|
|
Image analysis of soil failure on defective underground pipe due to cyclic water supply and drainage using X-ray CT
Toshifumi MUKUNOKI, Naoko KUMANO, Jun OTANI
Front Struc Civil Eng. 2012, 6 (2): 85-100.
https://doi.org/10.1007/s11709-012-0159-5
The ground subsidence on the underground pipe often is caused with the reduction of the effective stress and the loss of suction in the base course and then, soil drainage into the pipe. The final formation of the cavity growth in the ground was observed as the ground subsidence. Authors focused this problem and hence performed model tests with water-inflow and drainage cycle in the model ground. The mechanism of cavity generation in the model ground was observed using an X-ray Computed Tomography (CT) scanner. In those studies, water was supplied into the model grounds from the defected underground pipe model in case of the change of relative density and grain size distribution. As results, it was observed that the loosening area was generated from the defected part with water-inflow and some of the soil particles in the ground were drained into the underground pipe through the defected part. And afterward, the cavity was generated just above the defected part of the model pipe in the ground. Based on this observation, it might be said that the bulk density of soil around the defected pipe played one of key factor to generate the cavity in the ground. Moreover, the dimension of the defected part should be related to the magnification of the ground subsidence, in particular, crack width on a sewerage pipe and particle size would be the quantitative factor to evaluate the magnification of the ground subsidence. ?In this paper, it was concluded that the low relative density of soil would become the critical factor to cause the fatal failure of model ground if the maximum grain size was close to the dimension of crack width of defective part. The fatal collapse of the ground with high relative density more than 80% would be avoided in a few cycles of water inflow and soil drainage.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
High velocity impact of metal sphere on thin metallic plate using smooth particle hydrodynamics (SPH) method
Hossein ASADI KALAMEH, Arash KARAMALI, Cosmin ANITESCU, Timon RABCZUK
Front Struc Civil Eng. 2012, 6 (2): 101-110.
https://doi.org/10.1007/s11709-012-0160-z
The modeling of high velocity impact is an important topic in impact engineering. Due to various constraints, experimental data are extremely limited. Therefore, detailed numerical simulation can be considered as a desirable alternative. However, the physical processes involved in the impact are very sophisticated; hence a practical and complete reproduction of the phenomena involves complicated numerical models. In this paper, we present a smoothed particle hydrodynamics (SPH) method to model two-dimensional impact of metal sphere on thin metallic plate. The simulations are applied to different materials (Aluminum, Lead and Steel); however the target and projectile are formed of similar metals. A wide range of velocities (300, 1000, 2000, and 3100 m/s) are considered in this study. The goal is to study the most sensitive input parameters (impact velocity and plate thickness) on the longitudinal extension of the projectile, penetration depth and damage crater.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
A feasibility study of the measuring accuracy and capability of wireless sensor networks in tunnel monitoring
Xiaojun LI, Zhong JI, Hehua ZHU, Chen GU
Front Struc Civil Eng. 2012, 6 (2): 111-120.
https://doi.org/10.1007/s11709-012-0150-1
Fire disasters and the deterioration of tunnel structures are major concerns for tunnel operation and maintenance. Traditional wired monitoring systems have many drawbacks in terms of installation time, overall cost, and flexibility in tunnel environments. In recent years, there has been growing interest in the use of wireless sensor networks (WSNs) for the monitoring of various structural monitoring applications. This paper evaluated the feasibility of applying a WSN in the monitoring of tunnels. The monitoring requirements of tunnels under explosion and combustion fire scenarios are analyzed using numerical simulation, and the maximum possible distance for temperature sensors is derived. The displacement monitoring of tunnels using an inclinometer is investigated. It is recommended that the inclinometer should be installed in the 1/4 span of the tunnel structure. The maximum wireless transmission distances in both outdoor and tunnel environments were examined. The influences of surface materials and sensor node locations on the data transmission distance in tunnel environments were also investigated. The experimental results show that the data loss in tunnel environments is approximately three times that in outdoor environments. Surface material has a considerable influence on the transmission distance of radio signals. The distance is 25 ? 28 m for a raw concrete surface, 20 m for a brick surface, and 36 m for a terrazzo surface. The transmission distances along the middle of quarter points are approximately 0.9D (D is the transmission distance in the center of the tunnel), and the relative error is less than±3%. The transmission distances at different locations along the bottom exhibit significant differences, decreasing from the middle to the corner point, with distances of approximately 0.8D at the quarter points and minimum distances of approximately 0.55D at the corner points.
Figures and Tables |
References |
Related Articles |
Metrics
|
9 articles
|