Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2021, Vol. 15 Issue (6) : 1415-1425    https://doi.org/10.1007/s11709-021-0786-9
RESEARCH ARTICLE
Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete column
Bo DA1,2,3,4, Yan CHEN2, Hongfa YU5(), Haiyan MA5(), Bo YU4, Da CHEN2,3, Xiao CHEN1, Zhangyu WU5, Jianbo GUO5
1. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
2. College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
3. Key Laboratory of Coastal Disaster and Defence of Ministry of Education, Hohai University, Nanjing 210098, China
4. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
5. Department of Civil and Airport Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 Download: PDF(4595 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To study the behavior of coral aggregate concrete (CAC) column under axial and eccentric compression, the compression behavior of CAC column with different types of steel and initial eccentricity (ei) were tested, and the deformation behavior and ultimate bearing capacity (Nu) were studied. The results showed that as the ei increases, the Nu of CAC column decreases nonlinearly. Besides, the steel corrosion in CAC column is severe, which reduces the steel section and steel strength, and decreases the Nu of CAC column. The durability of CAC structures can be improved by using new organic coated steel. Considering the influence of steel corrosion and interfacial bond deterioration, the calculation models of Nu under axial and eccentric compression were presented.

Keywords coral aggregate concrete column      axial compression      eccentric compression      steel corrosion      calculation model     
Corresponding Author(s): Hongfa YU,Haiyan MA   
Just Accepted Date: 19 November 2021   Online First Date: 23 December 2021    Issue Date: 21 January 2022
 Cite this article:   
Bo DA,Yan CHEN,Hongfa YU, et al. Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete column[J]. Front. Struct. Civ. Eng., 2021, 15(6): 1415-1425.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-021-0786-9
https://academic.hep.com.cn/fsce/EN/Y2021/V15/I6/1415
Fig.1  Dimension and steel detail of CAC column (mm).
basic parameters coral coral sand
bulk density (kg·m?3) 1000 1115
apparent density (kg·m?3) 2300 2500
chloride content (%) 0.074 0.112
mud content (%) 0.5
fineness modulus 2.9
Tab.1  Basic parameters of coral sand and coral
No. concrete type steel type ei (mm) fcu (MPa) fc (MPa) fcm (MPa) fy (MPa) ω (%) ωsm (%) Ncr (kN) Nu (kN)
L3-1 OAC B 160 62.8 51.8 54.4 530 110 410
L3-2 B 160 61.8 51.0 53.6 530 100 470
L4-2 CAC C 160 104.1 81.8 85.9 922 0.10 0.13 130 570
L5-1 A 160 104.9 82.4 86.5 530 2.12 2.76 90 700
L5-2 A 160 104.6 82.1 86.2 530 2.12 2.76 110 720
L6-1 B 160 104.6 82.1 86.2 530 0.53 0.69 120 650
L6-2 B 160 103.2 81.1 85.2 530 0.53 0.69 100 570
A7-1 B 0 104.8 82.3 86.4 530 0.53 0.69 810
A7-2 B 0 103.9 81.6 85.7 530 0.53 0.69 1900
S8-1 B 70 104.7 82.2 86.3 530 0.53 0.69 360 1540
S8-2 B 70 104.3 81.9 86.0 530 0.53 0.69 300 1550
Tab.2  Basic parameters of CAC column
Fig.2  Schematic diagram of compression behavior test of CAC column: (a) axial compression; (b) eccentric compression.
Fig.3  Failure mode of CAC column: (a) L3-1; (b) L3-2; (c) L6-1; (d) L6-2; (e) A7-1; (f) A7-2;(g) S8-1; (h) S8-2.
Fig.4  Load–displacement curves of CAC column: (a) axial displacement; (b) midspan lateral displacement.
Fig.5  Load–compressive strain curves of CAC column: (a) concrete; (b) steel.
Fig.6  Load–tensile strain curves of CAC column.
Fig.7  Ultimate bearing capacity of CAC column.
No. Nut Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (16)
Nuc Nuc/Nut Nuc Nuc/Nut Nuc Nuc/Nut Nuc Nuc/Nut Nuc Nuc/Nut
A7-1 810 4041 4.988 4355 5.376 2859 3.530 2133 2.634 1911 2.359
A7-2 1900 4012 2.112 4324 2.276 2856 1.503 2119 1.115 1909 1.005
CS-1 [7] 1067 1115 1.045 1215 1.138 1038 0.973 599 0.561 1038 0.973
CL1-1 [7] 796 916 1.151 946 1.189 861 1.082 493 0.620 861 1.082
CL2-1 [7] 733 950 1.297 876 1.196 892 1.217 512 0.698 892 1.217
Tab.3  Nuc and Nut of CAC column under axial compression (kN)
Fig.8  Nuc and Nut of CAC column under axial compression.
No. Nut Eq. (6) Eq. (7) Eq. (8) Eq. (9) Eq. (17)
Nuc Nuc/Nut Nuc Nuc/Nut Nuc Nuc/Nut Nuc Nuc/Nut Nuc Nuc/Nut
S8-1 1540 2003 1.301 1990 1.292 607 0.394 951 0.617 1549 1.006
S8-2 1550 2010 1.297 1997 1.288 610 0.394 951 0.614 1554 1.003
CS-2 [7] 804 492 0.612 837 1.041 169 0.210 193 0.240 837 1.041
CS-3 [7] 739 428 0.580 765 1.036 153 0.207 182 0.246 765 1.036
CS-4 [7] 619 368 0.596 621 1.004 139 0.224 180 0.292 621 1.004
CL1-2 [7] 531 340 0.640 581 1.093 133 0.250 174 0.327 581 1.093
CL1-3 [7] 426 260 0.611 417 0.978 105 0.247 150 0.352 417 0.978
CL2-2 [7] 540 336 0.621 574 1.062 130 0.241 170 0.314 574 1.062
Tab.4  Nuc and Nut of CAC column under small eccentric compression (kN)
Fig.9  Nuc and Nut of CAC column under small eccentric compression.
No. Nut Eq. (10) Eq. (11) Eq. (12) Eq. (13) Eq. (18)
Nuc Nuc/Nut Nuc Nuc/Nut Nuc Nuc/Nut Nuc Nuc/Nut Nuc Nuc/Nut
L4-2 570 883 1.549 879 1.543 647 1.135 633 1.111 878 1.541
L5-1 700 744 1.062 753 1.075 450 0.643 438 0.626 742 1.060
L5-2 720 757 1.052 767 1.065 455 0.633 443 0.616 756 1.050
L6-1 650 709 1.090 716 1.102 436 0.670 424 0.653 642 0.988
L6-2 570 651 1.142 657 1.152 412 0.723 401 0.704 589 1.033
Tab.5  Nuc and Nut of CAC column under large eccentric compression (kN)
Fig.10  Nuc and Nut of CAC column under large eccentric compression.
Fig.11  Steel corrosion status in CAC column: (a) C60A; (b) C60B; (c) C60C; (d) different types of steel.
Fig.12  Electrochemical test result of CAC structural: (a) self-corrosion potential; (b) polarization resistance.
1 B Da, H F Yu, H Y Ma, Z Y Wu. Research on compression behavior of coral aggregate reinforced concrete columns under large eccentric compression loading. Ocean Engineering, 2018, 155 : 251– 260
https://doi.org/10.1016/j.oceaneng.2018.02.037
2 Z Y Wu, J H Zhang, H F Yu, H Y Ma. 3D mesoscopic investigation of the specimen aspect-ratio on coral aggregate concrete. Composites Part B: Engineering, 2020, 198 : 108025–
https://doi.org/10.1016/j.compositesb.2020.108025
3 Y J Huang, X W Li, X C Zhang, H Ma. Bond properties of epoxy coated reinforcement to seawater coral concrete. Journal of Building Materials, 2020, 23( 5): 1086– 1092
4 B Da, H F Yu, H Y Ma, Y S Tan, R J Mi, X M Dou. Chloride diffusion study of coral concrete in a marine environment. Construction & Building Materials, 2016, 123 : 47– 58
https://doi.org/10.1016/j.conbuildmat.2016.06.135
5 Z Y Wu, H F Yu, H Y Ma, J H Zhang, B Da, H W Zhu. Rebar corrosion in coral aggregate concrete: Determination of chloride threshold by LPR. Corrosion Science, 2020, 163 : 108238–
https://doi.org/10.1016/j.corsci.2019.108238
6 P Wattanachai. A study on chloride ion diffusivity of porous aggregate concretes and improvement method. Advanced Materials Research, 2009, 65( 1): 30– 44
7 W Zhang. Experimental study on reinforced coral aggregate concrete component. Thesis for the Master’s Degree. Nanjing: Hohai University, 1995 (in Chinese)
8 H F Yu, B Da, H Y Ma, H W Zhu, Q Yu, H M Ye, X S Jing. Durability of concrete structures in tropical atoll environment. Ocean Engineering, 2017, 135 : 1– 10
https://doi.org/10.1016/j.oceaneng.2017.02.020
9 B Da, H F Yu, H Y Ma, Y D Zhang, H W Zhu, Q Yu, H M Ye, X S Jing. Factors influencing durability of coral concrete structure in South China Sea. Journal of the Chinese Ceramic Society, 2016, 44(2): 254– 261 (in Chinese)
10 B Da, H F Yu, H Y Ma, Z Y Wu. Reinforcement corrosion research based on electrochemical impedance spectroscopy for coral aggregate seawater concrete in a seawater immersion environment. Journal of Testing and Evaluation, 2020, 48( 2): 1537– 1553
https://doi.org/10.1520/JTE20180197
11 S T Yang, C Yang, M L Huang, Y Liu, J T Jiang, G X Fan. Study on bond performance between FRP bars and seawater coral aggregate concrete. Construction & Building Materials, 2018, 173 : 272– 288
https://doi.org/10.1016/j.conbuildmat.2018.04.015
12 H Y Ma, B Da, H F Yu, Z Y Wu. Research on flexural behavior of coral aggregate reinforced concrete beams. China Ocean Engineering, 2018, 32( 5): 593– 604
https://doi.org/10.1007/s13344-018-0061-6
13 50081-2002 GB/T. Standard for Test Method of Mechanical Properties on Ordinary Concrete. Beijing: Ministry of Construction of the People’s Republic of China, 2002
14 12-2006 JGJ. Specification for Design of Lightweight Aggregate Concrete Structures. Beijing: Ministry of Construction of the People’s Republic of China, 2006
15 50082-2009 GB/T. Standard for Test Methods of Long-term Performance and Durability of Ordinary Concrete. Beijing: Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2009
16 50152-2012 GB/T. Standard for Test Method of Concrete Structures. Beijing: Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2012
17 Y S Yuan, F P Jia, Y Cai. The structural behavior deterioration model for corroded reinforced concrete beams. China Civil Engineering Journal, 2001, 34(3), 47– 52 (in Chinese)
18 S Pujol, N Hanai, T Ichinose, M A Sozen. Using Mohr−Coulomb criterion to estimate shear strength of reinforced concrete columns. ACI Structural Journal, 2016, 113( 3): 459– 468
https://doi.org/10.14359/51688743
19 318-1999 ACI. Building Code Requirements for Structural Concrete. Farmington Hills: American Concrete Institute, 1999
20 12-2006 JGJ. Technical Specification for Lightweight Aggregate Concrete Structures. Beijing: Ministry of Construction of the People’s Republic of China, 2006
21 50010-2010 GB. Code for Design of Concrete Structures. Beijing: Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2010
22 EN-1992. Code for Design of Concrete Structures. Brussels: European Committee for Standardization, 1992
23 B Da, H F Yu, H Y Ma, Y S Tan, R J Mi, X M Dou. Experimental investigation of whole stress−strain curves of coral concrete. Construction & Building Materials, 2016, 122 : 81– 89
https://doi.org/10.1016/j.conbuildmat.2016.06.064
24 B Da, H F Yu, H Y Ma, Y D Zhang, Y F Yuan, Q Yu, Y S Tan, R J Mi. Experimental research on whole stress−strain curves of coral aggregate seawater concrete under uniaxial compression. Journal of Building Structures, 2017, 38(1): 144– 151 (in Chinese)
25 W P Zhang, B B Zhou, X L Gu, H C Dai. Probability distribution model for cross-sectional area of corroded reinforcing steel bars. Journal of Materials in Civil Engineering, 2014, 26( 5): 822– 832
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000888
26 X H Wang, T Y Zhong. Relation between the loss coefficient of the corroded rebar’s cross-section in concrete and that of its weight. Research and Application of Building Materials, 2005, 1(4): 4– 6 (in Chinese)
27 Y X Zhao, H W Lin, K Wu, W L Jin. Bond behaviour of normal/recycled concrete and corroded steel bars. Construction & Building Materials, 2013, 48 : 348– 359
https://doi.org/10.1016/j.conbuildmat.2013.06.091
28 A Kivell, A Palermo, A Scott. Complete model of corrosion-degraded cyclic bond performance in reinforced concrete. Journal of Structural Engineering, 2015, 141( 9): 04014222–
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001195
[1] Zhao-Hui LU, Hong-Jun WANG, Fulin QU, Yan-Gang ZHAO, Peiran LI, Wengui LI. Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete beam[J]. Front. Struct. Civ. Eng., 2020, 14(4): 888-906.
[2] Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG. Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected to eccentric compression[J]. Front. Struct. Civ. Eng., 2020, 14(3): 760-772.
[3] Fei GAO, Zhiqiang TANG, Biao HU, Junbo CHEN, Hongping ZHU, Jian MA. Investigation of the interior RC beam-column joints under monotonic antisymmetrical load[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1474-1494.
[4] Zhi ZHANG, Qian GU, Shaomin PENG, Quanzhi CAI. Nonlinear finite element analysis of short-limbed wall[J]. Front Arch Civil Eng Chin, 2009, 3(2): 125-130.
[5] WANG Huailiang, SONG Yupu. Behavior of dam concrete under biaxial compression-tension and triaxial compression-compression-tension stresses[J]. Front. Struct. Civ. Eng., 2008, 2(4): 323-328.
[6] YANG Junjie, PENG Guojun, XU Hanyong. Behavior of concrete-filled double skin steel tubular columns with octagon section under axial compression[J]. Front. Struct. Civ. Eng., 2008, 2(3): 205-210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed