Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2020, Vol. 14 Issue (3) : 623-631    https://doi.org/10.1007/s11709-020-0616-5
RESEARCH ARTICLE
Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics investigation
Mohammad SALAVATI(), Arvin MOJAHEDIN, Ali Hossein Nezhad SHIRAZI
Institute of Structural Mechanics, Bauhaus-Universität Weimar, Weimar D-99423, Germany
 Download: PDF(4915 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work we conducted classical molecular dynamics (MD) simulation to investigate the mechanical characteristics and failure mechanism of hexagonal boron-nitride (h-BN) nanosheets. Pristine and defective structure of h-BN nanosheets were considered under the uniaxial tensile loadings at various temperatures. The defective structure contains three types of the most common initial defects in engineering materials that are known as cracks, notches (with various length/size), and point vacancy defects (with a wide range of concentration). MD simulation results demonstrate a high load-bearing capacity of extremely defective (amorphized) h-BN nanosheets. Our results also reveal that the tensile strength decline by increasing the defect content and temperature as well. Our MD results provide a comprehensive and useful vision concerning the mechanical properties of h-BN nanosheets with/without defects, which is very critical for the designing of nanodevices exploiting the exceptional physics of h-BN.

Keywords hexagonal boron-nitride      mechanical properties      crack      notch      point defects      molecular dynamics     
Corresponding Author(s): Mohammad SALAVATI   
Just Accepted Date: 09 April 2020   Online First Date: 02 June 2020    Issue Date: 13 July 2020
 Cite this article:   
Mohammad SALAVATI,Arvin MOJAHEDIN,Ali Hossein Nezhad SHIRAZI. Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics investigation[J]. Front. Struct. Civ. Eng., 2020, 14(3): 623-631.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-020-0616-5
https://academic.hep.com.cn/fsce/EN/Y2020/V14/I3/623
Fig.1  Lattice structure of monolayer h-BN. The unit cell is shown as parallelogram contains one nitrogen and one boron atoms.
Fig.2  Top and side views of atomistic model of amorphized h-BN with (a) and (b) 70%, (c) and (d) 10% defect concentrations made from 92800 atoms. The inset shows a detailed view focusing on a highly defective zone.
Fig.3  Stress-strain response of the pristine h-BN nanosheet under the uniaxial tension at temperatures of 200, 300, 400, 500, 700, and 900 K.
tempreture (K) 200 300 400 600 900
E (GPa) 635.56 627.52 619.61 605.40 586.50
Tab.1  Young’s Modulus (E) of the pristine nanosheet at the 200, 300, 400, 500,700, and 900 K
Fig.4  Failure mechanisms and crack propagation of h-BN nanosheet with length of L/9 at 300 K under tensile loading in various strain values. (a)ε=0.061; (b)ε=0.121; (c)ε=0.152; (d)ε=0.165; (e)ε=0.177; (f)ε=0.179.
Fig.5  (a) The tensile strength of the nanosheet in the presence of crack with different lengths which are studied at a range of temperatures from 200 to 900 K; (b) engineering strain at maximum tensile strength of the C3N nanosheet with various cracks at different temperatures.
Fig.6  Failure mechanisms and notch propagation of h-BN nanosheet with length of L/9 at 300 K in various strain values under the uniaxial tensile loading. (a)ε=0.061; (b)ε=0.121; (c)ε=0.152; (d)ε=0.165; (e)ε=0.177; (f)ε=0.179.
Fig.7  (a) The ultimate tensile strength of the nanosheet in presence of the notch defect with different diameters; (b) Engineering strain at maximum tensile strength in presence of notch defect with different diameters, at various temperatures of 200, 300, 500, 700, and 900 K.
Fig.8  h-BN nanosheet elastic modulus (E) in presence of (a) crack and (b) notch defects. Elastic modulus values normalized by the pristine elastic modulus at 200 K (EP-200 K = 635.56 GPa)
Fig.9  Stress-strain response of the pristine h-BN nanosheet under the uniaxial tension at different Stone-Wales defects concentrations (10%, 40%, and 70%) in room temperature
Fig.10  Normalized (a) Ultimate tensile stress (UTstress); (b) ultimate tensile strain (UTstrain); (c) elastic modulus (E) by correspond pristine values versus to the Stone-Wales defects concentration content (%).
1 A K Geim, K S Novoselov. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849
2 K S Novoselov, D Jiang, F Schedin, T J Booth, V V Khotkevich, S V Morozov, A K Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451–10453
https://doi.org/10.1073/pnas.0502848102
3 S Z Butler, S M Hollen, L Cao, Y Cui, J A Gupta, H R Gutiérrez, T F Heinz, S S Hong, J Huang, A F Ismach, E Johnston-Halperin, M Kuno, V V Plashnitsa, R D Robinson, R S Ruoff, S Salahuddin, J Shan, L Shi, M G Spencer, M Terrones, W Windl, J E Goldberger. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7(4): 2898–2926
https://doi.org/10.1021/nn400280c
4 B Radisavljevic, A Radenovic, J Brivio, V Giacometti, A Kis. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
https://doi.org/10.1038/nnano.2010.279
5 R W Lynch, H G Drickamer. Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride. Journal of Chemical Physics, 1966, 44(1): 181–184
https://doi.org/10.1063/1.1726442
6 K Watanabe, T Taniguchi, H Kanda. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials, 2004, 3(6): 404–409
https://doi.org/10.1038/nmat1134
7 D Golberg, Y Bando, Y Huang, T Terao, M Mitome, C Tang, C Zhi. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6): 2979–2993
https://doi.org/10.1021/nn1006495
8 B Mortazavi, L F C Pereira, J W Jiang, T Rabczuk. Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Scientific Reports, 2015, 5(1): 13228
https://doi.org/10.1038/srep13228
9 B Mortazavi, G Cuniberti. Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Advances, 2014, 4(37): 19137–19143
https://doi.org/10.1039/C4RA01103A
10 L H Li, J Cervenka, K Watanabe, T Taniguchi, Y Chen. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano, 2014, 8(2): 1457–1462
https://doi.org/10.1021/nn500059s
11 H Zhou, J Zhu, Z Liu, Z Yan, X Fan, J Lin, G Wang, Q Yan, T Yu, P M Ajayan, J M Tour. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Research, 2014, 7(8): 1232–1240
https://doi.org/10.1007/s12274-014-0486-z
12 R Kumar, G Rajasekaran, A Parashar. Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: A molecular dynamics study. Nanotechnology, 2016, 27(8): 085706
https://doi.org/10.1088/0957-4484/27/8/085706
13 J Wang, F Ma, M Sun. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Advances, 2017, 7(27): 16801–16822
https://doi.org/10.1039/C7RA00260B
14 J Yin, J Li, Y Hang, J Yu, G Tai, X Li, Z Zhang, W Guo. Boron nitride nanostructures: Fabrication, functionalization and applications. Small, 2016, 12(22): 2942–2968
https://doi.org/10.1002/smll.201600053
15 Z Liu, L Ma, G Shi, W Zhou, Y Gong, S Lei, X Yang, J Zhang, J Yu, K P Hackenberg, A Babakhani, J C Idrobo, R Vajtai, J Lou, P M Ajayan. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 2013, 8(2): 119–124
https://doi.org/10.1038/nnano.2012.256
16 A Rubio, J L Corkill, M L Cohen. Theory of graphitic boron nitride nanotubes. Physical Review B: Condensed Matter, 1994, 49(7): 5081–5084
https://doi.org/10.1103/PhysRevB.49.5081
17 A Cresti, N Nemec, B Biel, G Niebler, F Triozon, G Cuniberti, S Roche. Charge transport in disordered graphene-based low dimensional materials. Nano Research, 2008, 1(5): 361–394
https://doi.org/10.1007/s12274-008-8043-2
18 F Banhart, J Kotakoski, A V Krasheninnikov. Structural defects in graphene. ACS Nano, 2011, 5(1): 26–41
https://doi.org/10.1021/nn102598m
19 D W Boukhvalov, M I Katsnelson. Chemical functionalization of graphene with defects. Nano Letters, 2008, 8(12): 4373–4379
https://doi.org/10.1021/nl802234n
20 A Hashimoto, K Suenaga, A Gloter, K Urita, S Iijima. Direct evidence for atomic defects in graphene layers. Nature, 2004, 430(7002): 870–873
https://doi.org/10.1038/nature02817
21 J C Meyer, C Kisielowski, R Erni, M D Rossell, M F Crommie, A Zettl. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 2008, 8(11): 3582–3586
https://doi.org/10.1021/nl801386m
22 J Kotakoski, A V Krasheninnikov, K Nordlund. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: Atomistic simulations. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(24): 245420
https://doi.org/10.1103/PhysRevB.74.245420
23 J Ma, D Alfè , A Michaelides, E Wang. Stone-Wales defects in graphene and other planar sp2-bonded materials. Physical Review B: Condensed Matter and Materials Physics, 2009, 80(3): 033407
https://doi.org/10.1103/PhysRevB.80.033407
24 B Mortazavi, G Cuniberti. Atomistic modeling of mechanical properties of polycrystalline graphene. Nanotechnology, 2014, 25(21): 215704
https://doi.org/10.1088/0957-4484/25/21/215704
25 B Mortazavi, M Pötschke, G Cuniberti. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets. Nanoscale, 2014, 6(6): 3344–3352
https://doi.org/10.1039/C3NR06388G
26 C Lee, X Wei, J W Kysar, J. HoneMeasurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321 (5887): 385–388
https://doi.org/10.1126/SCIENCE.1157996.
27 R Bourrellier, S Meuret, A Tararan, O Stéphan, M Kociak, L H G Tizei, A. Zobelli Bright UV Single photon emission at point defects in h-BN. Nano Letters, 2016, 16(7): 4317–4321
https://doi.org/10.1021/acs.nanolett.6b01368
28 M Salavati, H Ghasemi, T Rabczuk. Electromechanical properties of Boron Nitride Nanotube: Atomistic bond potential and equivalent mechanical energy approach. Computational Materials Science, 2018, 149: 460–465
https://doi.org/10.1016/j.commatsci.2018.03.037
29 M Salavati, T Rabczuk. Application of highly stretchable and conductive two-dimensional 1T VS2 and VSe2 as anode materials for Li-, Na- and Ca-ion storage. Computational Materials Science, 2019, 160: 360–367
https://doi.org/10.1016/j.commatsci.2019.01.018
30 M Salavati. Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles. Frontiers of Structural and Civil Engineering, 2019, 13(2): 486–494
https://doi.org/10.1007/s11709-018-0491-5
31 A Katzir, J T Suss, A Zunger, A Halperin. Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. Physical Review B, 1975, 11(6): 2370–2377
https://doi.org/10.1103/PhysRevB.11.2370
32 I Jiménez, A F Jankowski, L J Terminello, D G J Sutherland, J A Carlisle, G L Doll, W M Tong, D K Shuh, F J Himpsel. Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride. Physical Review B: Condensed Matter, 1997, 55(18): 12025–12037
https://doi.org/10.1103/PhysRevB.55.12025
33 S I Hirano, T Yogo, S Asada, S Naka. Synthesis of amorphous boron nitride by pressure pyrolysis of borazine. Journal of the American Ceramic Society, 1989, 72(1): 66–70
https://doi.org/10.1111/j.1151-2916.1989.tb05955.x
34 T Taniguchi, K Kimoto, M Tansho, S Horiuchi, S Yamaoka. Phase transformation of amorphous boron nitride under high pressure. Chemistry of Materials, 2003, 15(14): 2744–2751
https://doi.org/10.1021/cm021763j
35 B Mortazavi, S Ahzi. Thermal conductivity and tensile response of defective graphene: A molecular dynamics study. Carbon N. Y., 2013, 63: 460–470
https://doi.org/10.1016/j.carbon.2013.07.017
36 N Ding, X Chen, C M L Wu. Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets. Scientific Reports, 2016, 6(1): 31499
https://doi.org/10.1038/srep31499
37 S Güryel, B Hajgató, Y Dauphin, J M Blairon, H Edouard Miltner, F De Proft, P Geerlings, G Van Lier. Effect of structural defects and chemical functionalisation on the intrinsic mechanical properties of graphene. Physical Chemistry Chemical Physics, 2013, 15(2): 659–665
https://doi.org/10.1039/C2CP43033A
38 T Han, Y Luo, C Wang. Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. Journal of Physics D, Applied Physics, 2014, 47(2): 025303
https://doi.org/10.1088/0022-3727/47/2/025303
39 R Abadi, R P Uma, M Izadifar, T Rabczuk. Investigation of crack propagation and existing notch on the mechanical response of polycrystalline hexagonal boron-nitride nanosheets. Computational Materials Science, 2017, 131: 86–99
https://doi.org/10.1016/j.commatsci.2016.12.046
40 S Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–19
https://doi.org/10.1006/jcph.1995.1039
41 K Matsunaga, C Fisher, H Matsubara. Tersoff potential parameters for simulating cubic boron carbonitrides. Japanese Journal of Applied Physics, 2000, 39: 48–51
42 G J Martyna, M L Klein, M Tuckerman. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. The Journal of chemical physics, 1992, 97(4): 2635–3643
43 A Cheng, K M Merz. Application of the Nosé-Hoover chain algorithm to the study of protein dynamics. Journal of Physical Chemistry, 1996, 100(5): 1927–1937
https://doi.org/10.1021/jp951968y
44 S Nosé. A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 1984, 81(1): 511–519
https://doi.org/10.1063/1.447334
45 W G Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985, 31(3): 1695–1697
https://doi.org/10.1103/PhysRevA.31.1695
46 B Mortazavi, G Cuniberti, T Rabczuk. Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study. Computational Materials Science, 2015, 99: 285–289
https://doi.org/10.1016/j.commatsci.2014.12.036
47 B Mortazavi, M Makaremi, M Shahrokhi, M Raeisi, C V Singh, T Rabczuk, L F C Pereira. Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties. Nanoscale, 2018, 10(8): 3759–3768
https://doi.org/10.1039/C7NR08725J
48 B Mortazavi, M Makaremi, M Shahrokhi, Z Fan, T Rabczuk. N-graphdiyne two-dimensional nanomaterials: Semiconductors with low thermal conductivity and high stretchability. Carbon N. Y., 2018, 137: 57–67
https://doi.org/10.1016/j.carbon.2018.04.090
49 B Mortazavi, M E Madjet, M Shahrokhi, S Ahzi, X Zhuang, T Rabczuk. Nanoporous graphene: A 2D semiconductor with anisotropic mechanical, optical and thermal conduction properties. Carbon N. Y., 2019, 147: 377–384
https://doi.org/10.1016/j.carbon.2019.03.018
50 B Mortazavi, O Benzerara, H Meyer, J Bardon, S Ahzi. Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon N. Y., 2013, 60: 356–365
https://doi.org/10.1016/j.carbon.2013.04.048
51 B Mortazavi, T Rabczuk. Multiscale modeling of heat conduction in graphene laminates. Carbon N. Y., 2015, 85: 1–7
https://doi.org/10.1016/j.carbon.2014.12.046
52 B Mortazavi, M Shahrokhi, X Zhuang, T Rabczuk. Boron-graphdiyne: A superstretchable semiconductor with low thermal conductivity and ultrahigh capacity for Li, Na and Ca ion storage. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(23): 11022–11036
https://doi.org/10.1039/C8TA02627K
53 B Mortazavi, Y Rémond, S Ahzi, V Toniazzo. Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations. Computational Materials Science, 2012, 53(1): 298–302
https://doi.org/10.1016/j.commatsci.2011.08.018
54 A K Subramaniyan, C T Sun. Continuum interpretation of virial stress in molecular simulations. International Journal of Solids and Structures, 2008, 45(14–15): 4340–4346
https://doi.org/10.1016/j.ijsolstr.2008.03.016
55 A Stukowski. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012
https://doi.org/10.1088/0965-0393/18/1/015012
56 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456
https://doi.org/10.32604/cmc.2019.06660
57 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359
https://doi.org/10.32604/cmc.2019.06641
58 T Rabczuk, H Ren, X Zhuang. A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Computers, Materials & Continua, 2019, 59(1): 31–55
https://doi.org/10.32604/cmc.2019.04567
59 Y P Varshni. Temperature dependence of the elastic constants. Physical Review B, 1970, 2(10): 3952–3958
https://doi.org/10.1103/PhysRevB.2.3952
60 J M Ziman. Electrons and Phonons: The Theory of Transport Phenomena in Solids. Clarendon Press, 2001
61 J M Ziman. Electrons and Phonons. Oxford: Oxford University Press, 2001
https://doi.org/10.1093/acprof:oso/9780198507796.001.0001.
62 F Liu, P Ming, J Li. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(6): 064120
https://doi.org/10.1103/PhysRevB.76.064120
63 A H N Shirazi. Molecular dynamics investigation of mechanical properties of single-layer phagraphene. Frontiers of Structural and Civil Engineering, 2019, 13(2): 495–503
https://doi.org/10.1007/s11709-018-0492-4
64 A H N Shirazi, R Abadi, M Izadifar, N Alajlan, T Rabczuk. Mechanical responses of pristine and defective C3N nanosheets studied by molecular dynamics simulations. Computational Materials Science, 2018, 147: 316–321
https://doi.org/10.1016/j.commatsci.2018.01.058
65 B Mortazavi. Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon N. Y., 2017, 118: 25–34
https://doi.org/10.1016/j.carbon.2017.03.029
66 B Mortazavi, Z Fan, L F C Pereira, A Harju, T Rabczuk. Amorphized graphene: A stiff material with low thermal conductivity. Carbon N. Y., 2016, 103: 318–326
https://doi.org/10.1016/j.carbon.2016.03.007
[1] Beibei SUN, Hao WU, Weimin SONG, Zhe LI, Jia YU. Hydration, microstructure and autogenous shrinkage behaviors of cement mortars by addition of superabsorbent polymers[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1274-1284.
[2] Aydin SHISHEGARAN, Behnam KARAMI, Timon RABCZUK, Arshia SHISHEGARAN, Mohammad Ali NAGHSH, Mohammreza MOHAMMAD KHANI. Performance of fixed beam without interacting bars[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1180-1195.
[3] Mahgoub M. SALIH, Adelaja I. OSOFERO, Mohammed S. IMBABI. Critical review of recent development in fiber reinforced adobe bricks for sustainable construction[J]. Front. Struct. Civ. Eng., 2020, 14(4): 839-854.
[4] Zhitao LV, Caichu XIA, Yuesong WANG, Ziliang LIN. Frost heave and freezing processes of saturated rock with an open crack under different freezing conditions[J]. Front. Struct. Civ. Eng., 2020, 14(4): 947-960.
[5] Fucheng GUO, Jiupeng ZHANG, Jianzhong PEI, Weisi MA, Zhuang HU, Yongsheng GUAN. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation[J]. Front. Struct. Civ. Eng., 2020, 14(2): 435-445.
[6] Jaroon RUNGAMORNRAT, Bounsana CHANSAVANG, Weeraporn PHONGTINNABOOT, Chung Nguyen VAN. Investigation of Generalized SIFs of cracks in 3D piezoelectric media under various crack-face conditions[J]. Front. Struct. Civ. Eng., 2020, 14(2): 280-298.
[7] Baoyun ZHAO, Yang LIU, Dongyan LIU, Wei HUANG, Xiaoping WANG, Guibao YU, Shu LIU. Research on the influence of contact surface constraint on mechanical properties of rock-concrete composite specimens under compressive loads[J]. Front. Struct. Civ. Eng., 2020, 14(2): 322-330.
[8] Dongliang HU, Jianzhong PEI, Rui LI, Jiupeng ZHANG, Yanshun JIA, Zepeng FAN. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation[J]. Front. Struct. Civ. Eng., 2020, 14(1): 109-122.
[9] Weihua FANG, Jiangfei WU, Tiantang YU, Thanh-Tung NGUYEN, Tinh Quoc BUI. Simulation of cohesive crack growth by a variable-node XFEM[J]. Front. Struct. Civ. Eng., 2020, 14(1): 215-228.
[10] Aydin SHISHEGARAN, Mohammad Reza GHASEMI, Hesam VARAEE. Performance of a novel bent-up bars system not interacting with concrete[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1301-1315.
[11] Shaochun WANG, Xi JIANG, Yun BAI. The influence of hand hole on the ultimate strength and crack pattern of shield tunnel segment joints by scaled model test[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1200-1213.
[12] Yijie HUANG, Xujia HE, Qing WANG, Jianzhuang XIAO. Deformation field and crack analyses of concrete using digital image correlation method[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1183-1199.
[13] Xudong SHAO, Lu DENG, Junhui CAO. Innovative steel-UHPC composite bridge girders for long-span bridges[J]. Front. Struct. Civ. Eng., 2019, 13(4): 981-989.
[14] Yundong ZHOU, Fei ZHANG, Jingquan Wang, Yufeng GAO, Guangyu DAI. Seismic stability of earth slopes with tension crack[J]. Front. Struct. Civ. Eng., 2019, 13(4): 950-964.
[15] Kunamineni VIJAY, Meena MURMU. Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete[J]. Front. Struct. Civ. Eng., 2019, 13(3): 515-525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed