Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2014, Vol. 5 Issue (8) : 592-602    https://doi.org/10.1007/s13238-014-0082-8
REVIEW
Regulation of the pentose phosphate pathway in cancer
Peng Jiang1,*(),Wenjing Du3,Mian Wu2,*()
1. School of Life Sciences, Tsinghua University, Beijing 100084, China
2. Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
3. Department of Cancer Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
 Download: PDF(395 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Energy metabolism is significantly reprogrammed in many human cancers, and these alterations confer many advantages to cancer cells, including the promotion of biosynthesis, ATP generation, detoxification and support of rapid proliferation. The pentose phosphate pathway (PPP) is a major pathway for glucose catabolism. The PPP directs glucose flux to its oxidative branch and produces a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), an essential reductant in anabolic processes. It has become clear that the PPP plays a critical role in regulating cancer cell growth by supplying cells with not only ribose-5-phosphate but also NADPH for detoxification of intracellular reactive oxygen species, reductive biosynthesis and ribose biogenesis. Thus, alteration of the PPP contributes directly to cell proliferation, survival and senescence. Furthermore, recent studies have shown that the PPP is regulated oncogenically and/or metabolically by numerous factors, including tumor suppressors, oncoproteins and intracellular metabolites. Dysregulation of PPP flux dramatically impacts cancer growth and survival. Therefore, a better understanding of how the PPP is reprogrammed and the mechanism underlying the balance between glycolysis and PPP flux in cancer will be valuable in developing therapeutic strategies targeting this pathway.

Keywords pentose phosphate pathway (PPP)      G6PD      NADPH      glucose metabolism      cancer      cell Proliferation     
Corresponding Author(s): Peng Jiang   
Issue Date: 27 August 2014
 Cite this article:   
Peng Jiang,Wenjing Du,Mian Wu. Regulation of the pentose phosphate pathway in cancer[J]. Protein Cell, 2014, 5(8): 592-602.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0082-8
https://academic.hep.com.cn/pac/EN/Y2014/V5/I8/592
1 Amelio I, Markert EK, Ruflni A, Antonov AV, Sayan BS, Tucci P, Agostini M, Mineo TC, Levine AJ, Melino G(2013) p73 regulates serine biosynthesis in cancer. Oncogene
doi: 10.1038/onc.2013.456
2 Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science334: 1278-1283
doi: 10.1126/science.1211485
3 Bader AG, Kang S, Zhao L, Vogt PK(2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer5: 921-929
doi: 10.1038/nrc1753
4 Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH(2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell126: 107-120
doi: 10.1016/j.cell.2006.05.036
5 Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH(2013) Metabolic regulation by p53 family members. Cell Metab18: 617-633
doi: 10.1016/j.cmet.2013.06.019
6 Bleeker FE, Atai NA, Lamba S, Jonker A, Rijkeboer D, Bosch KS, Tigchelaar W, Troost D, Vandertop WP, Bardelli A (2010) The prognostic IDH1(R132) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol119: 487-494
doi: 10.1007/s00401-010-0645-6
7 Bonneau D, Longy M(2000) Mutations of the human PTEN gene. Hum Mutat16: 109-122
doi: 10.1002/1098-1004(200008)16:2<109::AID-HUMU3>3.0.CO;2-0
8 Cairns RA, Harris IS, Mak TW(2011) Regulation of cancer cell metabolism. Nat Rev Cancer11: 85-95
doi: 10.1038/nrc2981
9 Candi E, Agostini M, Melino G, Bernassola F(2014) How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat35: 702-714
doi: 10.1002/humu.22523
10 Cantley LC(2002) The phosphoinositide 3-kinase pathway. Science296: 1655-1657
doi: 10.1126/science.296.5573.1655
11 Cantley LC, Neel BG(1999) Newinsights into tumor suppression:PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA96: 4240-4245
doi: 10.1073/pnas.96.8.4240
12 Cheung EC, Athineos D, Lee P, Ridgway RA, Lambie W, Nixon C, Strathdee D, Blyth K, Sansom OJ, Vousden KH(2013) TIGAR is required for efflcient intestinal regeneration and tumorigenesis. Dev Cell25: 463-477
doi: 10.1016/j.devcel.2013.05.001
13 Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A (2009) Mutations of multiple genes cause deregulation of NfkappaB in diffuse large B-cell lymphoma. Nature459: 717-721
doi: 10.1038/nature07968
14 Cosentino C, Grieco D, Costanzo V(2011) ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J30: 546-555
doi: 10.1038/emboj.2010.330
15 Costa Rosa LF, Curi R, Murphy C, Newsholme P(1995) Effect of adrenaline and phorbol myristate acetate or bacterial lipopolysaccharide on stimulation of pathways of macrophage glucose, glutamine and O2 metabolism. Evidence for cyclic AMP-dependent protein kinase mediated inhibition of glucose-6-phosphate dehydrogenase and activation of NADP+-dependent ‘malic’ enzyme. Biochem J310(Pt 2): 709-714
16 da Silva CG, Jarzyna R, Specht A, Kaczmarek E(2006) Extracellular nucleotides and adenosine independently activate AMPactivated protein kinase in endothelial cells: involvement of P2 receptors and adenosine transporters. Circ Res98: e39-e47
doi: 10.1161/01.RES.0000215436.92414.1d
17 Dang CV(2012) MYC on the path to cancer. Cell149: 22-35
doi: 10.1016/j.cell.2012.03.003
18 Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC (2010) Cancerassociated IDH1 mutations produce 2-hydroxyglutarate. Nature465: 966
doi: 10.1038/nature09132
19 DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB(2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab7: 11-20
doi: 10.1016/j.cmet.2007.10.002
20 Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ, Mak TW, Wu M, Yang X(2013) TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol15: 991-1000
doi: 10.1038/ncb2789
21 Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell39: 171-183
doi: 10.1016/j.molcel.2010.06.022
22 Engelman JA(2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer9: 550-562
doi: 10.1038/nrc2664
23 Engelman JA, Luo J, Cantley LC(2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet7: 606-619
doi: 10.1038/nrg1879
24 Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab17: 113-124
doi: 10.1016/j.cmet.2012.12.001
25 Fets L, Anastasiou D(2013) p73 keeps metabolic control in the family. Nat Cell Biol15: 891-893
doi: 10.1038/ncb2810
26 Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature458: 762-765
doi: 10.1038/nature07823
27 Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC, Anastasiou D, Ito K, Sasaki AT, Rameh L (2012) Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell149: 49-62
doi: 10.1016/j.cell.2012.02.030
28 Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA(2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev20: 1218-1249
doi: 10.1101/gad.1415606
29 Hong X, Song R, Song H, Zheng T, Wang J, Liang Y, Qi S, Lu Z, Song X, Jiang H (2013) PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis. Gut. 0:gutjnl-2013-305302v1-gutjnl-2013-305302
30 Hsu PP, Sabatini DM(2008) Cancer cell metabolism: Warburg and beyond. Cell134: 703-707
doi: 10.1016/j.cell.2008.08.021
31 Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z(2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA107: 7455-7460
doi: 10.1073/pnas.1001006107
32 Huang W, Choi W, Chen Y, Zhang Q, Deng H, He W, Shi Y(2013) A proposed role for glutamine in cancer cell growth through acid resistance. Cell Res23: 724-727
doi: 10.1038/cr.2013.15
33 Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X(2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol13: 310-316
doi: 10.1038/ncb2172
34 Jiang P, Du W, Mancuso A, Wellen KE, Yang X(2013a) Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature493: 689-693
doi: 10.1038/nature11776
35 Jiang P, Du W, Yang X(2013b) A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Cell Cycle12: 3720-3726
doi: 10.4161/cc.27267
36 Jiang P, Du W, Yang X(2013c) p53 and regulation of tumor metabolism. J Carcinog12: 21
doi: 10.4103/1477-3163.122760
37 Jones NP, Schulze A(2012) Targeting cancer metabolism—aiming at a tumour’s sweet-spot. Drug Discov Today17: 232-241
doi: 10.1016/j.drudis.2011.12.017
38 Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB(2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell18: 283-293
doi: 10.1016/j.molcel.2005.03.027
39 Kletzien RF, Harris PK, Foellmi LA(1994) Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissuespeciflc regulation by hormones, nutrients, and oxidant stress. FASEB J8: 174-181
40 Kohan AB, Talukdar I, Walsh CM, Salati LM(2009) A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids. BiochemBiophys Res Commun388: 117-121
doi: 10.1016/j.bbrc.2009.07.130
41 Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D(2005) Glycolytic enzymes can modulate cellular life span. Cancer Res65: 177-185
42 Koppenol WH, Bounds PL, Dang CV(2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer11: 325-337
doi: 10.1038/nrc3038
43 Kroemer G, Pouyssegur J(2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell13: 472-482
doi: 10.1016/j.ccr.2008.05.005
44 Kuo W, Lin J, Tang TK(2000) Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3T3 cells and induces tumors in nude mice. Int J Cancer85: 857-864
doi: 10.1002/(SICI)1097-0215(20000315)85:6<857::AID-IJC20>3.0.CO;2-U
45 Langbein S, Frederiks WM, zur Hausen A, Popa J, Lehmann J, Weiss C, Alken P, Coy JF(2008) Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int J Cancer122: 2422-2428
doi: 10.1002/ijc.23403
46 Leopold JA, Dam A, Maron BA, Scribner AW, Liao R, Handy DE, Stanton RC, Pitt B, Loscalzo J(2007) Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat Med13: 189-197
doi: 10.1038/nm1545
47 Liang Y, Liu J, Feng Z(2013) The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci3: 9
doi: 10.1186/2045-3701-3-9
48 Longo L, Vanegas OC, Patel M, Rosti V, Li H, Waka J, Merghoub T, Pandolfl PP, Notaro R, Manova K (2002) Maternally transmitted severe glucose 6-phosphate dehydrogenase deflciency is an embryonic lethal. EMBO J21: 4229-4239
doi: 10.1093/emboj/cdf426
49 Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol27: 441-464
doi: 10.1146/annurev-cellbio-092910-154237
50 Maehama T, Dixon JE(1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem273: 13375-13378
doi: 10.1074/jbc.273.22.13375
51 Manganelli G, Masullo U, Passarelli S, Filosa S(2013) Glucose-6-phosphate dehydrogenase deflciency: disadvantages and possible beneflts. Cardiovasc Hematol Disord Drug Targets13: 73-82
doi: 10.2174/1871529X11313010008
52 Manning BD, Cantley LC(2007) AKT/PKB signaling: navigating downstream. Cell129: 1261-1274
doi: 10.1016/j.cell.2007.06.009
53 Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM(2006) p53 regulates mitochondrial respiration. Science312: 1650-1653
doi: 10.1126/science.1126863
54 Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL (2008) An integrated genomic analysis of human glioblastoma multiforme. Science321: 1807-1812
doi: 10.1126/science.1164382
55 Quade BJ, Wang TY, Sornberger K, Dal Cin P, Mutter GL, Morton CC(2004) Molecular pathogenesis of uterine smooth muscle tumors fromtranscriptional proflling. Genes Chromosom Cancer40: 97-108
doi: 10.1002/gcc.20018
56 Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM (2002) The use of molecular proflling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med346: 1937-1947
doi: 10.1056/NEJMoa012914
57 Ruflni A, Niklison-Chirou MV, Inoue S, Tomasini R, Harris IS, Marino A, Federici M, Dinsdale D, Knight RA, Melino G (2012) TAp73 depletion accelerates aging through metabolic dysregulation. Genes Dev26: 2009-2014
doi: 10.1101/gad.197640.112
58 Sandulache VC, Ow TJ, Pickering CR, Frederick MJ, Zhou G, Fokt I, Davis-Malesevich M, Priebe W, Myers JN(2011) Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer117: 2926-2938
doi: 10.1002/cncr.25868
59 Schulz E, Anter E, Zou MH, Keaney JF Jr (2005) Estradiol-mediated endothelial nitric oxide synthase association with heat shock protein 90 requires adenosine monophosphate-dependent protein kinase. Circulation111: 3473-3480
doi: 10.1161/CIRCULATIONAHA.105.546812
60 Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E(2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res64: 2627-2633
doi: 10.1158/0008-5472.CAN-03-0846
61 Shaw RJ, Cantley LC(2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature441: 424-430
doi: 10.1038/nature04869
62 Shen L, Sun X, Fu Z, Yang G, Li J, Yao L(2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin Cancer Res18: 1561-1567
doi: 10.1158/1078-0432.CCR-11-3040
63 Simpson L, Parsons R(2001) PTEN: life as a tumor suppressor. Exp Cell Res264: 29-41
doi: 10.1006/excr.2000.5130
64 Stahmann N, Woods A, Carling D, Heller R(2006) Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol Cell Biol26: 5933-5945
doi: 10.1128/MCB.00383-06
65 Stanton RC(2012) Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life64: 362-369
doi: 10.1002/iub.1017
66 Stearman RS, Dwyer-Nield L, Zerbe L, Blaine SA, Chan Z, Bunn PA Jr, Johnson GL, Hirsch FR, Merrick DT, Franklin WA (2005) Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol167: 1763-1775
doi: 10.1016/S0002-9440(10)61257-6
67 Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ, Liang SC, Lin CH, Whang-Peng J, Hsu SL, Chen CH (2007) Selection ofDDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC Genomics8: 140
doi: 10.1186/1471-2164-8-140
68 Sun W, Lee TS, Zhu M, Gu C, Wang Y, Zhu Y, Shyy JY(2006) Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation114: 2655-2662
doi: 10.1161/CIRCULATIONAHA.106.630194
69 Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA107: 7461-7466
doi: 10.1073/pnas.1002459107
70 Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC(1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem273: 10609-10617
doi: 10.1074/jbc.273.17.10609
71 Towler MC, Hardie DG(2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res100: 328-341
doi: 10.1161/01.RES.0000256090.42690.05
72 Vander Heiden MG, Cantley LC, Thompson CB(2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324: 1029-1033
doi: 10.1126/science.1160809
73 Varshney R, Dwarakanath B, Jain V(2005) Radiosensitization by 6-aminonicotinamide and 2-deoxy-D-glucose in human cancer cells. Int J Radiat Biol81: 397-408
doi: 10.1080/09553000500148590
74 Wagle A, Jivraj S, Garlock GL, Stapleton SR(1998) Insulin regulation of glucose-6-phosphate dehydrogenase gene expression is rapamycin-sensitive and requires phosphatidylinositol 3-kinase. J Biol Chem273: 14968-14974
doi: 10.1074/jbc.273.24.14968
75 Warburg O(1956) On the origin of cancer cells. Science123: 309-314
doi: 10.1126/science.123.3191.309
76 Warburg O, Posener K, Negelein E(1924) Ueber den Stoffwechsel der Tumoren. Biochem Z152: 319-344
77 Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell17: 225-234
doi: 10.1016/j.ccr.2010.01.020
78 Ward PS, Cross JR, Lu C, Weigert O, Abel-Wahab O, Levine RL, Weinstock DM, Sharp KA, Thompson CB(2012) Identiflcation of additional IDH mutations associated with oncometabolite R(-)-2-hydroxyglutarate production. Oncogene31: 2491-2498
doi: 10.1038/onc.2011.416
79 Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA105: 18782-18787
doi: 10.1073/pnas.0810199105
80 Wood T(1986) Physiological functions of the pentose phosphate pathway. Cell Biochem Funct4: 241-247
doi: 10.1002/cbf.290040403
81 Xu Y, Osborne BW, Stanton RC(2005) Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am J Physiol Renal Physiol289: F1040-F1047
doi: 10.1152/ajprenal.00076.2005
82 Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med360: 765-773
doi: 10.1056/NEJMoa0808710
83 Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell149: 656-670
doi: 10.1016/j.cell.2012.01.058
84 Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y(2007) Deflciency in glutamine but not glucose induces MYCdependent apoptosis in human cells. J Cell Biol178: 93-105
doi: 10.1083/jcb.200703099
85 Zhang Z, Apse K, Pang J, Stanton RC(2000) High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J Biol Chem275: 40042-40047
doi: 10.1074/jbc.M007505200
86 Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science324: 261-265
doi: 10.1126/science.1170944
87 Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E(2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J Biol Chem285: 33154-33164
doi: 10.1074/jbc.M110.143685
88 Zoncu R, Efeyan A, Sabatini DM(2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol12: 21-35
doi: 10.1038/nrm3025
89 Zou MH, Hou XY, Shi CM, Kirkpatick S, Liu F, Goldman MH, Cohen RA(2003) Activation of 5’-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells. Role of peroxynitrite. J Biol Chem278: 34003-34010
doi: 10.1074/jbc.M300215200
[1] Mona Teng, Stanley Zhou, Changmeng Cai, Mathieu Lupien, Housheng Hansen He. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
[2] Henry Y. Jiang, Sara Najmeh, Guy Martel, Elyse MacFadden-Murphy, Raquel Farias, Paul Savage, Arielle Leone, Lucie Roussel, Jonathan Cools-Lartigue, Stephen Gowing, Julie Berube, Betty Giannias, France Bourdeau, Carlos H. F. Chan, Jonathan D. Spicer, Rebecca McClure, Morag Park, Simon Rousseau, Lorenzo E. Ferri. Activation of the pattern recognition receptor NOD1 augments colon cancer metastasis[J]. Protein Cell, 2020, 11(3): 187-201.
[3] Ruyi Xu, Yi Li, Yang Liu, Jianwei Qu, Wen Cao, Enfan Zhang, Jingsong He, Zhen Cai. How are MCPIP1 and cytokines mutually regulated in cancer-related immunity?[J]. Protein Cell, 2020, 11(12): 881-893.
[4] Weiwei Jiang, Fangfang Cai, Huangru Xu, Yanyan Lu, Jia Chen, Jia Liu, Nini Cao, Xiangyu Zhang, Xiao Chen, Qilai Huang, Hongqin Zhuang, Zi-Chun Hua. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner[J]. Protein Cell, 2020, 11(11): 825-845.
[5] Fenjie Li, Junjun Ding. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression[J]. Protein Cell, 2019, 10(8): 550-565.
[6] Wei Shao, Shasha Li, Lu Li, Kequan Lin, Xinhong Liu, Haiyan Wang, Huili Wang, Dong Wang. Chemical genomics reveals inhibition of breast cancer lung metastasis by Ponatinib via c-Jun[J]. Protein Cell, 2019, 10(3): 161-177.
[7] Boyi Zhang, Fei Chen, Qixia Xu, Liu Han, Jiaqian Xu, Libin Gao, Xiaochen Sun, Yiwen Li, Yan Li, Min Qian, Yu Sun. Revisiting ovarian cancer microenvironment: a friend or a foe?[J]. Protein Cell, 2018, 9(8): 674-692.
[8] Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment[J]. Protein Cell, 2018, 9(6): 516-526.
[9] Jia Yang, Jun Yu. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get[J]. Protein Cell, 2018, 9(5): 474-487.
[10] Xiao-xiao Xu, Han Wan, Li Nie, Tong Shao, Li-xin Xiang, Jian-zhong Shao. RIG-I: a multifunctional protein beyond a pattern recognition receptor[J]. Protein Cell, 2018, 9(3): 246-253.
[11] Nicole M. Anderson, Patrick Mucka, Joseph G. Kern, Hui Feng. The emerging role and targetability of the TCA cycle in cancer metabolism[J]. Protein Cell, 2018, 9(2): 216-237.
[12] John M. Dean, Irfan J. Lodhi. Structural and functional roles of ether lipids[J]. Protein Cell, 2018, 9(2): 196-206.
[13] Yanjing Song, Chuan Tong, Yao Wang, Yunhe Gao, Hanren Dai, Yelei Guo, Xudong Zhao, Yi Wang, Zizheng Wang, Weidong Han, Lin Chen. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo[J]. Protein Cell, 2018, 9(10): 867-878.
[14] Xiaowei Chen, Zhen Fan, Warren McGee, Mengmeng Chen, Ruirui Kong, Pushuai Wen, Tengfei Xiao, Xiaomin Chen, Jianghong Liu, Li Zhu, Runsheng Chen, Jane Y. Wu. TDP-43 regulates cancer-associated microRNAs[J]. Protein Cell, 2018, 9(10): 848-866.
[15] Kaichao Feng, Yang Liu, Yelei Guo, Jingdan Qiu, Zhiqiang Wu, Hanren Dai, Qingming Yang, Yao Wang, Weidong Han. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers[J]. Protein Cell, 2018, 9(10): 838-847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed