|
|
State-of-the-art on resistance of bearing-type bolted connections in high strength steel
Guoqiang LI, Yifan LYU, Yanbo WANG
Front. Struct. Civ. Eng.. 2020, 14 (3): 569-585.
https://doi.org/10.1007/s11709-020-0607-6
With the recent development of material science, high strength steel (HSS) has become a practical solution for landmark buildings and major projects. The current codes for design of bearing-type bolted connections of steel constructions were established based on the research of conventional steels. Since the mechanical properties of HSS are different from those of conventional steels, more works should be done to develop the appropriate approach for the design of bearing-type bolted connections in HSS. A review of the research carried out on bearing-type bolted connections fabricated from conventional steel and HSS is presented. The up-to-date tests conducted at Tongji University on four connection types fabricated from three grades of HSS with nominal yield strengths of 550, 690, and 890 MPa are presented. The previous research on failure modes, bearing resistance and the design with consideration of bolt hole elongation are summarized. It is found that the behavior of bolted connections in HSS have no drastic difference compared to that of conventional steel connections. Although the ductility is reduced, plastic deformation capacity of HSS is sufficient to ensure the load redistribution between different bolts with normal construction tolerances. It is also found that behavior of each bolt of multi-bolt connections arranged in perpendicular to load direction is almost identical to that of a single-bolt connection with the same end distance. For connections with bolts arranged in parallel to load direction, the deformation capacity of the whole connection depends on the minimum value between the end distance and the spacing distances in load direction. The comparison with existing design codes shows that Eurocode3 and Chinese GB50017-2017 are conservative for the design of bolted connections in HSS while AISC 360-16 may overestimate the bearing resistance of bolted connections.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
Strength-increase mechanism and microstructural characteristics of a biotreated geomaterial
Chi LI, Siriguleng BAI, Tuanjie ZHOU, Hanlong LIU, Xiao QIN, Shihui LIU, Xiaoying LIU, Yang XIAO
Front. Struct. Civ. Eng.. 2020, 14 (3): 599-608.
https://doi.org/10.1007/s11709-020-0606-7
Microbially induced calcite precipitation (MICP) is a recently proposed method that is environmentally friendly and has considerable potential applications in artificial biotreated geomaterials. New artificial biotreated geomaterials are produced based on the MICP technology for different parent soils. The purpose of this study is to explore the strength-increase mechanism and microstructural characteristics of the biotreated geomaterial through a series of experiments. The results show that longer mineralization time results in higher-strength biotreated geomaterial. The strength growth rate rapidly increases in the beginning and remains stable afterwards. The calcium ion content significantly increases with the extended mineralization time. When standard sand was used as a parent soil, the calcium ion content increased to a factor of 39 after 7 days. The bacterial cells with attached calcium ions serve as the nucleus of crystallization and fill the pore space. When fine sand was used as a parent soil, the calcium ion content increased to only a factor of 7 after 7 days of mineralization. The nucleus of crystallization could not normally grow because of the limited pore space. The porosity and variation in porosity are clearly affected by the parent soil. Therefore, the strength of the biotreated geomaterial is affected by the parent soil properties, mineralization time, and granular material pore space. This paper provides a basis for theory and experiments for biotreated geomaterials in future engineering practice.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry
Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE
Front. Struct. Civ. Eng.. 2020, 14 (3): 609-622.
https://doi.org/10.1007/s11709-020-0623-6
This paper discusses the adoption of Artificial Intelligence-based techniques to estimate seismic damage, not with the goal of replacing existing approaches, but as a mean to improve the precision of empirical methods. For such, damage data collected in the aftermath of the 1998 Azores earthquake (Portugal) is used to develop a comparative analysis between damage grades obtained resorting to a classic damage formulation and an innovative approach based on Artificial Neural Networks (ANNs). The analysis is carried out on the basis of a vulnerability index computed with a hybrid seismic vulnerability assessment methodology, which is subsequently used as input to both approaches. The results obtained are then compared with real post-earthquake damage observation and critically discussed taking into account the level of adjustment achieved by each approach. Finally, a computer routine that uses the ANN as an approximation function is developed and applied to derive a new vulnerability curve expression. In general terms, the ANN developed in this study allowed to obtain much better approximations than those achieved with the original vulnerability approach, which has revealed to be quite non-conservative. Similarly, the proposed vulnerability curve expression was found to provide a more accurate damage prediction than the traditional analytical expressions.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
Anisotropy of multi-layered structure with sliding and bonded interlayer conditions
Lingyun YOU, Kezhen YAN, Jianhong MAN, Nengyuan LIU
Front. Struct. Civ. Eng.. 2020, 14 (3): 632-645.
https://doi.org/10.1007/s11709-020-0617-4
A better understanding of the mechanical behavior of the multi-layered structure under external loading is the most important item for the structural design and the risk assessment. The objective of this study are to propose and develop an analytical solution for the mechanical behaviors of multi-layered structure generated by axisymmetric loading, and to investigate the impact of anisotropic layers and interlayer conditions on the multi-layered structure. To reach these objectives, first, according to the governing equations, the analytical solution for a single layer was formulated by adopting the spatial Hankel transform. Then the global matrix technique is applied to achieve the analytical solution of multi-layered structure in Hankel domain. The sliding and bonded interlayer conditions were considered in this process. Finally, the numerical inversion of integral transform was used to solve the components of displacement and stress in real domain. Gauss-Legendre quadrature is a key scheme in the numerical inversion process. Moreover, following by the verification of the proposed analytical solution, one typical three-layered flexible pavement was applied as the computing carrier of numerical analysis for the multi-layered structure. The results have shown that the anisotropic layers and the interlayer conditions significantly affect the mechanical behaviors of the proposed structure.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
Finite element modeling of thermo-active diaphragm walls
Yi RUI, Mei YIN
Front. Struct. Civ. Eng.. 2020, 14 (3): 646-663.
https://doi.org/10.1007/s11709-020-0584-9
There are two major challenges faced by modern society: energy security, and lowering carbon dioxide gas emissions. Thermo-active diaphragm walls have a large potential to remedy one of these problems, since they are a renewable energy technology that uses underground infrastructure as a heat exchange medium. However, extensive research is required to determine the effects of cyclic heating and cooling on their geotechnical and structural performance. In this paper, a series of detailed finite element analyses are carried out to capture the fully coupled thermo-hydro-mechanical response of the ground and diaphragm wall. It is demonstrated that the thermal operation of the diaphragm wall causes changes in soil temperature, thermal expansion/shrinkage of pore water, and total stress applied on the diaphragm wall. These, in turn, cause displacements of the diaphragm wall and variations of the bending moments. However, these effects on the performance of diaphragm wall are not significant. The thermally induced bending strain is mainly governed by the temperature differential and uneven thermal expansion/shrinkage across the wall.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
Influence of loading ratio on flat slab connections at elevated temperature: A numerical study
Rwayda Kh. S. AL-HAMD, Martin GILLIE, Safaa Adnan MOHAMAD, Lee S. CUNNINGHAM
Front. Struct. Civ. Eng.. 2020, 14 (3): 664-674.
https://doi.org/10.1007/s11709-020-0620-9
For reinforced concrete members subjected to high temperature, the degree of in-service loading, commonly expressed as the loading ratio, can be highly influential on the structural behavior. In particular, the loading ratio may be pivotal in relation to the phenomenon of load-induced thermal strain. Despite its potentially pivotal role, to date, the influence of the loading ratio on both material and structural behavior has not been explored in detail. In practice, real structures experience variation in imposed loading during their service life and it is important to understand the likely response at elevated temperatures across the loading envelope. In this paper, the effect of the loading ratio is numerically investigated at both material and structural level using a validated finite element model. The model incorporates a proposed constitutive model accounting for load-induced thermal strain and this is shown to outperform the existing Eurocode 2 model in terms of accuracy. Using the validated model, the specific case of flats slabs and the associated connections to supporting columns at various loading ratios are explored. For the cases examined, a marked difference in the structural behavior including displacement direction was captured from low to high loading ratios consistent with experimental observations.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
Application of consistent geometric decomposition theorem to dynamic finite element of 3D composite beam based on experimental and numerical analyses
Iman FATTAHI, Hamid Reza MIRDAMADI, Hamid ABDOLLAHI
Front. Struct. Civ. Eng.. 2020, 14 (3): 675-689.
https://doi.org/10.1007/s11709-020-0625-4
Analyzing static and dynamic problems including composite structures has been of high significance in research efforts and industrial applications. In this article, equivalent single layer approach is utilized for dynamic finite element procedures of 3D composite beam as the building block of numerous composite structures. In this model, both displacement and strain fields are decomposed into cross-sectional and longitudinal components, called consistent geometric decomposition theorem. Then, the model is discretized using finite element procedures. Two local coordinate systems and a global one are defined to decouple mechanical degrees of freedom. Furthermore, from the viewpoint of consistent geometric decomposition theorem, the transformation and element mass matrices for those systems are introduced here for the first time. The same decomposition idea can be used for developing element stiffness matrix. Finally, comprehensive validations are conducted for the theory against experimental and numerical results in two case studies and for various conditions.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
Centrifuge experiments for shallow tunnels at active reverse fault intersection
Mehdi SABAGH, Abbas GHALANDARZADEH
Front. Struct. Civ. Eng.. 2020, 14 (3): 731-745.
https://doi.org/10.1007/s11709-020-0614-7
Tunnels extend in large stretches with continuous lengths of up to hundreds of kilometers which are vulnerable to faulting in earthquake-prone areas. Assessing the interaction of soil and tunnel at an intersection with an active fault during an earthquake can be a beneficial guideline for tunnel design engineers. Here, a series of 4 centrifuge tests are planned and tested on continuous tunnels. Dip-slip surface faulting in reverse mechanism of 60-degree is modeled by a fault simulator box in a quasi-static manner. Failure mechanism, progression and locations of damages to the tunnels are assessed through a gradual increase in Permanent Ground Displacement (PGD). The ground surface deformations and strains, fault surface trace, fault scarp and the sinkhole caused by fault movement are observed here. These ground surface deformations are major threats to stability, safety and serviceability of the structures. According to the observations, the modeled tunnels are vulnerable to reverse fault rupture and but the functionality loss is not abrupt, and the tunnel will be able to tolerate some fault displacements. By monitoring the progress of damage states by increasing PGD, the fragility curves corresponding to each damage state were plotted and interpreted in related figures.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
Prediction on CO2 uptake of recycled aggregate concrete
Kaiwen HUANG, Ao LI, Bing XIA, Tao DING
Front. Struct. Civ. Eng.. 2020, 14 (3): 746-759.
https://doi.org/10.1007/s11709-020-0635-2
Carbonation of concrete is a process which absorbs carbon dioxide (CO2). Recycled aggregate concrete (RAC) may own greater potential in CO2 uptake due to the faster carbonation rate than natural aggregate concrete (NAC). A quantitative model was employed to predict the CO2 uptake of RAC in this study. The carbonation of RAC and the specific surface area of recycled coarse aggregates (RCAs) were tested to verify accuracy of the quantitative model. Based on the verified model, results show that the CO2 uptake capacity increases with the increase of RCA replacement percentage. The CO2 uptake amount of 1 m3 C30 RAC within 50 years is 10.6, 13.8, 17.2, and 22.4 kg when the RCA replacement percentage is 30%, 50%, 70%, and 100%, respectively. The CO2 uptake by RCAs is remarkable and reaches 35.8%–64.3% of the total CO2 uptake by RAC when the RCA storage time being 30 days. Considering the fact that the amount of old hardened cement paste in RCAs is limited, there is an upper limit for the CO2 uptake of RCAs.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected to eccentric compression
Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG
Front. Struct. Civ. Eng.. 2020, 14 (3): 760-772.
https://doi.org/10.1007/s11709-020-0618-3
As a typical compression member, the concrete-filled steel tube has been widely used in civil engineering structures. However, little research on recycled self-compacting concrete filled circular steel tubular (RSCCFCST) columns subjected to eccentric load was reported. In this study, 21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors. Recycled coarse aggregate replacement ratio, concrete strength grade, length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests. The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on eccentric load-bearing capacity of RSCCFCST columns. The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade. With increase of eccentric distance, the ductility of specimens increases while the bearing capacity decreases. Moreover, a phenomenological model of RSCCFCST columns is proposed, which exhibits versatile ability to capture the process during loading. The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
Evaluation of a developed bypass viscous damper performance
Mahrad FAHIMINIA, Aydin SHISHEGARAN
Front. Struct. Civ. Eng.. 2020, 14 (3): 773-791.
https://doi.org/10.1007/s11709-020-0627-2
In this study, the dynamic behavior of a developed bypass viscous damper is evaluated. Bypass viscous damper has a flexible hose as an external orifice through which the inside fluid transfer from one side to the other side of the inner piston. Accordingly, the viscosity coefficient of the damper can be adjusted using geometrical dimensions of the hose. Moreover, the external orifice acts as a thermal compensator and alleviates viscous heating of the damper. According to experimental results, Computational Fluid Dynamic (CFD) model, a numerical formula and the simplified Maxwell model are found and assessed; therefore, the verification of numerical and computational models are evaluated for simulating. Also, a simplified procedure is proposed to design structures with bypass viscous dampers. The design procedure is applied to design an 8-story hospital structure with bypass viscous dampers, and it is compared with the same structure, which is designed with concentric braces and without dampers. Nonlinear time history analyses revealed that the hospital with viscous damper experiences less structural inelastic demands and fewer story accelerations which mean fewer demands on nonstructural elements. Moreover, seismic behaviors of nonstructural masonry claddings are also compared in the cases of hospital structure with and without dampers.
Figures and Tables |
References |
Related Articles |
Metrics
|
17 articles
|