Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2023, Vol. 17 Issue (4) : 566-583    https://doi.org/10.1007/s11709-023-0905-x
RESEARCH ARTICLE
Undrained seismic bearing capacity of strip footing adjacent to a heterogeneous excavation
Ramin VALI1(), Saeed KHOSRAVI2, Majid BEYGI3
1. Department of Civil Engineering, Technical and Vocational University, Tehran 1435761137, Iran
2. Department of Mining Engineering, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
3. Department of Civil Engineering, Yazd University, Yazd 8915818411, Iran
 Download: PDF(14741 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The analysis of the bearing capacity of strip footings sited near an excavation is critical in geotechnics. In this study, the effects of the geometrical features of the excavation and the soil strength properties on the seismic bearing capacity of a strip footing resting on an excavation were evaluated using the lower and upper bounds of the finite element limit analysis method. The effects of the setback distance ratio (L/B), excavation height ratio (H/B), soil strength heterogeneity (kB/cu), and horizontal earthquake coefficient (kh) were analyzed. Design charts and tables were produced to clarify the relationship between the undrained seismic bearing capacity and the selected parameters.

Keywords excavation      finite element limit analysis      heterogeneous soil      strip footing      undrained bearing capacity     
Corresponding Author(s): Ramin VALI   
About author:

* These authors contributed equally to this work.

Just Accepted Date: 02 February 2023   Online First Date: 12 May 2023    Issue Date: 25 June 2023
 Cite this article:   
Ramin VALI,Saeed KHOSRAVI,Majid BEYGI. Undrained seismic bearing capacity of strip footing adjacent to a heterogeneous excavation[J]. Front. Struct. Civ. Eng., 2023, 17(4): 566-583.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-023-0905-x
https://academic.hep.com.cn/fsce/EN/Y2023/V17/I4/566
Fig.1  Model geometry and typical FELA mesh. (Note: Dimensions are not on the main scale.)
L/Bcu/(γB)Shiau et al. [9]Chen and Xiao [45]present study
011.32 (1.32)1.411.13 (1.13)
35.50 (5.50)5.485.58 (5.62)
59.50 (9.50)9.499.66 (9.74)
1019.95 (19.95)19.5019.68 (20.03)
111.20 (1.20)1.291.07 (1.07)
39.01 (9.01)8.868.84 (8.89)
516.12 (16.17)15.9015.88 (15.90)
1033.75 (33.79)33.2933.18 (33.30)
211.46 (1.46)1.371.27 (1.27)
310.85 (10.88)10.8710.71 (10.72)
519.64 (19.65)20.1019.45 (19.47)
1041.31 (41.33)42.6840.90 (40.98)
311.99 (1.99)1.931.91 (1.92)
312.72 (12.78)12.9812.57 (12.62)
522.73 (22.74)23.6722.44 (22.49)
1047.30 (47.32)50.2746.76 (46.84)
Tab.1  Validation of qu/(γB) (upper bound values) for homogenous soil excavation (β = 90°)
kB/cuGourvenec and Mana [30]present study
LBaUBb
05.144 (5.175)c5.027 (5.069)5.196 (5.233)
58.357 (9.818)7.733 (9.521)8.519 (9.977)
2014.702 (17.457)13.433 (16.708)15.065 (17.779)
10040.594 (46.456)34.460 (43.439)41.776 (47.581)
20069.563 (77.805)60.080 (71.388)72.196 (79.815)
Tab.2  Validation of bearing capacity factor, Nc, for strip footing on level ground
cu/(γB)Shiau et al. [9]a)Mofidi Rouchi et al. [24]b)Foroutan Kalourazi et al. [46]c)present study
LBUB
25.024.104.284.434.82
412.3611.0211.3811.6812.14
619.4617.9918.3618.5219.06
826.1324.5425.0925.7426.12
1032.9330.9131.8231.9632.68
Tab.3  Validation of qu/(γB) under undrained conditions for the range of cu/(γB) of perfectly smooth footing (L/B = 1) on level ground
soil-foundation interfaceφ (° )Ukritchon et al. [47]Hjiaj et al. [48]Kumar and Kouzer [49]Kumar [50]Kumar and Chakraborty [51]Veiskarami et al. [13]Pakdel et al. [52]Izadi et al. [42]present study
LBa)UBa)LBb)UBb)UBSCLBLBLELBLBUB
perfectly smooth (δ = 0)100.270.300.280.300.310.280.290.290.330.290.270.29
201.521.731.581.671.741.571.591.591.621.591.541.71
307.188.547.628.088.477.657.587.857.97.857.568.28
4038.554.242.7745.4250.3843.0841.9543.944.2541.5940.1749.53
perfectly rough (δ = φ)100.410.470.430.460.490.430.430.440.470.440.420.48
202.673.272.822.963.162.822.822.883.122.892.753.18
3013.217.414.5715.2416.6414.6814.5315.0315.2515.0613.7216.92
4069.9111.183.3388.3998.5385.0181.870.6277.7579.1975.9697.83
Tab.4  Validation of bearing capacity factor, Nγ, for perfectly smooth and rough footings [35]
Fig.2  Graphs for qukh/cu versus kh for various conditions of L/B and H/B. (a) L/B = 0; (b) L/B = 0.25; (c) L/B = 0.5; (d) L/B = 1; (e) L/B = 2; (f) L/B ≥ 3.
Fig.3  Mean values of qu/(γB) for smooth strip footing adjoining excavation (kh = 0.0). (a) cu/(γB) = 0.5; (b) cu/(γB) = 1.0; (c) cu/(γB) = 1.5; (d) cu/(γB) = 2.0; (e) cu/(γB) = 2.5; (f) cu/(γB) = 5.0.
Fig.4  Mean values of qu/(γB) for rough strip footing adjoining excavation (kh = 0.0). (a) cu/(γB) = 0.5; (b) cu/(γB) = 1.0; (c) cu/(γB) = 1.5; (d) cu/(γB) = 2.0; (e) cu/(γB) = 2.5; (f) cu/(γB) = 5.0.
Fig.5  Effect of L/B on ultimate bearing capacity (H/B = 2, cu/(γB) = 1, kB/cu = 0.5, kh = 0.25, rough footing). (a) L/B = 0.5; (b) L/B = 1; (c) L/B = 2; (d) L/B = 4.
Fig.6  Effect of H/B on ultimate bearing capacity (cu/(γB) = 3, kB/cu = 0.5, kh = 0.05, rough footing). (a) L/B = 0.25; (b) L/B = 0.5; (c) L/B = 1; (d) L/B = 2.
Fig.7  Mean values of qu/(γB) for rough strip footing adjoining excavation (kh = 0.1). (a) cu/(γB) = 0.5; (b) cu/(γB) = 1.0; (c) cu/(γB) = 1.5; (d) cu/(γB) = 2.0; (e) cu/(γB) = 2.5; (f) cu/(γB) = 5.0.
Fig.8  Mean values of qu/(γB) for rough strip footing adjoining excavation (kh = 0.2). (a) cu/(γB) = 0.5; (b) cu/(γB) = 1.0; (c) cu/(γB) = 1.5; (d) cu/(γB) = 2.0; (e) cu/(γB) = 2.5; (f) cu/(γB) = 5.0.
Fig.9  Mean values of qu/(γB) for rough strip footing adjoining excavation (kh = 0.3). (a) cu/(γB) = 0.5; (b) cu/(γB) = 1.0; (c) cu/(γB) = 1.5; (d) cu/(γB) = 2.0; (e) cu/(γB) = 2.5; (f) cu/(γB) = 5.0.
Fig.10  Mean values of qu/(γB) for rough strip footing adjoining excavation (kh = 0.4). (a) cu/(γB) = 0.5; (b) cu/(γB) = 1.0; (c) cu/(γB) = 1.5; (d) cu/(γB) = 2.0; (e) cu/(γB) = 2.5; (f) cu/(γB) = 5.0.
cu/(γB)H/BkB/cu = 0kB/cu = 1
kh = 0.0kh = 0.1kh = 0.2kh = 0.3kh = 0.4kh = 0.0kh = 0.1kh = 0.2kh = 0.3kh = 0.4
0.50.5(18.68) 17.3916.59(25.92) 27.9723.1519.2116.0313.53
1(10.11) 8.11(23.41) 23.6519.6917.2914.6912.53
3(23.40) 23.6520.2817.3014.7012.54
5(23.45) 23.6520.2717.2414.67NaN
10(23.41) 23.5120.26NaNNaNNaN
10.5(43.67) 47.3139.8833.94(58.20) 62.4152.6844.3037.5232.26
1(36.05) 36.1932.3528.67(55.24) 57.1149.7942.6436.6432.64
3(30.94) 31.0625.82(55.42) 57.3550.7142.7836.8131.83
5(55.16) 57.1049.6742.7836.8031.89
10(55.17) 57.1549.7742.8236.8231.90
1.50.5(69.13) 73.9563.1254.1546.8240.81(90.32) 96.7682.1169.0758.9350.65
1(59.71) 59.9553.8848.0642.76(86.58) 90.1878.6667.6158.1550.54
3(59.01) 59.0053.6346.95(86.22) 90.3978.3767.6958.3751.23
5(50.02) 50.406.43(86.72) 89.7878.6867.7458.3650.57
10(86.94) 90.0978.8567.5358.3450.56
20.5(94.35) 100.9286.4474.3464.4256.35(121.54) 131.24111.3094.2480.1769.32
1(83.27) 83.5975.2467.4260.0853.33(117.67) 123.47107.3292.5479.5369.07
3(82.89) 82.9375.2567.4860.0348.93(118.07) 123.38107.5192.3479.7269.17
5(82.85) 82.9975.3467.46(117.73) 123.12107.3892.5979.7869.11
10(118.21) 122.09107.3792.5779.6768.54
2.50.5(119.52) 127.84109.5294.4582.0771.86(157.01) 165.49140.75119.21101.6187.80
1(106.91) 107.0496.8886.7677.2268.71(148.59) 155.77135.70117.40101.0287.42
3(104.13) 106.0796.6886.6177.2168.83(149.61) 156.23136.74117.36100.5987.56
5(106.50) 106.3696.8586.6877.2268.87(148.99) 156.19136.13117.16101.1087.43
10(148.82) 155.73135.95117.21101.0287.56
50.5(245.45) 261.89225.88195.08169.82149.08(314.90) 337.17287.96243.58207.87180.09
1(223.63) 225.69204.20181.79163.53144.84(306.26) 320.98279.90241.12207.32179.26
3(224.59) 224.71203.69182.32162.51144.93(305.77) 320.86279.10241.05207.57179.07
5(224.42) 224.15204.01182.55162.59144.96(304.71) 321.03280.15241.27207.61179.91
10(223.82) 224.87203.40182.77162.55144.99(305.66) 320.61280.00240.76207.71179.66
Tab.5  Values of qu (kPa) at L/B = 0 for footing adjoining excavation (kB/cu = 0 and 1)
soil-foundation interfacekhcu/(γB)kB/cu
251020
meanSDmeanSDmeanSDmeanSD
perfectly smooth (δ = 0)00.530.8150.78648.0530.10667.9640.696102.5230.262
169.6120.770100.5950.284139.3570.832207.6880.493
1.5107.8440.818152.6840.900211.3270.789312.7411.199
2145.5461.262205.2600.480281.8120.766417.8533.601
2.5183.7801.018256.1383.828351.5944.670520.1765.783
5373.8432.012519.9781.179711.5892.8531049.9113.931
perfectly rough (δ = φ)00.533.6700.96353.4240.22178.2580.195118.2530.182
174.4201.245112.2950.127160.9530.413239.8160.822
1.5115.3071.595170.8930.563243.0820.336361.4181.629
2155.7142.151229.9320.270325.7930.714481.9241.824
2.5195.8920.279288.5130.523407.7110.441603.7551.865
5400.0444.257583.5931.238819.8581.0081209.9663.708
0.10.528.1500.52344.1140.29662.3660.35787.7370.282
164.3052.40392.8310.055126.8023.630176.9420.636
1.597.9160.580141.3050.166194.3010.563265.4940.043
2133.0310.608190.0200.327261.0871.682355.2631.215
2.5168.0771.533239.0380.061325.9440.855443.2320.504
5340.5851.416481.6501.252654.6382.429887.8600.159
0.20.523.4750.23535.2220.16845.2080.08250.2020.643
152.9630.17273.7540.37191.6470.243100.0130.053
1.582.2800.055112.5800.245137.7920.175150.0320.122
2110.8171.310151.0830.259184.1890.013200.3820.352
2.5140.5040.360189.7120.248231.0151.019250.0260.039
5286.3150.198381.1613.303462.1360.042500.1550.253
0.30.519.6760.11228.0200.02932.4340.01333.3510.013
144.7870.53458.4390.17864.0221.27366.6680.022
1.569.0950.07788.8510.04696.8151.719100.6370.725
293.5760.072119.1630.085131.2121.654133.6570.320
2.5118.0180.747149.3590.152164.5910.013166.7540.098
5240.1400.319300.6170.115329.7140.244332.0343.257
0.40.516.6380.06222.7540.01724.6760.69225.0220.017
137.9710.22546.9250.00550.0210.02149.6541.270
1.558.7010.01571.1570.39074.9920.40075.1790.371
279.5230.23793.6922.628100.0290.051100.1580.116
2.5100.1420.006118.8220.031125.1840.308125.0280.027
5203.3100.436238.3560.544249.8860.299248.3013.859
Tab.6  Mean and standard deviation values of qu (kPa) at L/B = 0 for strip footing adjoining excavation in full ranges of H/B (kB/cu = 2, 5, 10, and 20)
1 A V Lyamin, S W Sloan. Lower bound limit analysis using non-linear programming. International Journal for Numerical Methods in Engineering, 2002, 55(5): 573–611
https://doi.org/10.1002/nme.511
2 A V Lyamin, S W Sloan. Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(2): 181–216
https://doi.org/10.1002/nag.198
3 J Pastor, T H Thai, P Francescato. New bounds for the height limit of a vertical slope. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(2): 165–182
https://doi.org/10.1002/(SICI)1096-9853(200002)24:2<165::AID-NAG62>3.0.CO;2-A
4 S W Sloan. Geotechnical stability analysis. Geotechnique, 2013, 63(7): 531–571
https://doi.org/10.1680/geot.12.RL.001
5 H S Yu, R Salgado, S W Sloan, J M Kim. Limit analysis versus limit equilibrium for slope stability. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(1): 1–11
https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(1
6 C M Martin. The use of adaptive finite-element limit analysis to reveal slip-line fields. Géotechnique Letters, 2011, 1(2): 23–29
https://doi.org/10.1680/geolett.11.00018
7 B Ukritchon, S Yoang, S Keawsawasvong. Undrained stability of unsupported rectangular excavations in non-homogeneous clays. Computers and Geotechnics, 2020, 117: 103281
https://doi.org/10.1016/j.compgeo.2019.103281
8 M Beygi, R Vali, R Porhoseini, A Keshavarz, E Maleksaeedi. The effect of rotational stiffness on the behaviour of retaining wall. International Journal of Geotechnical Engineering, 2021, 15(7): 845–856
https://doi.org/10.1080/19386362.2018.1517927
9 J S Shiau, R S Merifield, A V Lyamin, S W Sloan. Undrained stability of footings on slopes. International Journal of Geomechanics, 2011, 11(5): 381–390
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000092
10 Q Chen, M Abu-Farsakh. Ultimate bearing capacity analysis of strip footings on reinforced soil foundation. Soil and Foundation, 2015, 55(1): 74–85
https://doi.org/10.1016/j.sandf.2014.12.006
11 S Ghosh, L Debnath. Seismic bearing capacity of shallow strip footing with Coulomb failure mechanism using limit equilibrium method. Geotechnical and Geological Engineering, 2017, 35(6): 2647–2661
https://doi.org/10.1007/s10706-017-0268-y
12 C M Jadar, S Ghosh. Seismic bearing capacity of shallow strip footing using horizontal slice method. International Journal of Geotechnical Engineering, 2017, 11(1): 38–50
https://doi.org/10.1080/19386362.2016.1183074
13 M Veiskarami, R Jamshidi Chenari, A A Jameei. Bearing capacity of strip footings on anisotropic soils by the finite elements and linear programming. International Journal of Geomechanics, 2017, 17(12): 04017119
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001018
14 J T Chavda, G R Dodagoudar. Finite element evaluation of ultimate capacity of strip footing: Assessment using various constitutive models and sensitivity analysis. Innovative Infrastructure Solutions, 2018, 3(1): 1–10
https://doi.org/10.1007/s41062-017-0121-4
15 R Vali, M Saberian, J Li, G Shams, P van Gelder. Properties of geogrid-reinforced marine slope due to the groundwater level changes. Marine Georesources and Geotechnology, 2018, 36(6): 735–748
https://doi.org/10.1080/1064119X.2017.1386741
16 J Kumar, V B K Mohan Rao. Seismic bearing capacity of foundations on slopes. Geotechnique, 2003, 53(3): 347–361
https://doi.org/10.1680/geot.2003.53.3.347
17 A S Azzouz, M M Baligh. Loaded areas on cohesive slopes. Journal of Geotechnical Engineering, 1983, 109(5): 724–729
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(724
18 J Graham, M Andrews, D H Shields. Stress characteristics for shallow footings in cohesionless slopes. Canadian Geotechnical Journal, 1988, 25(2): 238–249
https://doi.org/10.1139/t88-028
19 J S ShiauJ F Watson. 3D bearing capacity of shallow foundations located near deep excavation sites. In: Proceedings of the 2008 International Conference on Deep Excavation (ICDE 2008). Singapore: International Tunnelling and Underground Space Association (ITA), 2008
20 K Georgiadis. The influence of load inclination on the undrained bearing capacity of strip footings on slopes. Computers and Geotechnics, 2010, 37(3): 311–322
https://doi.org/10.1016/j.compgeo.2009.11.004
21 K Georgiadis. Undrained bearing capacity of strip footings on slopes. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 677–685
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000269
22 M Salih Keskin, M Laman. Model studies of bearing capacity of strip footing on sand slope. KSCE Journal of Civil Engineering, 2013, 17(4): 699–711
https://doi.org/10.1007/s12205-013-0406-x
23 R Vali, G Shams, R Porhoseini, M Saberian, M Beygi. Lateral behaviour of pile located on top of a slope. Australian Geomechanics Journal, 2019, 54: 103–114
24 J Mofidi Rouchi, O Farzaneh, F Askari. Bearing capacity of strip footings near slopes using lower bound limit analysis. Civil Engineering Infrastructures Journal, 2014, 47: 89–109
https://doi.org/10.7508/CEIJ.2014.01.007
25 B Leshchinsky, Y Xie. Bearing capacity for spread footings placed near c′−φ′ slopes. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1): 06016020
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001578
26 K Halder, D Chakraborty, S Kumar Dash. Bearing capacity of a strip footing situated on soil slope using a non-associated flow rule in lower bound limit analysis. International Journal of Geotechnical Engineering, 2019, 13(2): 103–111
https://doi.org/10.1080/19386362.2017.1325119
27 H Zhou, G Zheng, X Yin, R Jia, X Yang. The bearing capacity and failure mechanism of a vertically loaded strip footing placed on the top of slopes. Computers and Geotechnics, 2018, 94: 12–21
https://doi.org/10.1016/j.compgeo.2017.08.009
28 R Jamshidi Chenari, H Kamyab Farahbakhsh, A Izadi. Continuous slip surface method for stability analysis of heterogeneous vertical trenches. Scientia Iranica, 2020, 27(6): 2657–2668
https://doi.org/10.24200/sci.2019.21227
29 A Keshavarz, M Beygi, R Vali. Undrained seismic bearing capacity of strip footing placed on homogeneous and heterogeneous soil slopes by finite element limit analysis. Computers and Geotechnics, 2019, 113: 103094
https://doi.org/10.1016/j.compgeo.2019.103094
30 S M Gourvenec, D S K Mana. Undrained vertical bearing capacity factors for shallow foundations. Géotechnique Letters, 2011, 1(4): 101–108
https://doi.org/10.1680/geolett.11.00026
31 R Jamshidi Chenari, N Zhalehjoo, A Karimian. Estimation on bearing capacity of shallow foundations in heterogeneous deposits using analytical and numerical methods. Scientia Iranica, 2014, 21: 505–515
32 R Jamshidi Chenari, M Zamanzadeh. Uncertainty assessment of critical excavation depth of vertical unsupported cuts in undrained clay using random feld theorem. Scientia Iranica, 2016, 23: 864–875
33 S W Sloan. Lower bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 61–77
https://doi.org/10.1002/nag.1610120105
34 S W Sloan. Upper bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13(3): 263–282
https://doi.org/10.1002/nag.1610130304
35 A Foroutan Kalourazi, R Jamshidi Chenari, M Veiskarami. Bearing capacity of strip footings adjacent to anisotropic slopes using the lower bound finite element method. International Journal of Geomechanics, 2020, 20(11): 04020213
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001858
36 computational engineering (OptumG2) Optum. Copenhagen: Optum CE, 2015
37 M Beygi, A Keshavarz, M Abbaspour, R Vali, M Saberian, J Li. Finite element limit analysis of the seismic bearing capacity of strip footing adjacent to excavation in c−φ soil. Geomechanics and Geoengineering, 2022, 17(1): 246–259
https://doi.org/10.1080/17486025.2020.1728396
38 R Vali, F Foroughi Boroujeni. Ground surface displacements and failure mechanisms induced by EPB shield tunneling method and groundwater levels changes. Transportation Infrastructure Geotechnology, 2022, 2022: 1–23
https://doi.org/10.1007/s40515-022-00239-1
39 R Vali, M Saberian, M Beygi, R Porhoseini, M Abbaspour. Numerical analysis of laterally loaded single-pile behavior affected by urban metro tunnel. Indian Geotechnical Journal, 2020, 50(3): 410–425
https://doi.org/10.1007/s40098-019-00375-5
40 M Beygi, R Vali, A Keshavarz. Pseudo-static bearing capacity of strip footing with vertical skirts resting on cohesionless slopes by finite element limit analysis. Geomechanics and Geoengineering, 2022, 17(2): 485–498
https://doi.org/10.1080/17486025.2020.1794058
41 R Vali, M Beygi, M Saberian, J Li. Bearing capacity of ring foundation due to various loading positions by finite element limit analysis. Computers and Geotechnics, 2019, 110: 94–113
https://doi.org/10.1016/j.compgeo.2019.02.020
42 A Izadi, A Foroutan Kalourazi, R Jamshidi Chenari. Effect of roughness on seismic bearing capacity of shallow foundations near slopes using the lower bound finite element method. International Journal of Geomechanics, 2021, 21(3): 06020043
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001935
43 M Beygi, A Keshavarz, M Abbaspour, R Vali. 3D numerical study of the piled raft behaviour due to groundwater level changes in the frictional soil. International Journal of Geotechnical Engineering, 2020, 14(6): 665–672
https://doi.org/10.1080/19386362.2019.1677326
44 H Fathipour, M Payan, R Jamshidi Chenari, B Fatahi. General failure envelope of eccentrically and obliquely loaded strip footings resting on an inherently anisotropic granular medium. Computers and Geotechnics, 2022, 146: 104734
https://doi.org/10.1016/j.compgeo.2022.104734
45 T Chen, S Xiao. An upper bound solution to undrained bearing capacity of rigid strip footings near slopes. International Journal of Civil Engineering, 2020, 18(4): 475–485
https://doi.org/10.1007/s40999-019-00463-w
46 A Foroutan Kalourazi, A Izadi, R Jamshidi Chenari. Seismic bearing capacity of shallow strip foundations in the vicinity of slopes using the lower bound finite element method. Soil and Foundation, 2019, 59(6): 1891–1905
https://doi.org/10.1016/j.sandf.2019.08.014
47 B Ukritchon, A J Whittle, C Klangvijit. Calculations of bearing capacity factor Nγ using numerical limit analyses. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(5): 468–474
https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(468
48 M Hjiaj, A V Lyamin, S W Sloan. Numerical limit analysis solutions for the bearing capacity factor Nγ. International Journal of Solids and Structures, 2005, 42(5−6): 1681–1704
https://doi.org/10.1016/j.ijsolstr.2004.08.002
49 J Kumar, K M Kouzer. Effect of footing roughness on bearing capacity factor Nγ. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 502–511
https://doi.org/10.1061/(ASCE)1090-0241(2007)133:5(502
50 J Kumar. The variation of Nγ with footing roughness using the method of characteristics. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(2): 275–284
https://doi.org/10.1002/nag.716
51 J Kumar, D Chakraborty. Seismic bearing capacity of foundations on cohesionless slopes. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1986–1993
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000909
52 P Pakdel, R Jamshidi Chenari, M Veiskarami. An estimate of the bearing capacity of shallow foundations on anisotropic soil by limit equilibrium and soft computing technique. Geomechanics and Geoengineering, 2019, 14(3): 202–217
https://doi.org/10.1080/17486025.2019.1581276
[1] Fengwei YANG, Weilin SU, Yi YANG, Zhiguo CAO. Analysis of load and adaptability of disc cutters during shield tunneling in soft–hard varied strata[J]. Front. Struct. Civ. Eng., 2023, 17(4): 533-545.
[2] Tae Un PAK, Guk Rae JO, Un Chol HAN. Prediction of characteristic blast-induced vibration frequency during underground excavation by using wavelet transform[J]. Front. Struct. Civ. Eng., 2022, 16(8): 1029-1039.
[3] Shuangxi FENG, Huayang LEI, Yongfeng WAN, Haiyan JIN, Jun HAN. Influencing factors and control measures of excavation on adjacent bridge foundation based on analytic hierarchy process and finite element method[J]. Front. Struct. Civ. Eng., 2021, 15(2): 461-477.
[4] Arash SEKHAVATIAN, Asskar Janalizadeh CHOOBBASTI. Application of random set method in a deep excavation: based on a case study in Tehran cemented alluvium[J]. Front. Struct. Civ. Eng., 2019, 13(1): 66-80.
[5] Guolin XU, Jiwen ZHANG, Huang LIU, Changqin REN. Shanghai center project excavation induced ground surface movements and deformations[J]. Front. Struct. Civ. Eng., 2018, 12(1): 26-43.
[6] Malcolm D. BOLTON, Sze-Yue LAM, Paul J. VARDANEGA, Charles W. W. NG, Xianfeng MA. Ground movements due to deep excavations in Shanghai: Design charts[J]. Front. Struct. Civ. Eng., 2014, 8(3): 201-236.
[7] Yuepeng DONG, Harvey BURD, Guy HOULSBY, Yongmao HOU. Advanced finite element analysis of a complex deep excavation case history in Shanghai[J]. Front Struc Civil Eng, 2014, 8(1): 93-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed