Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Struc Civil Eng    2013, Vol. 7 Issue (2) : 102-116    https://doi.org/10.1007/s11709-013-0201-2
REVIEW
Aspects of rock permeability
Lianyang ZHANG()
Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, Arizona 85721, USA
 Download: PDF(559 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Effective evaluation of rock permeability is required in different energy, engineering and environmental projects. Although much research has been conducted on rock permeability, it is still one of the most difficult tasks for practicing rock engineers to accurately determine rock permeability. Based on a comprehensive literature review, this paper outlines the key aspects of rock permeability by presenting the representative values of the permeability of different rocks, describing the empirical and semi-empirical correlations for estimating the permeability of rocks, and discussing the main factors affecting the permeability of rocks. The factors discussed include stress, depth, temperature, and discontinuity intensity and aperture. This paper also highlights the scale effect on rock permeability, interconnectivity of discontinuities, and anisotropy of rock permeability. This paper provides the fundamental and essential information required for effective evaluation of rock permeability.

Keywords rock      permeability      discontinuity      stress      temperature      scale effect      anisotropy     
Corresponding Author(s): ZHANG Lianyang,Email:lyzhang@email.arizona.edu   
Issue Date: 05 June 2013
 Cite this article:   
Lianyang ZHANG. Aspects of rock permeability[J]. Front Struc Civil Eng, 2013, 7(2): 102-116.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-013-0201-2
https://academic.hep.com.cn/fsce/EN/Y2013/V7/I2/102
Fig.1  Permeability versus porosity for Totliegent sandstone (after Ref. []).
Fig.2  Permeability versus porosity for sandstones at three different sites (after Ref. [])
Fig.3  Typical values of permeability coefficient for (a) Intact rocks, and (b) rock masses (after Ref. []).
Fig.4  Permeability versus grain size for Bentheim sandstone, Scherhorn oilfield, Germany (after Ref. [])
Fig.5  Variation of permeability coefficient of a set of smooth parallel discontinuities with discontinuity aperture and spacing (after Ref. []).
Fig.6  Rock mass containing: (a) a single discontinuity set; and (b) three orthogonal discontinuity sets (from Ref. [])
Fig.7  Measured permeability versus RQD for Cambrian sandstone rock mass in central Jordan (after Ref. [])
Fig.8  Permeability-RQD-discontinuity aperture chart (from Ref. [])
Fig.9  Effect of confining pressure on the permeability of Westerly granite rock (after Ref. [])
Fig.10  Effect of load acting parallel and perpendicular to a discontinuity on the permeability (after Ref. [])
Fig.11  Variation of measured permeability coefficient with depth in granitic rock mass, Sweden (from Ref. [])
Fig.12  Variation of rock mass permeability coefficient of the Bukit Timah granite with depth at three different sites (from Ref. [])
Fig.13  Variation of discontinuity aperture with depth (data from Ref. [,]).
Fig.14  Effect of temperature on hydraulic aperture of a natural discontinuity in novaculite (after Ref. [])
Fig.15  Effect of temperature on the permeability of tuff (after Ref. [])
Fig.16  Simplified representation of scale effect on rock mass permeability (modified from Ref. [])
Fig.17  Representative elemental volume (REV) for rock mass permeability (after Ref. [])
Fig.18  Representative elemental volume (REV) in different rock conditions: (a) Rock mass without discontinuities; (b) Rock mass containing discontinuities where REV includes sufficient discontinuity interactions; and (b) Rock mass containing large-scale discontinuities where REV is either very large or non-existent (after Ref. [])
Fig.19  (a) Domain C in Fig. 16 containing 8 discontinuities; and (b) 5 discontinuities in domain C are interconnected
rockKh/Kvreference
Rothbach sandstoneBerea sandstone Triassic Sherwood sandstoneGranite Crab Orchard sandstoneBentheim sandstoneSandstoneLimestoneAndesite5.34.02.0-3.32.52.21.21.3-5.91.6-8.34.0[7] [71] [3] [72] [65] [7] [90][90][90]
Tab.1  Ratio of permeability parallel to bedding to permeability perpendicular to bedding for different rocks
1 Hoek E, Bray JW. Rock Slope Engineering. London: Institution of Mining and Metallurgy , 1981
2 Oliveira R, Graca J C. In Situ Testing of Rocks. In: Bell FG, ed. Ground Engineer’s Reference Book , 1987, 26/1-26/28
3 Ayan C, Colley N, Cowan G, Ezekwe E, Wannell M, Goode P, Halford F, Joseph J, Mongini A, Pop J. Measuring permeability anisotropy: The latest approach. Oilfield Review , 1994, 24-27
4 Azeemuddin M, Roegiers J C, Suir P, Zaman M, Kukreti A R. Stress-dependent permeability measurement of rocks in a triaxial cell. In: Tillerson JR, Wawersik WR, eds. Proceedings of the 35th US Symposium on Rock Mechanics , 1995, 645-650
5 Indraratna B, Ranjith P, Gale W. Deformation and permeability characteristics of rocks with interconnected fractures. In: Proceedings of the 9th International Congress on Rock Mechanics , Paris, 1999, 2: 755-760
6 Ranjith P G. Analytical and numerical investigation of water and air flow through rock media. Dissertation for the Doctoral Degree . Wollongong: University of Wollongong, 2000
7 Louis L, David C, Metz V, Robion P, Menéndez B, Kissel C. Microstructural control on the anisotropy of elastic and transport properties in undeformed sandstones. International Journal of Rock Mechanics and Mining Sciences , 2005, 42(7/8): 911-923
8 Zhang L. Engineering Properties of Rocks. Volume 4 of Elsevier Geo-Engineering Book Series . Amsterdam: Elsevier, 2005
9 Meyer R, Krause F F. Permeability anisotropy and heterogeneity of a sandstone reservoir analogue: An estuarine to shoreface depositional system in the Virgelle Member, Milk River Formation, Writing-on-Stone Provincial Park, southern Alberta. Bulletin of Canadian Petroleum Geology , 2006, 54(4): 301-318
doi: 10.2113/gscpgbull.54.4.301
10 Hudson J A, Harrison J P. Engineering Rock Mechanics: An introduction to the principles. Amsterdam: Elsevier, 1997
11 Zhang X, Powrie W, Harkness R, Wang S. Estimation of permeability for the rock mass around the shiplocks of the three Gorges Project, China. International Journal of Rock Mechanics and Mining Sciences , 1999, 36(3): 381-397
doi: 10.1016/S0148-9062(99)00012-1
12 Heitfeld K H, Krapp L. The problem of water permeability in dam geology. Bull Int Assoc Eng Geol , 1981, 23(1): 79-83
doi: 10.1007/BF02594730
13 Singhal B B S, Gupta R P. Applied hydrology of fractured rocks. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1999
14 Wyllie D C, Mah C W. Rock slope engineering-Civil and mining. 4th ed. London: Spon Press, 2004
15 Van-Golf Racht T D. Fundamentals of Fractured Reservoir Engineering. Amsterdam: Elsevier, 1982
16 Goodman R E. Introduction to Rock Mechanics. New York: John Wiley and Sons, 1989
17 Schopper J R. Porosity and Permeability. In: Angenheister G, ed. Numerical Data and Functional Relationships in Science and Technology. Group V Geophysics and Space Research, Vol 1 Physical properties of Rocks, Springer-Verlag Berlin , 1982
18 Cade C A, Evans I J, Bryant S L. Analysis of permeability controls-a new approach. Clay Minerals , 1994, 29(4): 491-501
doi: 10.1180/claymin.1994.029.4.08
19 Yang Y L, Aplin A C. Permeability and petrophysical properties of 30 natural mudstones. Journal of Geophysical Research , 2007, 112(B3): B03206
doi: 10.1029/2005JB004243
20 Yang Y L, Aplin A C. A permeability-porosity relationship for mudstones. Marine and Petroleum Geology , 2010, 27(8): 1692-1697
doi: 10.1016/j.marpetgeo.2009.07.001
21 Sch?n J H. Physical Properties of Rocks - Fundamentals and Principles of Petrophysics. Oxford: Pergamon, 1996
22 Isherwood D.Geoscience Data Base Handbook for Modeling Nuclear Waste Repository. NUREG/CR-0912 V1, UCRL-52719, V1 , 1979
23 Huitt J L. Fluid flow in simulated fracture. J American Inst Chemical Eng , 1956, 2(2): 259-264
doi: 10.1002/aic.690020224
24 Snow D T. Anisotropic permeability of fractured media. Water Resources Research , 1968, 5(6): 1273-1289
doi: 10.1029/WR005i006p01273
25 Snow D T. Rock fracture spacings, openings and porosities. Journal of the Soil Mechanics and Foundations Division , 1968, 94: 73-91
26 Louis C A. A Study of Groundwater Flow in Jointed Rock and Its Influence on the Stability of Rock Masses, Rock Mechanics Research Report No. 10, Imperial College, London, England. Available from: Technical Information Center, U. S. Army Engineer Waterways Experiment Station, P. O. Box 631, Vicksburg, MS 39180-0631 , 1969
27 Sharp J C. Fluid Flow through Fissured Media. 论文Dissertation for the Doctoral Degree, London: University of London (Imperial College), 1970
28 Matsuki K, Chida Y, Sakaguchi K, Glover P W J. Size effect on aperture and permeability of a fracture as estimated in large synthetic fractures. International Journal of Rock Mechanics and Mining Sciences , 2006, 43(5): 726-755
doi: 10.1016/j.ijrmms.2005.12.001
29 Zhang J, Standifird W B, Roegiers J C, Zhang Y. Stress-dependent fluid flow and permeability in fractured media: from lab experiments to engineering applications. Rock Mechanics and Rock Engineering , 2007, 40(1): 3-21
doi: 10.1007/s00603-006-0103-x
30 Fernandez G, Moon J. Excavation-induced hydraulic conductivity reduction around a tunnel—Part 1: Guideline for estimate of ground water inflow rate. Tunnelling and Underground Space Technology , 2010, 25(5): 560-566
doi: 10.1016/j.tust.2010.03.006
31 Zou L, Tarasov B G, Dyskin A V, Adhikary D P, Pasternak E, Xu W. Physical modelling of stress-dependent permeability in fractured rocks. Rock Mechanics and Rock Engineering , 2013, 46(1): 67-81
doi: 10.1007/s00603-012-0254-x
32 Hakami E. Aperture distribution of rock fractures. Dissertation for the Doctoral Degree . Stockholm: Royal Institute of Technology, 1995
33 Zimmerman R W, Bodvarsson G S. Hydraulic conductivity of rock fractures. Transport in Porous Media , 1996, 23(1): 1-30
doi: 10.1007/BF00145263
34 Lomize G. Fluid Flow in Fissured Formation. Moskva, Leninggrad, 1951 (in Russian)
35 Quadros E F. Determinacao das caracteristicas do fluxo de agua em fracturas de rochas. 论文Dissert de Mestrado, S?o Paulo: University of S?o Paulo, 1982
36 Barton N, Bandis S, Bakhtar K. Strength, deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 1985, 22(3): 121-140
doi: 10.1016/0148-9062(85)93227-9
37 Barton N, Choubey V. The shear strength of rock joints in theory and practice. Rock Mechanics , 1977, 10(1-2): 1-54
doi: 10.1007/BF01261801
38 Barton N. Predicting the Behavior of Underground Openings in Rock. Manuel Rocha Memorial Lecture, Lisbon, Oslo, Norwegian Geotech Inst , 1987
39 Barton N, Bandis S C. Review of predictive capabilities of JRC-JCS model in engineering practice. In: Barton N, Stephansson O, eds. Proc Int Symp on Rock Joints . Loen, Norway, Balkema, Rotterdam, 1990, 603-610
40 Olsson R, Barton N. An improved model for hydromechanical coupling during shear of rock joints. International Journal of Rock Mechanics and Mining Sciences , 2001, 38(3): 317-329
doi: 10.1016/S1365-1609(00)00079-4
41 Elsworth D, Mase C R. Groundwater in rock engineering. In: Hudson JA, ed. Comprehensive Rock Engineering-Principle , Practice & Projects, Pergamon, Oxford, UK, 1993, 2: 201-226
42 El-Naqa A. The hydraulic conductivity of the fractures intersecting Cambrian sandstone rock masses, central Jordan. Environmental Geology , 2001, 40(8): 973-982
doi: 10.1007/s002540100266
43 Cha S S, Lee J Y, Lee D H, Amantini E, Lee K K. Engineering characterization of hydraulic properties in a pilot rock cavern for underground LNG storage. Engineering Geology , 2006, 84(3-4): 229-243
doi: 10.1016/j.enggeo.2006.02.001
44 Sen Z. Theoretical RQD-porosity-conductivity-aperture charts. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 1996, 33(2): 173-177
doi: 10.1016/0148-9062(95)00059-3
45 Brace W F, Walsh J B, Frangos W T. Permeability of granite under high pressure. Journal of Geophysical Research , 1968, 73(6): 2225-2236
doi: 10.1029/JB073i006p02225
46 Gangi A F. Variation of whole and fractured porous rocks permeability with confining pressure. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 1978, 15(5): 249-354
doi: 10.1016/0148-9062(78)90957-9
47 Kranz R L, Frankel A D, Engelder T, Scholz C H. The permeability of whole and jointed barre granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 1979, 16(4): 225-234
doi: 10.1016/0148-9062(79)91197-5
48 Oda M, Saitoo T, Kamemura K. Permeability of rock mass at great depth. In: Maury V, Fourmaintraux D, eds. Proceedings Symposium Rock at Great Depth , Balkema, Rotterdam, 1989, 449-456
49 Read M D, Meredith P G, Murrell S A F. Permeability measurement techniques under hydrostatic and deviatoric stress conditions. In: Maury V, Fourmaintraux D, eds. Proceedings Symposium Rock at Great Depth , Balkema, Rotterdam, 1989, 211-217
50 Jouanna P. A summary of field test methods in fractured rocks. In: Bear J, Tsang CF, de Marsily D, eds. Flow and Contaminant Transport in Fractured Rock , Academic Press, San Diego, 1993, 437-543
51 Ghabezloo S, Sulem J, Guedon S, Martineau F. Effective stress law for the permeability of a limestone. International Journal of Rock Mechanics and Mining Sciences , 2009, 46(2): 297-306
doi: 10.1016/j.ijrmms.2008.05.006
52 Jiang T, Shao J F, Xu W Y, Zhou C B. Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks. International Journal of Rock Mechanics and Mining Sciences , 2010, 47(5): 703-713
doi: 10.1016/j.ijrmms.2010.05.003
53 Yang D, Billiotte J, Su K. Characterization of the hydromechanical behavior of argillaceous rocks with effective gas permeability under deviatoric stress. Engineering Geology , 2010, 114(3-4): 116-122
doi: 10.1016/j.enggeo.2010.04.002
54 Chen Z, Pan Z, Liu J, Connell L D, Elsworth D. Effect of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Experimental observations. International Journal of Greenhouse Gas Control , 2011, 5(5): 1284-1293
doi: 10.1016/j.ijggc.2011.07.005
55 Konecny P, Kozusnikova A. Influence of stress on the permeability of coal and sedimentary rocks of the upper silesian basin. International Journal of Rock Mechanics and Mining Sciences , 2011, 48(2): 347-352
doi: 10.1016/j.ijrmms.2010.11.017
56 Metwally Y M, Sondergeld C H. Measuring low permeabilities of gas-sands and shales using a pressure transmission technique. International Journal of Rock Mechanics and Mining Sciences , 2011, 48(7): 1135-1144
doi: 10.1016/j.ijrmms.2011.08.004
57 Baghbanan A, Jing L. Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture. International Journal of Rock Mechanics and Mining Sciences , 2008, 45(8): 1320-1334
doi: 10.1016/j.ijrmms.2008.01.015
58 Kishida K, Kawaguchi Y, Nakashima S, Yasuhara H. Estimation of shear strength recovery and permeability of single rock fractures in shear-hold-shear type direct shear tests. International Journal of Rock Mechanics and Mining Sciences , 2011, 48(5): 782-793
doi: 10.1016/j.ijrmms.2011.04.002
59 Wong L G Y, Li D, Liu G. Experimental studies on permeability of intact and singly jointed meta-sedimentary rocks under confining pressure. Rock Mechanics and Rock Engineering , 2013, 46(1): 107-121
doi: 10.1007/s00603-012-0251-0
60 Tiller F M. The role of porosity in filtration: Numerical methods for constant rate and constant pressure filtration based on Kozeny’s law. Chemical Engineering Progress , 1953, 49(9): 467-479
61 Louis C A, Dessenne J L, Feuga B. Interaction between water flow phenomena and the mechanical behavior of soil or rock masses. In: Gudehus G, eds. Finite Elements in Geomechanics , New York: Wiley, 1977, 479-511
62 Brace W F. A note on permeability changes in geological material due to stress. Pure and Applied Geophysics , 1978, 116(4-5): 627-633
doi: 10.1007/BF00876529
63 Jones F O. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks. Journal of Petroleum Technology , 1975, 21: 21-27
64 Nelson R. Fracture permeability in porous reservoirs: Experimental and field approach. Dissertation for the Doctoral Degree . Texas: Texas A&M University, 1975
65 Walsh J B, Grosenbaugh M A. A new model for analyzing the effect of fractures on compressibility. Journal of Geophysical Research , 1979, 84(B7): 3532-3536
doi: 10.1029/JB084iB07p03532
66 Walsh J B. Effects of pore pressure and confining pressure on fracture permeability. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 1981, 18(5): 429-435
doi: 10.1016/0148-9062(81)90006-1
67 Louis C A. Rock Hydraulics. In: Muller L, ed. Rock Mechanics. Viena: Springer Verlag, 1974, 299-382
68 Meng Z, Zhang J, Wang R. In-situ stress, pore pressure and stress-dependent permeability in the Southern Qinshui Basin. International Journal of Rock Mechanics and Mining Sciences , 2011, 48(1): 122-131
doi: 10.1016/j.ijrmms.2010.10.003
69 Carlsson A, Olsson T. The analysis of fractures, stress and water flow for rock engineering projects. In: Hudson JA, ed. Comprehensive Rock Engineering-Principle, Practice & Projects. Pergamon, Oxford, UK, 1993, 2: 415-437
70 Strack O D L. Groundwater Mechanics. Englewood Cliffs, NJ: Prentice Hall, 1989
71 Wei Z Q, Hudson J A. Permeability of jointed rock masses. In: Proc Int Symp Rock Mech and Power Plants . Balkema, Rotterdam, 1988, 613-625
72 Wei Z Q, Egger P, Descoeudres F. Permeability predictions for jointed rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 1995, 32(3): 251-261
doi: 10.1016/0148-9062(94)00034-Z
73 Burgess A. Groundwater Movements around a Repository - Regional Groundwater Flow Analysis. KBS 54:03, Kaernbraenslesaekerhet , Stockholm, Sweden, 1977
74 Indraratna B, Ranjith P. Hydromechanical Aspects and Unsaturated Flow in Jointed Rock. Lisse: Balkema, 2001
75 Zhao J. Rock mass hydraulic conductivity of the Bukit Timah granite, Singapore. Engineering Geology , 1998, 50(1-2): 211-216
doi: 10.1016/S0013-7952(98)00021-0
76 Moore D E, Lockner D A, Byerlee J A. Reduction of permeability in granite at elevated temperatures. Science, New Series , 1994, 265: 1558-1561
77 Polak A, Elsworth D, Yahuhara H, Grader A S, Halleck P M. Permeability reduction of a natural fracture under net dissolution by hydrothermal fluids. Geophysical Research Letters , 2003, 30(20): 2020
doi: 10.1029/2003GL017575
78 Rosenbrand E, Fabricius I L, Yuan H. Thermally induced permeability reduction due to particle migration in sandstones: the effect of temperature on kaolinite mobilization and aggregation. Proceedings, Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30 - February 1, SGP-TR-194 , 2012
79 Lin W, Roberts J, Glassley W, Ruddle D. Fracture and matrix permeability at elevated temperatures. Workshop on significant issues and available data. Near-field/Altered-zone coupled effects expert elicitation project , San Francisco, 1997
80 Lee C H, Farmer I. Fluid Flow in Discontinuous Rocks. London: Chapman & Hall, 1993
81 Barton N, Lingle R. Rock mass characterization methods for nuclear waste repositories in jointed rock. In: Rock Mech: Caverns and Pressure Shafts , ISRM Symp, Aachen, 1982, 3-18
82 Kunkel J R, Way S C, McKee C R. Comparative evaluation of selected continuum and discrete-fracture models, US Nuclear Regulatory Commission, NUREG/CR-5240 , 1988
83 Brady B H G, Brown E T. Rock Mechanics for Underground Mining. London: George Allen & Unwin , 1985
84 McCrae R W. Geotechnical Factors Affecting the Design of Highway Tunnels in Hard Rock. Dissertation for the Doctoral Degree . Newcastle: University of Newcastle, 1982
85 Andersson J E, Ekman L, Winberg A. Detailed hydraulic characterization of a fracture zone in the Brandan area, Finnsjon, Sweden. In: Hitchon B, Bachu S, eds. Proc 4th Canadian/American Conf on Hydrogeol , Natl Water Well Assoc, Dublin, Ohio, 1988, 32-39
86 Talbot C J, Sirat M. Stress control of hydraulic conductivity in fractured-saturated Swedish bedrock. Engineering Geology , 2001, 61(2-3): 145-153
doi: 10.1016/S0013-7952(01)00047-3
87 Benson P M, Meredith P G, Platzman E S, White R E. Pore fabric shape anisotropy in porous sandstones and its relation to elastic wave velocity and permeability anisotropy under hydrostatic pressure. International Journal of Rock Mechanics and Mining Sciences , 2005, 42(7/8): 890-899
88 Zobak M D, Byerlee J D. Effect of high-pressure deformation on the permeability of Ottawa Sand. Bull Am Assoc Petro Geol , 1976, 60: 1531-1542
89 Pratt H R, Schrauf T A, Bills L A, Hustrulid W A. Thermal and Mechanical Properties of Granite, Stripa, Sweden. TerraTek Summary Report TR-77-92 , Salt Lake City, Utah, 1977
90 Bieber M T, Rasolofosaon P, Zinszner B, Zamora M. Measurements and overall characterization of permeability anisotropy by tracer injection. Revue de l'Institut Fran?ais du Pétrole , 1996, 51: 333-347
91 Renard P, Genty A, Stauffer F. Laboratory determination of the full permeability tensor. Journal of Geophysical Research , 2001, 106(B11): 26,443-26,452
doi: 10.1029/2001JB000243
92 Clavaud J B, Maineult A, Zamora M, Rasolofosaon P, Schlitter C. Permeability anisotropy and its relations with porous medium structure. Journal of Geophysical Research , 2008, 113(B1): B01202
doi: 10.1029/2007JB005004
[1] Yurong ZHANG, Shengxuan XU, Yanhong GAO, Jie GUO, Yinghui CAO, Junzhi ZHANG. Correlation of chloride diffusion coefficient and microstructure parameters in concrete: A comparative analysis using NMR, MIP, and X-CT[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1509-1519.
[2] Harun TANYILDIZI, Abdulkadir ŞENGÜR, Yaman AKBULUT, Murat ŞAHİN. Deep learning model for estimating the mechanical properties of concrete containing silica fume exposed to high temperatures[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1316-1330.
[3] Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG. An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1299-1315.
[4] Aydin SHISHEGARAN, Behnam KARAMI, Timon RABCZUK, Arshia SHISHEGARAN, Mohammad Ali NAGHSH, Mohammreza MOHAMMAD KHANI. Performance of fixed beam without interacting bars[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1180-1195.
[5] Zohreh SHEIKH KHOZANI, Khabat KHOSRAVI, Mohammadamin TORABI, Amir MOSAVI, Bahram REZAEI, Timon RABCZUK. Shear stress distribution prediction in symmetric compound channels using data mining and machine learning models[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1097-1109.
[6] Zhitao LV, Caichu XIA, Yuesong WANG, Ziliang LIN. Frost heave and freezing processes of saturated rock with an open crack under different freezing conditions[J]. Front. Struct. Civ. Eng., 2020, 14(4): 947-960.
[7] Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG. Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected to eccentric compression[J]. Front. Struct. Civ. Eng., 2020, 14(3): 760-772.
[8] Mahmood AKBARI, Vahid JAFARI DELIGANI. Data driven models for compressive strength prediction of concrete at high temperatures[J]. Front. Struct. Civ. Eng., 2020, 14(2): 311-321.
[9] Baoyun ZHAO, Yang LIU, Dongyan LIU, Wei HUANG, Xiaoping WANG, Guibao YU, Shu LIU. Research on the influence of contact surface constraint on mechanical properties of rock-concrete composite specimens under compressive loads[J]. Front. Struct. Civ. Eng., 2020, 14(2): 322-330.
[10] Michaela GKANTOU, Marios THEOFANOUS, Charalampos BANIOTOPOULOS. A numerical study of prestressed high strength steel tubular members[J]. Front. Struct. Civ. Eng., 2020, 14(1): 10-22.
[11] Reza KHADEMI ZAHEDI, Pouyan ALIMOURI, Hooman KHADEMI ZAHEDI, Mohammad SHISHESAZ. Investigating peak stresses in fitting and repair patches of buried polyethylene gas pipes[J]. Front. Struct. Civ. Eng., 2020, 14(1): 147-168.
[12] Shaochun WANG, Xuehui ZHANG, Yun BAI. Comparative study on foundation treatment methods of immersed tunnels in China[J]. Front. Struct. Civ. Eng., 2020, 14(1): 82-93.
[13] Nazim Abdul NARIMAN, Ayad Mohammad RAMADAN, Ilham Ibrahim MOHAMMAD. Application of coupled XFEM-BCQO in the structural optimization of a circular tunnel lining subjected to a ground motion[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1495-1509.
[14] Xiao YAN, Zizheng SUN, Shucai LI, Rentai LIU, Qingsong ZHANG, Yiming ZHANG. Quantitatively assessing the pre-grouting effect on the stability of tunnels excavated in fault zones with discontinuity layout optimization: A case study[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1393-1404.
[15] Aydin SHISHEGARAN, Mohammad Reza GHASEMI, Hesam VARAEE. Performance of a novel bent-up bars system not interacting with concrete[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1301-1315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed