Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Arch Civil Eng Chin    2011, Vol. 5 Issue (4) : 458-464    https://doi.org/10.1007/s11709-011-0133-7
RESEARCH ARTICLE
Spectral element modeling based structure piezoelectric impedance computation and damage identification
Zhigang GUO1, Zhi SUN2()
1. Department of Bridge Engineering, Tongji University, Shanghai 200092, China; 2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(108 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a numerical simulation study on electromechanical impedance technique for structural damage identification. The basic principle of impedance based damage detection is structural impedance will vary with the occurrence and development of structural damage, which can be measured from electromechanical admittance curves acquired from PZT patches. Therefore, structure damage can be identified from the electromechanical admittance measurements. In this study, a model based method that can identify both location and severity of structural damage through the minimization of the deviations between structural impedance curves and numerically computed response is developed. The numerical model is set up using the spectral element method, which is promised to be of high numerical efficiency and computational accuracy in the high frequency range. An optimization procedure is then formulated to estimate the property change of structural elements from the electric admittance measurement of PZT patches. A case study on a pin-pin bar is conducted to investigate the feasibility of the proposed method. The results show that the presented method can accurately identify bar damage location and severity even when the measurements are polluted by 5% noise.

Keywords PZT      piezoelectric impedance      optimization      spectral element      damage identification     
Corresponding Author(s): SUN Zhi,Email:sunzhi1@tongji.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Zhigang GUO,Zhi SUN. Spectral element modeling based structure piezoelectric impedance computation and damage identification[J]. Front Arch Civil Eng Chin, 2011, 5(4): 458-464.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-011-0133-7
https://academic.hep.com.cn/fsce/EN/Y2011/V5/I4/458
Fig.1  One-dimensional impedance-based model of a PZT patch interacting with a spring-mass-damper system
Fig.2  Spectral element model of pin-pin bar
case No.simulated damageidentified damage
damaged element No.Relative stiffness reduction ratio/%damaged element No.relative stiffness reduction ratio/%
1158158
210371037
3933933
4720720
515161516
610131013
7644644
8436436
911151115
10731731
116868
1211291129
Tab.1  Single damage identification cases and results
case No.simulated damageidentified damage
damaged element No.relative stiffness reduction ratio/%damaged element No.relative stiffness reduction ratio/%
192032369203236
2816220816220
3315542315542
412161981216198
51418113914181139
681315248131524
71020414210204142
8414399414399
991731499173149
1051749355174935
1161348116134811
12915301915301
Tab.2  Multiple damage identification cases and results
case No.simulated damageidentified damage
damaged element No.relative stiffness reduction ratio/%damaged element No.relative stiffness reduction ratio/%
117371737
219431942
318161816
4534534
510241024
6340340
7417417
8119119
912421242
1013241324
11849849
1217351735
Tab.3  Single damage identification cases and results with 5% noise
case No.simulated damageidentified damage
damaged element No.relative stiffness reduction ratio/%damaged element No.relative stiffness reduction ratio/%
1512384512384
261322346132234
31215284312152843
48924489244
511161331116133
6474820474820
7373831373831
831420283142028
9812913812913
1091232389123238
1181315248131524
12414399414399
Tab.4  Multiple damage identification cases and results with 5% noise
1 Hera A, Hou Z. Application of wavelet approach for ASCE structural health monitoring benchmark studies. Journal of Engineering Mechanics , 2004, 130(1): 96-104
doi: 10.1061/(ASCE)0733-9399(2004)130:1(96)
2 Park G, Sohn H, Farrar C R, Inman D J. Overview of piezoelectric impedance-based health monitoring and path forward. Shock and Vibration Digest , 2003, 35(6): 451-463
doi: 10.1177/05831024030356001
3 Tseng K K H, Naidu A S K. Non-parametric damage detection and characterization using smart piezoceramic material. Smart Materials and Structures , 2002, 11(3): 317-329
doi: 10.1088/0964-1726/11/3/301
4 Liang C, Sun F P, Rogers C A. Coupled electro-mechanical analysis of adaptive material systems—determination of the actuator power consumption and system energy transfer. Journal of Intelligent Material Systems and Structures , 1994, 5(1): 12-20
doi: 10.1177/1045389X9400500102
5 Giurgiutiu V, Zagrai A. Electro-mechanical impedance method for crack detection in metallic plates. Proceedings of the Society for Photo-Instrumentation Engineers , 2001, 4335: 131-142
6 Giurgiutiu V, Redmond J M, Roach D P, Rackow K. Active sensors for health monitoring of aging aerospace structures. Proceedings of the Society for Photo-Instrumentation Engineers , 2000, 3985: 294-305
7 Giurgiutiu V, Zagrai A N. Embedded self-sensing piezoelectric active sensors for on-line structural identification. Journal of Vibration and Acoustics , 2002, 124(1): 116-125
doi: 10.1115/1.1421056
8 Tseng K K, Wang L. Impedance-based method for nondestructive damage identification. Journal of Engineering Mechanics , 2005, 131(1): 58-64
doi: 10.1061/(ASCE)0733-9399(2005)131:1(58)
9 Doyle J F. Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier transforms. 2nd ed. New York: Springer-Verlag, 1997
10 Lee U, Kim J, Leung A Y. The spectral element method in structural dynamics. Shock and Vibration Digest , 2000, 32(6): 451-465
doi: 10.1177/058310240003200601
11 Ritdumrongkul S, Fujino Y. Identification of the location and level of damage in multiple-bolted-joint structures by PZT actuator-sensors. Journal of Structural Engineering , 2006, 132(2): 304-311
doi: 10.1061/(ASCE)0733-9445(2006)132:2(304)
12 Peairs D M, Inman D J, Park G. Circuit analysis of impedance-based health monitoring of beams using spectral elements. Structural Health Monitoring , 2007, 6(1): 81-94
doi: 10.1177/1475921707072621
13 Wang X, Tang J. Damage identification using piezoelectric impedance approach and spectral element method. Journal of Intelligent Material Systems and Structures , 2009, 20(8): 907-921
doi: 10.1177/1045389X08099659
[1] Siamak TALATAHARI, Mahdi RABIEI. Shear wall layout optimization of tall buildings using Quantum Charged System Search[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1131-1151.
[2] Mohammad Sadegh ES-HAGHI, Aydin SHISHEGARAN, Timon RABCZUK. Evaluation of a novel Asymmetric Genetic Algorithm to optimize the structural design of 3D regular and irregular steel frames[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1110-1130.
[3] Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN. An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group method of data handling surrogate model[J]. Front. Struct. Civ. Eng., 2020, 14(4): 907-929.
[4] Shahaboddin SHAMSHIRBAND, Amir MOSAVI, Timon RABCZUK. Particle swarm optimization model to predict scour depth around a bridge pier[J]. Front. Struct. Civ. Eng., 2020, 14(4): 855-866.
[5] Meisam RABIEI, Asskar Janalizadeh CHOOBBASTI. Innovative piled raft foundations design using artificial neural network[J]. Front. Struct. Civ. Eng., 2020, 14(1): 138-146.
[6] Xiao YAN, Zizheng SUN, Shucai LI, Rentai LIU, Qingsong ZHANG, Yiming ZHANG. Quantitatively assessing the pre-grouting effect on the stability of tunnels excavated in fault zones with discontinuity layout optimization: A case study[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1393-1404.
[7] Tugrul TALASLIOGLU. Optimal dome design considering member-related design constraints[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1150-1170.
[8] Reza KHADEMI-ZAHEDI, Pouyan ALIMOURI. Finite element model updating of a large structure using multi-setup stochastic subspace identification method and bees optimization algorithm[J]. Front. Struct. Civ. Eng., 2019, 13(4): 965-980.
[9] Tugrul TALASLIOGLU. Optimal design of steel skeletal structures using the enhanced genetic algorithm methodology[J]. Front. Struct. Civ. Eng., 2019, 13(4): 863-889.
[10] Fengjie TAN, Tom LAHMER. Shape design of arch dams under load uncertainties with robust optimization[J]. Front. Struct. Civ. Eng., 2019, 13(4): 852-862.
[11] Mohammad Reza GHASEMI, Charles V. CAMP, Babak DIZANGIAN. Novel decoupled framework for reliability-based design optimization of structures using a robust shifting technique[J]. Front. Struct. Civ. Eng., 2019, 13(4): 800-820.
[12] M. SALAR, M. R. GHASEMI, B. DIZANGIAN. Practical optimization of deployable and scissor-like structures using a fast GA method[J]. Front. Struct. Civ. Eng., 2019, 13(3): 557-568.
[13] Nazim Abdul NARIMAN. Control efficiency optimization and Sobol’s sensitivity indices of MTMDs design parameters for buffeting and flutter vibrations in a cable stayed bridge[J]. Front. Struct. Civ. Eng., 2017, 11(1): 66-89.
[14] Seung-Hun SUNG,Hyung-Jo JUNG. A new damage quantification approach for shear-wall buildings using ambient vibration data[J]. Front. Struct. Civ. Eng., 2015, 9(1): 17-25.
[15] Rahul DUBEY, Pardeep KUMAR. An experimental study for optimization of high range water reducing superplasticizer in self compacting concrete[J]. Front Struc Civil Eng, 2013, 7(1): 62-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed