Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2018, Vol. 12 Issue (2) : 183-191    https://doi.org/10.1007/s11709-017-0412-z
REVIEW
Structural pavement assessment in Germany
Lutz PINKOFSKY, Dirk JANSEN()
Bundesanstalt für Straßenwesen (Federal Highway Research Institute) BASt, Bruederstrasse 53, 51427 Bergisch Gladbach, Germany
 Download: PDF(1729 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aging structure as well as the considerable increase of heavy-traffic load on Germany’s motorways and trunk roads encourages the use of innovative, sound and reliable methods for the structural assessment on network level as well as on project level. Essential elements for this are data, which allow a reliable assessment. For a holistic approach to structural pavement assessment performance orientated measurements will be necessary. In combination with functional parameters as well as write-down models, strategically motivated decision making processes will be useful combined with technically motivated decision processes. For the application at the network level, the available methods for performance orientated measurements are still challenging, as they are based either on testing drill-cores or on non-traffic speed methods. In recent years significant innovation steps have been made to bring traffic speed bearing capacity measurements and methods for evaluating pavement structures on the road. The paper summarizes the actual assessment procedures in Germany as well as the ongoing work on the development and implementation of new methods and techniques.

Keywords pavement assessment      Germany      structure      system     
Corresponding Author(s): Dirk JANSEN   
Online First Date: 05 September 2017    Issue Date: 23 April 2018
 Cite this article:   
Lutz PINKOFSKY,Dirk JANSEN. Structural pavement assessment in Germany[J]. Front. Struct. Civ. Eng., 2018, 12(2): 183-191.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-017-0412-z
https://academic.hep.com.cn/fsce/EN/Y2018/V12/I2/183
Fig.1  Modules of structural pavement assessment
Fig.2  Perfect data mix for the structural assessment of pavements
Fig.3  Deriving a structural number with the data from surface monitoring
Fig.4  Deriving a structural number with the write-down model
Fig.5  Bearing capacity measurement devices
Fig.6  Ground-Penetration-Radar principle and equipment
Fig.7  Principle of structural assessment based on laboratory examination
Fig.8  Multifunctional measurement vehicle MESAS
Fig.9  German TSD projects
Fig.10  Impression from the 2014 measurements
Fig.11  Comparison of the measured slope value of the two TSD
Fig.12  Example for drop out of the algorithm for deflection calculation
Fig.13  In-Motion project idea
1 FGSV. Zusätzliche Technische Vertragsbedingungen und Richtlinien zur Zustandserfassung und -bewertung von Straßen (ZTV ZEB-StB), 2007 (in German)
2 FGSV. Technische Prüfvorschriften für Griffigkeitsmessungen im Straßenbau, Teil: Seitenkraftmessverfahren (TP Griff – SKM), 2008 (in German)
3 FGSV. Technische Prüfvorschriften für Ebenheitsmessungen auf Fahrbahnoberflächen in Längs- und Querrichtung, Teil: Berührungslose Messungen (TP Eben – Berührungslose Messungen), 2009 (in German)
4 FGSV. Arbeitspapier Nr. 9/A1 zur ZEB, Reihe A, Zustandsbewertung bei messtechnischer Erfassung, 2001 (in German)
5 FGSV. Arbeitspapier Nr. 9/S zur Erhaltungsplanung, Reihe S, Substanzwert (Bestand), 2003 (in German)
6 FGSV. Arbeitspapier Tragfähigkeit, Teil A, Messsysteme, 2013 (in German)
7 FGSV. Arbeitspapier Tragfähigkeit, Teil B 2.1 Falling Weight Deflectometer (FWD): Gerätebeschreibung, Messdurchführung – Asphaltbauweisen, 2008 (in German)
8 FGSV. Arbeitspapier Tragfähigkeit, Teil B 2.2 Falling Weight Deflectometer (FWD): Gerätebeschreibung, Messdurchführung – Betonbauweisen, 2012 (in German)
9 FGSV. Arbeitspapier Tragfähigkeit, Teil C 2.1 Falling Weight Deflectometer (FWD): Auswertung von Einsenkungsmessungen – Asphaltbauweisen, 2014 (in German)
10 FGSV. Arbeitspapier Tragfähigkeit, Teil C 2.2 Falling Weight Deflectometer (FWD): Auswertung von Einsenkungsmessungen – Betonbauweisen (Draft), 2016 (in German)
11 FGSV. Arbeitspapier Tragfähigkeit, Teil B 3 Lacroix: Auswertung von Einsenkungsmessungen, 2008 (in German)
12 FGSV. Arbeitspapier Tragfähigkeit, Teil B 3 Lacroix: Gerätebeschreibung, Messdurchführung, 2008 (in German)
13 FGSV. Arbeitspapier Tragfähigkeit, Teil B 4 Curviametro: Gerätebeschreibung, Messdurchführung, 2012 (in German)
14 FGSV. Arbeitspapier Tragfähigkeit, Teil B 5 Schnellfahrendes Messsystem Traffic Speed Deflectometer (TSD): Gerätebeschreibung, Messdurchführung, 2016 (in German)
15 FGSV. Arbeitspapier Tragfähigkeit, Teil B 5 Schnellfahrendes Messsystem Traffic Speed Deflectometer (TSD): Auswertung von Einsenkungsmessungen (Draft), 2016 (in German)
16 FGSV. Arbeitspapier Anwendung des Georadar zur Substanzbewertung von Straßen, 2016 (in German)
17 FGSV. Richtlinien zur Bewertung der strukturellen Substanz des Oberbaus von Verkehrsflächen in Asphaltbauweise RSO Asphalt (Draft), 2015 (in German)
18 Weller O, Degelmann R, Jansen D. Load capacity measurements with the Traffic-Speed-Deflectometer (TSD). Routes/Roads, 2015, 2(366): 72–81
19 Jansen D. Comparative TSD measurements at Autobahn A7, BASt-Report. 2015
[1] Yurong ZHANG, Shengxuan XU, Yanhong GAO, Jie GUO, Yinghui CAO, Junzhi ZHANG. Correlation of chloride diffusion coefficient and microstructure parameters in concrete: A comparative analysis using NMR, MIP, and X-CT[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1509-1519.
[2] Sang I. PARK, Sang-Ho LEE. Heuristic solution using decision tree model for enhanced XML schema matching of bridge structural calculation documents[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1403-1417.
[3] El Houcine MOURID, Said MAMOURI, Adnan IBRAHIMBEGOVIC. Progressive collapse of 2D reinforced concrete structures under sudden column removal[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1387-1402.
[4] Beibei SUN, Hao WU, Weimin SONG, Zhe LI, Jia YU. Hydration, microstructure and autogenous shrinkage behaviors of cement mortars by addition of superabsorbent polymers[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1274-1284.
[5] Aydin SHISHEGARAN, Behnam KARAMI, Timon RABCZUK, Arshia SHISHEGARAN, Mohammad Ali NAGHSH, Mohammreza MOHAMMAD KHANI. Performance of fixed beam without interacting bars[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1180-1195.
[6] Wei XIONG, Shan-Jun ZHANG, Li-Zhong JIANG, Yao-Zhuang LI. Parametric study on the Multangular-Pyramid Concave Friction System (MPCFS) for seismic isolation[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1152-1165.
[7] Siamak TALATAHARI, Mahdi RABIEI. Shear wall layout optimization of tall buildings using Quantum Charged System Search[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1131-1151.
[8] Nader KARBALLAEEZADEH, Hosein GHASEMZADEH TEHRANI, Danial MOHAMMADZADEH SHADMEHRI, Shahaboddin SHAMSHIRBAND. Estimation of flexible pavement structural capacity using machine learning techniques[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1083-1096.
[9] Jie LI. A PDEM-based perspective to engineering reliability: From structures to lifeline networks[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1056-1065.
[10] Ali ALSALEH, Hamid M. SEDIGHI, Hassen M. OUAKAD. Experimental and theoretical investigations of the lateral vibrations of an unbalanced Jeffcott rotor[J]. Front. Struct. Civ. Eng., 2020, 14(4): 1024-1032.
[11] Chunfeng ZHAO, Xin YE, Avinash GAUTAM, Xin LU, Y. L. MO. Simplified theoretical analysis and numerical study on the dynamic behavior of FCP under blast loads[J]. Front. Struct. Civ. Eng., 2020, 14(4): 983-997.
[12] Lingyun YOU, Kezhen YAN, Jianhong MAN, Nengyuan LIU. Anisotropy of multi-layered structure with sliding and bonded interlayer conditions[J]. Front. Struct. Civ. Eng., 2020, 14(3): 632-645.
[13] Yu-Fei WU, Ying-Wu ZHOU, Biao HU, Xiaoxu HUANG, Scott SMITH. Fused structures for safer and more economical constructions[J]. Front. Struct. Civ. Eng., 2020, 14(1): 1-9.
[14] Nishant SHARMA, Kaustubh DASGUPTA, Arindam DEY. Optimum lateral extent of soil domain for dynamic SSI analysis of RC framed buildings on pile foundations[J]. Front. Struct. Civ. Eng., 2020, 14(1): 62-81.
[15] Tugrul TALASLIOGLU. Optimal dome design considering member-related design constraints[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1150-1170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed