.1088/0256-307X/37/10/103201
|
56 |
Saggio V. , E. Asenbeck B. , Hamann A. , Strömberg T. , Schiansky P. , Dunjko V. , Friis N. , C. Harris N. , Hochberg M. , Englund D. , Wölk S. , J. Briegel H. , Walther P. . Experimental quantum speed-up in reinforcement learning agents. Nature, 2021, 591(7849): 229
https://doi.org/10.1038/s41586-021-03242-7
|
57 |
Baum Y. , Amico M. , Howell S. , Hush M. , Liuzzi M. , Mundada P. , Merkh T. , R. R. Carvalho A. , J. Biercuk M. . Seantal deep reinforcement learning for error-robust gate-set design on a superconducting quantum computer. PRX Quantum, 2021, 2(4): 040324
https://doi.org/10.1103/PRXQuantum.2.040324
|
58 |
Castaldo D. , Rosa M. , Corni S. . Quantum optimal control with quantum computers: A hybrid algorithm featuring machine learning optimization. Phys. Rev. A, 2021, 103(2): 022613
https://doi.org/10.1103/PhysRevA.103.022613
|
59 |
V. Sivak V. , Eickbusch A. , Liu H. , Royer B. , Tsioutsios I. , H. Devoret M. . Model-free quantum control with reinforcement learning. Phys. Rev. X, 2022, 12(1): 011059
https://doi.org/10.1103/PhysRevX.12.011059
|
60 |
A. Erdman P. , Noé F. . Identifying optimal cycles in quantum thermal machines with reinforcement-learning. npj Quantum Inf., 2022, 8(1): 1
https://doi.org/10.1038/s41534-021-00512-0
|
61 |
F. Langer M. , Goeßmann A. , Rupp M. . Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning. npj Comput. Mater., 2022, 8(1): 41
https://doi.org/10.1038/s41524-022-00721-x
|
62 |
A. Luchnikov I. , O. Kiktenko E. , A. Gavreev M. , Ouerdane H. , N. Filippov S. , K. Fedorov A. . Probing non-Markovian quantum dynamics with data-driven analysis: Beyond “blackbox” machine-learning models. Phys. Rev. Res., 2022, 4(4): 043002
https://doi.org/10.1103/PhysRevResearch.4.043002
|
63 |
Khait I. , Carrasquilla J. , Segal D. . Optimal control of quantum thermal machines using machine learning. Phys. Rev. Res., 2022, 4(1): L012029
https://doi.org/10.1103/PhysRevResearch.4.L012029
|
64 |
Carrasquilla J. , G. Melko R. . Machine learning phases of matter. Nat. Phys., 2017, 13(5): 431
https://doi.org/10.1038/nphys4035
|
65 |
P. L. van Nieuwenburg E. , H. Liu Y. , D. Huber S. . Learning phase transitions by confusion. Nat. Phys., 2017, 13(5): 435
https://doi.org/10.1038/nphys4037
|
66 |
Zhang Y. , A. Kim E. . Quantum loop topography for machine learning. Phys. Rev. Lett., 2017, 118(21): 216401
https://doi.org/10.1103/PhysRevLett.118.216401
|
67 |
L. Deng D. , Li X. , Das Sarma S. . Machine learning topological states. Phys. Rev. B, 2017, 96(19): 195145
https://doi.org/10.1103/PhysRevB.96.195145
|
68 |
H. Liu Y. , P. L. van Nieuwenburg E. . Discriminative cooperative networks for detecting phase transitions. Phys. Rev. Lett., 2018, 120(17): 176401
https://doi.org/10.1103/PhysRevLett.120.176401
|
69 |
Y. Dong X. , Pollmann F. , F. Zhang X. . Machine learning of quantum phase transitions. Phys. Rev. B, 2019, 99(12): 121104
https://doi.org/10.1103/PhysRevB.99.121104
|
70 |
Carleo G. , Troyer M. . Solving the quantum many-body problem with artificial neural networks. Science, 2017, 355(6325): 602
https://doi.org/10.1126/science.aag2302
|
71 |
Gao X. , M. Duan L. . Efficient representation of quantum many-body states with deep neural networks. Nat. Commun., 2017, 8(1): 662
https://doi.org/10.1038/s41467-017-00705-2
|
72 |
Cai Z. , Liu J. . Approximating quantum many-body wave functions using artificial neural networks. Phys. Rev. B, 2018, 97(3): 035116
https://doi.org/10.1103/PhysRevB.97.035116
|
73 |
Saito H. . Method to solve quantum few-body problems with artificial neural networks. J. Phys. Soc. Jpn., 2018, 87(7): 074002
https://doi.org/10.7566/JPSJ.87.074002
|
74 |
Torlai G. , Mazzola G. , Carrasquilla J. , Troyer M. , Melko R. , Carleo G. . Neuralnetwork quantum state tomography. Nat. Phys., 2018, 14(5): 447
https://doi.org/10.1038/s41567-018-0048-5
|
75 |
Wu Y. , Zhang P. , Shen H. , Zhai H. . Visualizing a neural network that develops quantum perturbation theory. Phys. Rev. A, 2018, 98(1): 010701
https://doi.org/10.1103/PhysRevA.98.010701
|
76 |
Wang C. , Li H. , Hao Z. , Li X. , Zou C. , Cai P. , Wang Y. , Z. You Y. , Zhai H. . Machine learning identification of impurities in the STM images. Chin. Phys. B, 2020, 29(11): 116805
https://doi.org/10.1088/1674-1056/abc0d5
|
77 |
Shahriari B. , Swersky K. , Wang Z. , P. Adams R. , de Freitas N. . Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE, 2016, 104(1): 148
https://doi.org/10.1109/JPROC.2015.2494218
|
78 |
A. Vargas-Hernández R. , Guan Y. , H. Zhang D. , V. Krems R. . Bayesian optimization for the inverse scattering problem in quantum reaction dynamics. New J. Phys., 2019, 21(2): 022001
https://doi.org/10.1088/1367-2630/ab0099
|
79 |
Mukherjee R. , Sauvage F. , Xie H. , Löw R. , Mintert F. . Preparation of ordered states in ultra-cold gases using Bayesian optimization. New J. Phys., 2020, 22(7): 075001
https://doi.org/10.1088/1367-2630/ab8677
|
80 |
Kuroś A. , Mukherjee R. , Golletz W. , Sauvage F. , Giergiel K. , Mintert F. , Sacha K. . Phase diagram and optimal control for n-tupling discrete time crystal. New J. Phys., 2020, 22(9): 095001
https://doi.org/10.1088/1367-2630/abb03e
|
81 |
Sauvage F. , Mintert F. . Optimal quantum control with poor statistics. PRX Quantum, 2020, 1(2): 020322
https://doi.org/10.1103/PRXQuantum.1.020322
|
82 |
T. Belmiro Chu C. , L. Sheu Y. , I. Chu S. . Bayesian optimal control of the ultrashort circularly polarized attosecond pulse generation by two-color polarization gating. Opt. Express, 2021, 29(21): 32900
https://doi.org/10.1364/OE.438212
|
83 |
Kuroś A. , Mukherjee R. , Mintert F. , Sacha K. . Controlled preparation of phases in two-dimensional time crystals. Phys. Rev. Res., 2021, 3(4): 043203
https://doi.org/10.1103/PhysRevResearch.3.043203
|
84 |
J. Xie Y. , N. Dai H. , S. Yuan Z. , Deng Y. , Li X. , A. Chen Y. , W. Pan J. . Bayesian learning for optimal control of quantum many-body states in optical lattices. Phys. Rev. A, 2022, 106(1): 013316
https://doi.org/10.1103/PhysRevA.106.013316
|
85 |
L. Cortes C. , Lefebvre P. , Lauk N. , J. Davis M. , Sinclair N. , K. Gray S. , Oblak D. . Sample-efficient adaptive calibration of quantum networks using Bayesian optimization. Phys. Rev. Appl., 2022, 17(3): 034067
https://doi.org/10.1103/PhysRevApplied.17.034067
|
86 |
Jacobs K. , A. Steck D. . A straightforward introduction to continuous quantum measurement. Contemp. Phys., 2006, 47(5): 279
https://doi.org/10.1080/00107510601101934
|
87 |
L. Qi X. , Ranard D. . Determining a local Hamiltonian from a single eigenstate. Quantum, 2019, 3: 159
https://doi.org/10.22331/q-2019-07-08-159
|
88 |
Bairey E. , Arad I. , H. Lindner N. . Learning a local Hamiltonian from local measurements. Phys. Rev. Lett., 2019, 122(2): 020504
https://doi.org/10.1103/PhysRevLett.122.020504
|
89 |
Chertkov E. , K. Clark B. . Computational inverse method for constructing spaces of quantum models from wave functions. Phys. Rev. X, 2018, 8(3): 031029
https://doi.org/10.1103/PhysRevX.8.031029
|
90 |
Li Z. , Zou L. , H. Hsieh T. . Hsieh. Hamiltonian tomography via quantum quench. Phys. Rev. Lett., 2020, 124(16): 160502
https://doi.org/10.1103/PhysRevLett.124.160502
|
91 |
Yao Z. , Pan L. , Liu S. , Zhang P. . Bounding entanglement entropy using zeros of local correlation matrices. Phys. Rev. Res., 2022, 4(4): L042037
https://doi.org/10.1103/PhysRevResearch.4.L042037
|
92 |
N. Wu L. , Eckardt A. . Cooling and state preparation in an optical lattice via Markovian feedback control. Phys. Rev. Res., 2022, 4(2): L022045
https://doi.org/10.1103/PhysRevResearch.4.L022045
|
93 |
Ritsch H. , Domokos P. , Brennecke F. , Esslinger T. . Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys., 2013, 85(2): 553
https://doi.org/10.1103/RevModPhys.85.553
|
94 |
J. Elliott T. , Kozlowski W. , F. Caballero-Benitez S. , B. Mekhov I. . Multipartite entangled spatial modes of ultracold atoms generated and controlled by quantum measurement. Phys. Rev. Lett., 2015, 114(11): 113604
https://doi.org/10.1103/PhysRevLett.114.113604
|
95 |
Ashida Y. , Ueda M. . Diffraction-unlimited position measurement of ultracold atoms in an optical lattice. Phys. Rev. Lett., 2015, 115(9): 095301
https://doi.org/10.1103/PhysRevLett.115.095301
|
96 |
W. Shor P., Fault-tolerant quantum computation, in: Proceedings of 37th Conference on Foundations of Computer Science, pp 56–65, IEEE, 1996
|
97 |
Aharonov D.Ben-Or M., Fault-tolerant quantum computation with constant error, in: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp 176–188, 1997
|
98 |
J. Preskill, Fault-tolerant quantum computation, in: Introduction to Quantum Computation and Information, pp 213–269, World Scientific, 1998
|
99 |
Gottesman D. . Theory of fault-tolerant quantum computation. Phys. Rev. A, 1998, 57(1): 127
https://doi.org/10.1103/PhysRevA.57.127
|
100 |
Gyongyosi L. . Quantum state optimization and computational pathway evaluation for gate-model quantum computers. Sci. Rep., 2020, 10(1): 4543
https://doi.org/10.1038/s41598-020-61316-4
|
101 |
Gyongyosi L. , Imre S. . Dense quantum measurement theory. Sci. Rep., 2019, 9(1): 6755
https://doi.org/10.1038/s41598-019-43250-2
|
102 |
Gyongyosi L. , Imre S. . Training optimization for gate-model quantum neural networks. Sci. Rep., 2019, 9(1): 12679
https://doi.org/10.1038/s41598-019-48892-w
|
103 |
Gyongyosi L. , Imre S. . Advances in the quantum internet. Commun. ACM, 2022, 65(8): 52
https://doi.org/10.1145/3524455
|
104 |
G. D. Torre E. , Diehl S. , D. Lukin M. , Sachdev S. , Strack P. . Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities. Phys. Rev. A, 2013, 87(2): 023831
https://doi.org/10.1103/PhysRevA.87.023831
|
105 |
F. Maghrebi M. , V. Gorshkov A. . Nonequilibrium many-body steady states via Keldysh formalism. Phys. Rev. B, 2016, 93(1): 014307
https://doi.org/10.1103/PhysRevB.93.014307
|
106 |
Foss-Feig M. , Niroula P. , T. Young J. , Hafezi M. , V. Gorshkov A. , M. Wilson R. , F. Maghrebi M. . Emergent equilibrium in many-body optical bistability. Phys. Rev. A, 2017, 95(4): 043826
https://doi.org/10.1103/PhysRevA.95.043826
|
107 |
Skinner B. , Ruhman J. , Nahum A. . Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X, 2019, 9(3): 031009
https://doi.org/10.1103/PhysRevX.9.031009
|
108 |
Choi S. , Bao Y. , L. Qi X. , Altman E. . Quantum error correction in scrambling dynamics and measurement-induced phase transition. Phys. Rev. Lett., 2020, 125(3): 030505
https://doi.org/10.1103/PhysRevLett.125.030505
|
109 |
Tang Q. , Zhu W. . Measurement-induced phase transition: A case study in the nonintegrable model by density matrix renormalization group calculations. Phys. Rev. Res., 2020, 2(1): 013022
https://doi.org/10.1103/PhysRevResearch.2.013022
|
110 |
Fan R. , Vijay S. , Vishwanath A. , Z. You Y. . Self-organized error correction in random unitary circuits with measurement. Phys. Rev. B, 2021, 103(17): 174309
https://doi.org/10.1103/PhysRevB.103.174309
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|