Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2012, Vol. 3 Issue (10) : 781-789    https://doi.org/10.1007/s13238-012-2065-y      PMID: 22983903
RESEACH ARTICLE
HER3 intracellular domains play a crucial role in HER3/HER2 dimerization and activation of downstream signaling pathways
Byung-Kwon Choi1, Xiumei Cai1,2, Bin Yuan1,3, Zhao Huang1, Xuejun Fan1, Hui Deng1, Ningyan Zhang1(), Zhiqiang An1()
1. Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; 2. Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China; 3. The Methodist Hospital Research Institute, Houston, TX 77030, USA
 Download: PDF(634 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dimerization among the EGFR family of tyrosine kinase receptors leads to allosteric activation of the kinase domains of the partners. Unlike other members in the family, the kinase domain of HER3 lacks key amino acid residues for catalytic activity. As a result, HER3 is suggested to serve as an allosteric activator of other EGFR family members which include EGFR, HER2 and HER4. To study the role of intracellular domains in HER3 dimerization and activation of downstream signaling pathways, we constructed HER3/HER2 chimeric receptors by replacing the HER3 kinase domain (HER3-2-3) or both the kinase domain and the C-terminal tail (HER3-2-2) with the HER2 counterparts and expressed the chimeric receptors in Chinese hamster ovary (CHO) cells. While over expression of the intact human HER3 transformed CHO cells with oncogenic properties such as AKT/ERK activation and increased proliferation and migration, CHO cells expressing the HER3-2-3 chimeric receptor showed significantly reduced HER3/HER2 dimerization and decreased phosphorylation of both AKT and ERK1/2 in the presence of neuregulin-1 (NRG-1). In contrast, CHO cells expressing the HER3-2-2 chimeric receptor resulted in a total loss of downstream AKT activation in response to NRG-1, but maintained partial activation of ERK1/2. The results demonstrate that the intracellular domains play a crucial role in HER3’s function as an allosteric activator and its role in downstream signaling.

Keywords HER3      HER2      cell proliferation      cell migration      PI3K/AKT      MAPK/ERK1/2     
Corresponding Author(s): Zhang Ningyan,Email:ningyan.zhang@uth.tmc.edu; An Zhiqiang,Email:zhiqiang.an@uth.tmc.edu   
Issue Date: 01 October 2012
 Cite this article:   
Byung-Kwon Choi,Xiumei Cai,Bin Yuan, et al. HER3 intracellular domains play a crucial role in HER3/HER2 dimerization and activation of downstream signaling pathways[J]. Prot Cell, 2012, 3(10): 781-789.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-012-2065-y
https://academic.hep.com.cn/pac/EN/Y2012/V3/I10/781
1 Amin, D.N., Campbell, M.R., and Moasser, M.M. (2010a). The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin Cell Dev Biol 21, 944-950 .
doi: 10.1016/j.semcdb.2010.08.007
2 Amin, D.N., Sergina, N., Ahuja, D., McMahon, M., Blair, J.A., Wang, D., Hann, B., Koch, K.M., Shokat, K.M., and Moasser, M.M. (2010b). Resiliency and vulnerability in the HER2-HER3 tumorigenic driver. Sci Transl Med 2, 16ra17.
doi: 10.1126/scitranslmed.3000389
3 Baselga, J., and Swain, S.M. (2009). Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9, 463-475 .
doi: 10.1038/nrc2656
4 Berger, M.B., Mendrola, J.M., and Lemmon, M.A. (2004). ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface. FEBS Lett 569, 332-336 .
doi: 10.1016/j.febslet.2004.06.014
5 Campbell, M.R., Amin, D., and Moasser, M.M. (2010). HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy. Clin Cancer Res 16, 1373-1383 .
doi: 10.1158/1078-0432.CCR-09-1218
6 Chan, S.D., Antoniucci, D.M., Fok, K.S., Alajoki, M.L., Harkins, R.N., Thompson, S.A., and Wada, H.G. (1995). Heregulin activation of extracellular acidification in mammary carcinoma cells is associated with expression of HER2 and HER3. J Biol Chem 270, 22608-22613 .
doi: 10.1074/jbc.270.38.22608
7 Choi, B.-K., Fan, X., Deng, H., Zhang, N. and An, Z. (2012), ERBB3 (HER3) is a key sensor in the regulation of ERBB-mediated signaling in both low and high ERBB2 (HER2) expressing cancer cells. Cancer Medicine .
doi: 10.1002/cam4.10
doi: 10.1002/cam4.10
8 Engelman, J.A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J.O., Lindeman, N., Gale, C.M., Zhao, X., Christensen, J., . (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039-1043 .
doi: 10.1126/science.1141478
9 Huang, Z., Brdlik, C., Jin, P., and Shepard, H.M. (2009). A pan-HER approach for cancer therapy: background, current status and future development. Expert Opin Biol Ther 9, 97-110 .
doi: 10.1517/14712590802630427
10 Jura, N., Shan, Y., Cao, X., Shaw, D.E., and Kuriyan, J. (2009a). Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci U S A 106, 21608-21613 .
doi: 10.1073/pnas.0912101106
11 Jura, N., Endres, N.F., Engel, K., Deindl, S., Das, R., Lamers, M.H., Wemmer, D.E., Zhang, X., and Kuriyan, J. (2009b). Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137, 1293-1307 .
doi: 10.1016/j.cell.2009.04.025
12 Kong, A., Calleja, V., Leboucher, P., Harris, A., Parker, P.J., and Larijani, B. (2008). HER2 oncogenic function escapes EGFR tyrosine kinase inhibitors via activation of alternative HER receptors in breast cancer cells. PLoS One 3, e2881.
doi: 10.1371/journal.pone.0002881
13 Krug, A.W., Schuster, C., Gassner, B., Freudinger, R., Mildenberger, S., Troppmair, J., and Gekle, M. (2002). Human epidermal growth factor receptor-1 expression renders Chinese hamster ovary cells sensitive to alternative aldosterone signaling. J Biol Chem 277, 45892-45897 .
doi: 10.1074/jbc.M208851200
14 Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 402-408 .
doi: 10.1006/meth.2001.1262
15 Mattoon, D.R., Lamothe, B., Lax, I., and Schlessinger, J. (2004). The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol 2, 24.
doi: 10.1186/1741-7007-2-24
16 Narayan, M., Wilken, J.A., Harris, L.N., Baron, A.T., Kimbler, K.D., and Maihle, N.J. (2009). Trastuzumab-induced HER reprogramming in "resistant" breast carcinoma cells. Cancer Res 69, 2191-2194 .
doi: 10.1158/0008-5472.CAN-08-1056
17 Rothe, M., Treder, M., Hartmann, S., Freeman, D., and Radinsky, B. (2007). Antibodies directed to HER-3 and uses thereof. In World Intellectual Property Organization, W.I.P. Organization, ed .
18 Schoeberl, B., Pace, E.A., Fitzgerald, J.B., Harms, B.D., Xu, L., Nie, L., Linggi, B., Kalra, A., Paragas, V., Bukhalid, R., . (2009). Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal 2, ra31.
doi: 10.1126/scisignal.2000352
19 Shepard, H.M., Brdlik, C., and Schreiber, H. (2008). Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family. The Journal of Clinical Investigation 118, 3574-3581 .
doi: 10.1172/JCI36049
20 Sierke, S.L., Cheng, K., Kim, H.H., and Koland, J.G. (1997). Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein. Biochem J 322 (Pt 3), 757-763 .
21 Suenaga, A., Takada, N., Hatakeyama, M., Ichikawa, M., Yu, X., Tomii, K., Okimoto, N., Futatsugi, N., Narumi, T., Shirouzu, M., . (2005). Novel mechanism of interaction of p85 subunit of phosphatidylinositol 3-kinase and ErbB3 receptor-derived phosphotyrosyl peptides. J Biol Chem 280, 1321-1326 .
doi: 10.1074/jbc.M410436200
22 Wheeler, D.L., Huang, S., Kruser, T.J., Nechrebecki, M.M., Armstrong, E.A., Benavente, S., Gondi, V., Hsu, K.T., and Harari, P.M. (2008). Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27, 3944-3956 .
doi: 10.1038/onc.2008.19
23 Zhang, N., Liu, L., Dan Dumitru, C., Cummings, N.R., Cukan, M., Jiang, Y., Li, Y., Li, F., Mitchell, T., Mallem, M.R., . (2011). Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. MAbs 3, 298-98 .
doi: 10.4161/mabs.3.3.15532
[1] Yanjing Song, Chuan Tong, Yao Wang, Yunhe Gao, Hanren Dai, Yelei Guo, Xudong Zhao, Yi Wang, Zizheng Wang, Weidong Han, Lin Chen. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo[J]. Protein Cell, 2018, 9(10): 867-878.
[2] Kaichao Feng, Yang Liu, Yelei Guo, Jingdan Qiu, Zhiqiang Wu, Hanren Dai, Qingming Yang, Yao Wang, Weidong Han. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers[J]. Protein Cell, 2018, 9(10): 838-847.
[3] Chao Lu,Yang Yang,Ran Zhao,Bingxuan Hua,Chen Xu,Zuoqin Yan,Ning Sun,Ruizhe Qian. Role of circadian gene Clock during differentiation of mouse pluripotent stem cells[J]. Protein Cell, 2016, 7(11): 820-832.
[4] Jiwei Zhang,Zehua Bian,Jialiang Zhou,Mingxu Song,Zhihui Liu,Yuyang Feng,Li Zhe,Binbin Zhang,Yuan Yin,Zhaohui Huang. MicroRNA-638 inhibits cell proliferation by targeting phospholipase D1 in human gastric carcinoma[J]. Protein Cell, 2015, 6(9): 680-688.
[5] Qiu Li,Zhi-Chun Lai. Recent progress in studies of factors that elicit pancreatic β-cell expansion[J]. Protein Cell, 2015, 6(2): 81-87.
[6] Peng Jiang,Wenjing Du,Mian Wu. Regulation of the pentose phosphate pathway in cancer[J]. Protein Cell, 2014, 5(8): 592-602.
[7] Youguang Luo,Dengwen Li,Jie Ran,Bing Yan,Jie Chen,Xin Dong,Zhu Liu,Ruming Liu,Jun Zhou,Min Liu. End-binding protein 1 stimulates paclitaxel sensitivity in breast cancer by promoting its actions toward microtubule assembly and stability[J]. Protein Cell, 2014, 5(6): 469-479.
[8] Dengwen Li,Xiaodong Sun,Linlin Zhang,Bing Yan,Songbo Xie,Ruming Liu,Min Liu,Jun Zhou. Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells[J]. Protein Cell, 2014, 5(3): 214-223.
[9] Dan Wang, Peng Xue, Xiu Lan Chen, Zhen Sheng Xie, Fu Quan Yang, Li Zheng, Tao Xu. Angiotensin IV upregulates the activity of protein phosphatase 1α in Neura-2A cells[J]. Prot Cell, 2013, 4(7): 520-528.
[10] Meng Xu, Xuexiang Du, Mingyue Liu, Sirui Li, Xiaozhu Li, Yang-Xin Fu, Shengdian Wang. The tumor immunosuppressive microenvironment impairs the therapy of anti-HER2/neu antibody[J]. Prot Cell, 2012, 3(6): 441-449.
[11] Kai Gong, Fangfang Zhou, Huizhe Huang, Yandao Gong, Long Zhang. Suppression of GSK3β by ERK mediates lipopolysaccharide induced cell migration in macrophage through β-catenin signaling[J]. Prot Cell, 2012, 3(10): 762-768.
[12] Dengwen Li, Songbo Xie, Yuan Ren, Lihong Huo, Jinmin Gao, Dandan Cui, Min Liu, Jun Zhou. Microtubule-associated deacetylase HDAC6 promotes angiogenesis by regulating cell migration in an EB1-dependent manner[J]. Prot Cell, 2011, 2(2): 150-160.
[13] Shenglin Huang, Xianghuo He. microRNAs: tiny RNA molecules, huge driving forces to move the cell[J]. Prot Cell, 2010, 1(10): 916-926.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed