Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2018, Vol. 12 Issue (2) : 201-206    https://doi.org/10.1007/s11709-017-0402-1
RESEARCH ARTICLE
A dimensional analysis on asphalt binder fracture and fatigue cracking
Qian ZHAO(), Zhoujing YE
National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
 Download: PDF(482 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fracture and fatigue cracking in asphalt binder are two of most serious problems for pavement engineers. In this paper, we present a new comprehensive approach, which consists both of dimensional analysis using Buckingham Π Theorem and J-integral analysis based on classic fracture mechanics, to evaluate the fracture and fatigue on asphalt binder. It is discovered that the dimensional analysis could provide a new perspective to analyze the asphalt fracture and fatigue cracking mechanism.

Keywords Dimensional analysis      asphalt      fracture      fatigue cracking     
Corresponding Author(s): Qian ZHAO   
Online First Date: 12 June 2017    Issue Date: 23 April 2018
 Cite this article:   
Qian ZHAO,Zhoujing YE. A dimensional analysis on asphalt binder fracture and fatigue cracking[J]. Front. Struct. Civ. Eng., 2018, 12(2): 201-206.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-017-0402-1
https://academic.hep.com.cn/fsce/EN/Y2018/V12/I2/201
Fig.1  Typical cracking in asphalt pavements
[F] [t] [E] [v] [ σb] [ KC] [w] [d] [ l0] [L] [S]
F 1 0 1 0 1 1 0 0 0 0 0
L 0 0 -2 0 -2 - 1 1 1 1 2
T 0 1 0 0 0 0 0 0 0 0 0
Tab.1  Quantities in asphalt low temperature cracking process
Fig.2  Four point bending test on asphalt mixture
[F] [H] [E] [v] [ σ0] [ KC] [w] [d] [ l0] [L] [S]
F 1 0 1 0 1 1 0 0 0 0 0
L 0 0 -2 0 -2 - 1 1 1 1 2
T 0 -1 0 0 0 0 0 0 0 0 0
Tab.2  Quantities in asphalt fatigue cracking
1 Isacsson U, Zeng H. Relationships between bitumen chemistry and low temperature behaviour of asphalt. Construction & Building Materials, 1997, 11(2): 83–91
https://doi.org/10.1016/S0950-0618(97)00008-1
2 Braham A F, Buttlar W G, Marasteanu M O. Effect of binder type, aggregate, and mixture composition on fracture energy of hot-mix asphalt in cold climates. Transportation Research Record, 2001, 2007: 102–109
3 Dave E V, Buttlar W G. Low Temperature Cracking Prediction with Consideration of Temperature Dependent Bulk and Fracture Properties. road materials and pavement design, 2010. 11(SI): p. 33–59
29 Hou Y, Yue P, Wang L, Sun W. Investigation of the Asphalt Self-Healing Mechanism Using a Phase-Field Model. Journal of Materials in Civil Engineering, 2015, 27(3): 04014118
30 Hou Y, Wang L, Pauli T, Sun W. Fracture failure in crack interaction of asphalt binder by using a phase field approach. MATERIALS AND STRUCTURES, 2015. 48(9): 2997–3008
4 Cerni G, Cardone F, Colagrande S. Low-temperature tensile behaviour of asphalt binders: Application of loading time–temperature–conditioning time superposition principle. Construction & Building Materials, 2011, 25(4): 2133–2145
https://doi.org/10.1016/j.conbuildmat.2010.11.018
5 Akentuna M, Kim S S, Nazzal M, Abbas A R, Arefin M S. Study of the thermal stress development of asphalt mixtures using the Asphalt Concrete Cracking Device (ACCD). Construction & Building Materials, 2016, 114: 416–422
https://doi.org/10.1016/j.conbuildmat.2016.03.207
6 Pirmohammad S, Ayatollahi M R. Asphalt concrete resistance against fracture at low temperatures under different modes of loading. Cold Regions Science and Technology, 2015, 110: 149–159
https://doi.org/10.1016/j.coldregions.2014.11.001
31 Hou Y, Sun F, Sun W, Guo M, Xing C, Wu J. Quasi-Brittle Fracture Modeling of Preflawed Bitumen Using a Diffuse Interface Model. Advances in Materials Science and Engineering, 2016, (6): 1–7
7 Irwin G R. Linear fracture mechanics, fracture transition, and fracture control. Engineering Fracture Mechanics, 1968, 1(2): 241–257
https://doi.org/10.1016/0013-7944(68)90001-5
8 Das P K, Jelagin D, Birgisson B R. Evaluation of the low temperature cracking performance of asphalt mixtures utilizing HMA fracture mechanics. Construction & Building Materials, 2013, 47: 594–600
https://doi.org/10.1016/j.conbuildmat.2013.05.031
9 Saha G, Biligiri K P. Fracture properties of asphalt mixtures using semi-circular bending test: A state-of-the-art review and future research. Construction & Building Materials, 2016, 105: 103– 112
https://doi.org/10.1016/j.conbuildmat.2015.12.046
10 Hou Y, Yue P, Xin Q, Pauli T, Sun W, Wang L. Fracture failure of asphalt binder in mixed mode (Modes I and II) by using phase-field model. Road Materials and Pavement Design, 2014, 15(1): 167– 181
https://doi.org/10.1080/14680629.2013.866155
11 Arnold J W, Behnia B, McGovern M E, Hill B, Buttlar W G, Reis H. Quantitative evaluation of low-temperature performance of sustainable asphalt pavements containing recycled asphalt shingles (RAS). Construction & Building Materials, 2014, 58: 1–8
https://doi.org/10.1016/j.conbuildmat.2014.02.002
12 Moriyoshi A, Shen J, Ezawa K, Tomoto T. Comparison of various testing methods for low-temperature properties of asphalts. Journal of the Japan Petroleum Institute, 2005, 48(6): 336–343
https://doi.org/10.1627/jpi.48.336
32 Hou Y, Sun W, Das P, Song X, Wang L, Ge Z, Huang Y. Coupled Navier-Stokes Phase-Field Model to Evaluate the Microscopic Phase Separation in Asphalt Binder under Thermal Loading. Journal of Materials in Civil Engineering, 2016, 28(10): 04016100
13 Behnia B, Dave E V, Buttlar W G, Reis H. Characterization of embrittlement temperature of asphalt materials through implementation of acoustic emission technique. Construction & Building Materials, 2016, 111: 147–152
https://doi.org/10.1016/j.conbuildmat.2016.02.105
14 Zhao Y. Irwin number and ductile-brittle fracture transition. International Journal of Fracture, 1996, 75(1): R17–R21
https://doi.org/10.1007/BF00018531
15 Akono A, Reis P M, Ulm F. Scratching as a Fracture Process: From Butter to Steel. Physical Review Letters, 2011, 106(20): 204302
16 Rice J R. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, 1968, 35(2): 379–386
https://doi.org/10.1115/1.3601206
17 Rice J R. Limitations to the small scale yielding approximation for crack tip plasticity. Journal of the Mechanics and Physics of Solids, 1974, 22(1): 17–26
https://doi.org/10.1016/0022-5096(74)90010-6
18 Irwin G R. Fracture strength of relatively brittle structures and materials. Journal of the Franklin Institute, 1970, 290(6): 513–521
https://doi.org/10.1016/0016-0032(70)90234-6
[1] Luthfi Muhammad MAULUDIN, Chahmi OUCIF, Timon RABCZUK. The effects of mismatch fracture properties in encapsulation-based self-healing concrete using cohesive-zone model[J]. Front. Struct. Civ. Eng., 2020, 14(3): 792-801.
[2] Luthfi Muhammad MAULUDIN, Chahmi OUCIF. Computational modeling of fracture in concrete: A review[J]. Front. Struct. Civ. Eng., 2020, 14(3): 586-598.
[3] Fucheng GUO, Jiupeng ZHANG, Jianzhong PEI, Weisi MA, Zhuang HU, Yongsheng GUAN. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation[J]. Front. Struct. Civ. Eng., 2020, 14(2): 435-445.
[4] Lingyun YOU, Kezhen YAN, Nengyuan LIU. Assessing artificial neural network performance for predicting interlayer conditions and layer modulus of multi-layered flexible pavement[J]. Front. Struct. Civ. Eng., 2020, 14(2): 487-500.
[5] Dongliang HU, Jianzhong PEI, Rui LI, Jiupeng ZHANG, Yanshun JIA, Zepeng FAN. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation[J]. Front. Struct. Civ. Eng., 2020, 14(1): 109-122.
[6] Xudong SHAO, Lu DENG, Junhui CAO. Innovative steel-UHPC composite bridge girders for long-span bridges[J]. Front. Struct. Civ. Eng., 2019, 13(4): 981-989.
[7] Chuangmin LI, Fanbo NING, Yuanyuan LI. Effect of carbon black on the dynamic moduli of asphalt mixtures and its master curves[J]. Front. Struct. Civ. Eng., 2019, 13(4): 918-925.
[8] Ali Reza GHANIZADEH, Morteza RAHROVAN. Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression spline[J]. Front. Struct. Civ. Eng., 2019, 13(4): 787-799.
[9] Hsien-Yang YEH, Bin YANG. A concise review about fracture assessments of brittle solids with V-notches[J]. Front. Struct. Civ. Eng., 2019, 13(2): 478-485.
[10] G. D. HUYNH, X. ZHUANG, H. NGUYEN-XUAN. Implementation aspects of a phase-field approach for brittle fracture[J]. Front. Struct. Civ. Eng., 2019, 13(2): 417-428.
[11] HIRSHIKESH, Sundararajan NATARAJAN, Ratna Kumar ANNABATTULA. A FEniCS implementation of the phase field method for quasi-static brittle fracture[J]. Front. Struct. Civ. Eng., 2019, 13(2): 380-396.
[12] Luthfi Muhammad MAULUDIN, Chahmi OUCIF. The effects of interfacial strength on fractured microcapsule[J]. Front. Struct. Civ. Eng., 2019, 13(2): 353-363.
[13] Jitang FAN. Evaluating the material strength from fracture angle under uniaxial loading[J]. Front. Struct. Civ. Eng., 2019, 13(2): 288-293.
[14] Ali JENABIDEHKORDI. Computational methods for fracture in rock: a review and recent advances[J]. Front. Struct. Civ. Eng., 2019, 13(2): 273-287.
[15] Pengfei HE, Yang SHEN, Yun GU, Pangyong SHEN. 3D fracture modelling and limit state analysis of prestressed composite concrete pipes[J]. Front. Struct. Civ. Eng., 2019, 13(1): 165-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed