Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2010, Vol. 1 Issue (10) : 916-926    https://doi.org/10.1007/s13238-010-0116-9      PMID: 21204018
REVIEW
microRNAs: tiny RNA molecules, huge driving forces to move the cell
Shenglin Huang, Xianghuo He()
State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
 Download: PDF(345 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cell migration or movement is a highly dynamic cellular process, requiring precise regulation that is essential for a variety of biological processes. microRNAs (miRNAs) are a class of tiny non-coding RNA molecules that function as critical post-transcriptional regulators of gene expression. Emerging evidence demonstrates that miRNAs play important roles in cell migration and directly contribute to extracellular matrix (ECM) remodeling, cell adhesion, and cell signalling that controls cell migration by targeting a large number of protein-coding genes. Accordingly, the dysregulation of these miRNAs has been linked to several migration-related diseases. In this review, we summarize and highlight the recent advances concerning the roles and validated targets of miRNAs in the control of cell movement.

Keywords microRNA      cell migration      metastasis     
Corresponding Author(s): He Xianghuo,Email:xhhe@shsci.org   
Issue Date: 01 October 2010
 Cite this article:   
Shenglin Huang,Xianghuo He. microRNAs: tiny RNA molecules, huge driving forces to move the cell[J]. Prot Cell, 2010, 1(10): 916-926.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-010-0116-9
https://academic.hep.com.cn/pac/EN/Y2010/V1/I10/916
Fig.1  miRNAs and extracellular matrix (ECM) remodeling.
miRNAs are identified as upstream regulators of ECM-related genes. FNDC3A: fibronectin type-III domain containing 3A; FNDC3B: fibronectin type III domain containing 3B; MMP: matrix metalloproteinases; TIMP: tissue inhibitors of metalloproteinases; VLDLR: very low density lipoprotein receptor; ApoER2: apolipoprotein E receptor 2.
Fig.1  miRNAs and extracellular matrix (ECM) remodeling.
miRNAs are identified as upstream regulators of ECM-related genes. FNDC3A: fibronectin type-III domain containing 3A; FNDC3B: fibronectin type III domain containing 3B; MMP: matrix metalloproteinases; TIMP: tissue inhibitors of metalloproteinases; VLDLR: very low density lipoprotein receptor; ApoER2: apolipoprotein E receptor 2.
Fig.2  miRNAs and hepatocyte growth factor (HGF)/c-Met signaling.
HGF interacts with the proto-oncogenic c-Met receptor tyrosine kinase and regulates cell growth, cell motility, and morphogenesis. The c-Met mRNA level has been shown to be directly regulated by miR-1, miR-206, miR-34a, miR-23b, and miR-199a-3p. PAK, p21-activated kinase; uPA: urokinase-type plasminogen activator; PI3K: phosphatidylinositol 3-kinase; FAK: focal adhesion kinase.
Fig.2  miRNAs and hepatocyte growth factor (HGF)/c-Met signaling.
HGF interacts with the proto-oncogenic c-Met receptor tyrosine kinase and regulates cell growth, cell motility, and morphogenesis. The c-Met mRNA level has been shown to be directly regulated by miR-1, miR-206, miR-34a, miR-23b, and miR-199a-3p. PAK, p21-activated kinase; uPA: urokinase-type plasminogen activator; PI3K: phosphatidylinositol 3-kinase; FAK: focal adhesion kinase.
Fig.3  miRNAs and EGFR signaling.
The epidermal growth factor receptors (EGFRs) belong to the ERBB family of receptor tyrosine kinases. HER2 (ErbB2) is a unique member of the ErbB family because it does not bind any of the known ligands with high affinity, but it is the preferred heterodimeric partner for other EGFRs. These receptors couple the binding of extracellular growth factor ligands to intracellular signaling pathways and regulate diverse responses, including proliferation, differentiation, and cell motility. MiRNAs have been shown to directly regulate the expression of these receptors. PTEN: phosphatase and tensin homolog; mTOR: mammalian target of rapamycin.
Fig.3  miRNAs and EGFR signaling.
The epidermal growth factor receptors (EGFRs) belong to the ERBB family of receptor tyrosine kinases. HER2 (ErbB2) is a unique member of the ErbB family because it does not bind any of the known ligands with high affinity, but it is the preferred heterodimeric partner for other EGFRs. These receptors couple the binding of extracellular growth factor ligands to intracellular signaling pathways and regulate diverse responses, including proliferation, differentiation, and cell motility. MiRNAs have been shown to directly regulate the expression of these receptors. PTEN: phosphatase and tensin homolog; mTOR: mammalian target of rapamycin.
Fig.4  MiRNAs and Rho GTPases.
The Rho GTPases signaling cascade plays a central role in regulating cell adhesion, migration, and the cytoskeleton. MiRNAs can affect cell migration by regulating the expression of the Rho GTPases members as well as their effectors and regulators. GEFs: guanine nucleotide exchange factors; RhoGDIA: Rho GDP-dissociation inhibitor; ROCK: Rho-associated kinases; PAK: p21-activated kinases; HOXD10: homeobox D10.
Fig.4  MiRNAs and Rho GTPases.
The Rho GTPases signaling cascade plays a central role in regulating cell adhesion, migration, and the cytoskeleton. MiRNAs can affect cell migration by regulating the expression of the Rho GTPases members as well as their effectors and regulators. GEFs: guanine nucleotide exchange factors; RhoGDIA: Rho GDP-dissociation inhibitor; ROCK: Rho-associated kinases; PAK: p21-activated kinases; HOXD10: homeobox D10.
miRNAregulationtargetsmigrationfunctionreferences
Let-7--COL1A2--inhibits HCC cell migrationJi et al., 2010
miR-1/206--c-Met--inhibits rhabdomyosarcoma developmentYan et al., 2009
miR-10btwistHOXD10, Tiam1, Rac1, KLF4+promotes cell migration and invasiveness in breast cancer, glioma, and squamous cell carcinoma cellsMa et al., 2007; Tian et al., 2010
miR-101--FOS--Inhibits HCC cell invasionLi et al., 2009b
miR-122--ADAM10, ADAM17--inhibits HCC cell migration and metastasisBai et al., 2009; Tsai et al., 2009
miR-125EGFR regulatedErbB2/3--inhibits cell migration and invasion in breast cancer and lung cancer cellsScott et al., 2007; Wang et al., 2009
miR-126--Crk--inhibits lung cancer cell migration and invasionCrawford et al., 2008
miR-128--Reelin, DCX--inhibits neuroblastoma cell motility and invasivenessEvangelisti et al., 2009
miR-138--RhoC, ROCK2--inhibits tongue squamous cell carcinoma cell migration and invasionJiang et al., 2010
miR-143NF-κB, myocardinVersican, FNDC3B--inhibits smooth muscle cells migrationWang et al., 2010b; Zhang et al., 2009
miR-146BRMS1EGFR, MMP16, ROCK1--inhibits cell migration and invasion in breast cancer and glioma cellsLin et al., 2008; Xia et al., 2009
miR-150--C-myb+promotes endothelial cell migrationZhang et al., 2010
miR-151amplificationRhoGDIA+promotes HCC cell migration and metastasisDing et al., 2010
miR-17/20c-mycIL-8, CXCL1, CK8, fibronectin, FNDC3A--inhibits breast cancer cell migration and metastasisShan et al., 2009; Yu et al., 2010
miR-181bTGF-βTIMP3+promotes HCC cell migration and invasionWang et al., 2010a
miR-182amplificationFOXO3, Mitf-M+promotes melanoma cell migration and metastasisSegura et al., 2009
miR-183Integrin 1, kinesin 2, ezrin--inhibits cell migration and invasion in HeLa and lung cancer cellsWang et al., 2008b; Li et al., 2010
miR-196BMP4, Pax7--inhibits tail regeneration of salamandersSehm et al., 2009
miR-199a-3pmTOR, c-Met--inhibits HCC cell invasionFornari et al., 2010
miR-200ZEB1, ZEB2--counteracts epithelial-to-mesenchymal transition and reduces cell migration/invasionKorpal et al., 2008
miR-205LRP1--inhibits cell migration and invasionSong and Bu, 2009
miR-21TIMP3, RECK, PTEN+promotes cell migration and invasion in breast cancer, glima, and HCC cellsMeng et al., 2007; Gabriely et al., 2008
miR-210HIF-1Ephrin-A3+promotes endothelial cell migration in response to hypoxiaFasanaro et al., 2008
miR-221c-junPTEN, TIMP3, DDIT4, c-kit±promotes migration and metastasis in NSCLC and HCC cells. Inhibits vascular smooth muscle cells migrationGarofalo et al., 2009; Li et al., 2009c; Pineau et al., 2010; Poliseno et al., 2006
miR-23b--uPA, c-Met--inhibits HCC cell migration and invasionSalvi et al., 2009
miR-27b--Pax3--regulates myogenic differentiation and inhibits muscle stem cell migrationCrist et al., 2009
miR-29c--Collagens, laminin 1,--inhibits nasopharyngeal carcinomas cell migration and metastasisSengupta et al., 2008
miR-30d--Gnail2+promotes HCC cell migration and metastasisYao et al., 2010
miR-31--MMP16, RhoA--inhibits cell migration and metastasis in breast cancer cellsValastyan et al., 2009
miR-328--CD44+regulates zonation morphogenesisWang et al., 2008a
miR-335--SOX4, tenascin C--inhibits breast cancer cell migration and metastasisTavazoie et al., 2008
miR-34a--c-Met--inhibits HCC cell migration and invasionLi et al., 2009a
miR-373/520--CD44+promotes breast cancer cell migration and metastasisHuang et al., 2008
miR-661c/EBPAMTA1--inhibits breast cancer cell migration and invasionReddy et al., 2009
miR-7HoxD10PAK1--inhibits breast cancer cell migration and invasionReddy et al., 2008
miR-9MYC/MYCNE-cadherin, stathmin±promotes breast cancer cell migration and metastasis. Inhibits human neural progenitor cells migrationDelaloy et al., 2010; Ma et al., 2010
Tab.1  The miRNAs and the validated targets in the driving forces of cell migration
1 Bai, S., Nasser, M.W., Wang, B., Hsu, S.H., Datta, J., Kutay, H., Yadav, A., Nuovo, G., Kumar, P., and Ghoshal, K. (2009). MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 284, 32015-32027 .
doi: 10.1074/jbc.M109.016774
2 Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 .
3 Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 .
4 Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., . (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37, 766-770 .
doi: 10.1038/ng1590
5 Crawford, M., Brawner, E., Batte, K., Yu, L., Hunter, M.G., Otterson, G.A., Nuovo, G., Marsh, C.B., and Nana-Sinkam, S.P. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun 373, 607-612 .
doi: 10.1016/j.bbrc.2008.06.090
6 Crist, C.G., Montarras, D., Pallafacchina, G., Rocancourt, D., Cumano, A., Conway, S.J., and Buckingham, M. (2009). Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci U S A 106, 13383-13387 .
doi: 10.1073/pnas.0900210106
7 Delaloy, C., Liu, L., Lee, J.A., Su, H., Shen, F., Yang, G.Y., Young, W.L., Ivey, K.N., and Gao, F.B. (2010). MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 6, 323-335 .
8 Ding, J., Huang, S., Wu, S., Zhao, Y., Liang, L., Yan, M., Ge, C., Yao, J., Chen, T., Wan, D., . (2010). Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol 12, 390-399 .
doi: 10.1038/ncb2039
9 Esquela-Kerscher, A., and Slack, F.J. (2006). Oncomirs- microRNAs with a role in cancer. Nat Rev Cancer 6, 259-269 .
doi: 10.1038/nrc1840
10 Evangelisti, C., Florian, M.C., Massimi, I., Dominici, C., Giannini, G., Galardi, S., Buè, M.C., Massalini, S., McDowell, H.P., Messi, E., . (2009). miR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J 23, 4276-4287 .
doi: 10.1096/fj.09-134965
11 Fasanaro, P., D’Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., Capogrossi, M.C., and Martelli, F. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283, 15878-15883 .
doi: 10.1074/jbc.M800731200
12 Fornari, F., Milazzo, M., Chieco, P., Negrini, M., Calin, G.A., Grazi, G.L., Pollutri, D., Croce, C.M., Bolondi, L., and Gramantieri, L. (2010). miR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 70, 5184-5193 .
13 Friedl, P., and Wolf, K. (2010). Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188, 11-19 .
doi: 10.1083/jcb.200909003
14 Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105 .
doi: 10.1101/gr.082701.108
15 Gabriely, G., Wurdinger, T., Kesari, S., Esau, C.C., Burchard, J., Linsley, P.S., and Krichevsky, A.M. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28, 5369-5380 .
doi: 10.1128/MCB.00479-08
16 Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S.S., Ngankeu, A., Taccioli, C., Pichiorri, F., Alder, H., Secchiero, P., . (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16, 498-509 .
doi: 10.1016/j.ccr.2009.10.014
17 Gregory, R.I., Chendrimada, T.P., and Shiekhattar, R. (2006). MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol 342, 33-47 .
18 He, L., and Hannon, G.J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522-531 .
doi: 10.1038/nrg1379
19 Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., Egan, D.A., Li, A., Huang, G., Klein-Szanto, A.J., . (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10, 202-210 .
doi: 10.1038/ncb1681
20 Ji, J., Zhao, L., Budhu, A., Forgues, M., Jia, H.L., Qin, L.X., Ye, Q.H., Yu, J., Shi, X., Tang, Z.Y., . (2010). Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol 52, 690-697 .
doi: 10.1016/j.jhep.2009.12.025
21 Ji, X. (2008). The mechanism of RNase III action: how dicer dices. Curr Top Microbiol Immunol 320, 99-116 .
doi: 10.1007/978-3-540-75157-1_5
22 Jiang, L., Liu, X., Kolokythas, A., Yu, J., Wang, A., Heidbreder, C.E., Shi, F., and Zhou, X. (2010). Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer 127, 505-512 .
doi: 10.1002/ijc.25320
23 Korpal, M., Lee, E.S., Hu, G., and Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283, 14910-14914 .
doi: 10.1074/jbc.C800074200
24 Lauffenburger, D.A., and Horwitz, A.F. (1996). Cell migration: a physically integrated molecular process. Cell 84, 359-369 .
25 Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 .
26 Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060 .
27 Li, G., Luna, C., Qiu, J., Epstein, D.L., and Gonzalez, P. (2010). Targeting of integrin beta1 and kinesin 2alpha by microRNA 183. J Biol Chem 285, 5461-5471 .
doi: 10.1074/jbc.M109.037127
28 Li, N., Fu, H., Tie, Y., Hu, Z., Kong, W., Wu, Y., and Zheng, X. (2009a). miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275, 44-53 .
doi: 10.1016/j.canlet.2008.09.035
29 Li, S., Fu, H., Wang, Y., Tie, Y., Xing, R., Zhu, J., Sun, Z., Wei, L., and Zheng, X. (2009b). MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology 49, 1194-1202 .
doi: 10.1002/hep.22757
30 Li, Y., Song, Y.H., Li, F., Yang, T., Lu, Y.W., and Geng, Y.J. (2009c). MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun 381, 81-83 .
doi: 10.1016/j.bbrc.2009.02.013
31 Lin, S.L., Chiang, A., Chang, D., and Ying, S.Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA 14, 417-424 .
32 Ma, L., Teruya-Feldstein, J., and Weinberg, R.A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682-688 .
doi: 10.1038/nature06174
33 Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., Teruya-Feldstein, J., Reinhardt, F., Onder, T.T., Valastyan, S., . (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12, 247-256 .
34 Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S.T., and Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647-658 .
doi: 10.1053/j.gastro.2007.05.022
35 Murchison, E.P., and Hannon, G.J. (2004). miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16, 223-229 .
doi: 10.1016/j.ceb.2004.04.003
36 Parent, C.A., and Devreotes, P.N. (1999). A cell’s sense of direction. Science 284, 765-770 .
doi: 10.1126/science.284.5415.765
37 Pineau, P., Volinia, S., McJunkin, K., Marchio, A., Battiston, C., Terris, B., Mazzaferro, V., Lowe, S.W., Croce, C.M., and Dejean, A. (2010). miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A 107, 264-269 .
doi: 10.1073/pnas.0907904107
38 Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., Mercatanti, A., Hammond, S., and Rainaldi, G. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108, 3068-3071 .
doi: 10.1182/blood-2006-01-012369
39 Rana, T.M. (2007). Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8, 23-36 .
doi: 10.1038/nrm2085
40 Reddy, S.D., Ohshiro, K., Rayala, S.K., and Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 68, 8195-8200 .
doi: 10.1158/0008-5472.CAN-08-2103
41 Reddy, S.D., Pakala, S.B., Ohshiro, K., Rayala, S.K., and Kumar, R. (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Res 69, 5639-5642 .
doi: 10.1158/0008-5472.CAN-09-0898
42 Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., and Horwitz, A.R. (2003). Cell migration: integrating signals from front to back. Science 302, 1704-1709 .
doi: 10.1126/science.1092053
43 Salvi, A., Sabelli, C., Moncini, S., Venturin, M., Arici, B., Riva, P., Portolani, N., Giulini, S.M., De Petro, G., and Barlati, S. (2009). MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J 276, 2966-2982 .
doi: 10.1111/j.1742-4658.2009.07014.x
44 Scott, G.K., Goga, A., Bhaumik, D., Berger, C.E., Sullivan, C.S., and Benz, C.C. (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282, 1479-1486 .
doi: 10.1074/jbc.M609383200
45 Segura, M.F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S., Zakrzewski, J., Blochin, E., Rose, A., Bogunovic, D., . (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A 106, 1814-1819 .
doi: 10.1073/pnas.0808263106
46 Sehm, T., Sachse, C., Frenzel, C., and Echeverri, K. (2009). miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events. Dev Biol 334, 468-480 .
doi: 10.1016/j.ydbio.2009.08.008
47 Sengupta, S., den Boon, J.A., Chen, I.H., Newton, M.A., Stanhope, S.A., Cheng, Y.J., Chen, C.J., Hildesheim, A., Sugden, B., and Ahlquist, P. (2008). MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci U S A 105, 5874-5878 .
doi: 10.1073/pnas.0801130105
48 Shan, S.W., Lee, D.Y., Deng, Z., Shatseva, T., Jeyapalan, Z., Du, W.W., Zhang, Y., Xuan, J.W., Yee, S.P., Siragam, V., . (2009). MicroRNA miR-17 retards tissue growth and represses fibronectin expression. Nat Cell Biol 11, 1031-1038 .
49 Song, H., and Bu, G. (2009). MicroRNA-205 inhibits tumor cell migration through down-regulating the expression of the LDL receptor-related protein 1. Biochem Biophys Res Commun 388, 400-405 .
doi: 10.1016/j.bbrc.2009.08.020
50 Tavazoie, S.F., Alarcón, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P.D., Gerald, W.L., and Massagué, J. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147-152 .
doi: 10.1038/nature06487
51 Tian, Y., Luo, A., Cai, Y., Su, Q., Ding, F., Chen, H., and Liu, Z. (2010). MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem 285, 7986-7994 .
doi: 10.1074/jbc.M109.062877
52 Tsai, W.C., Hsu, P.W., Lai, T.C., Chau, G.Y., Lin, C.W., Chen, C.M., Lin, C.D., Liao, Y.L., Wang, J.L., Chau, Y.P., . (2009). MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49, 1571-1582 .
doi: 10.1002/hep.22806
53 Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szász, A.M., Wang, Z.C., Brock, J.E., Richardson, A.L., and Weinberg, R.A. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032-1046 .
54 Wang, B., Hsu, S.H., Majumder, S., Kutay, H., Huang, W., Jacob, S.T., and Ghoshal, K. (2010a). TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29, 1787-1797 .
55 Wang, C.H., Lee, D.Y., Deng, Z., Jeyapalan, Z., Lee, S.C., Kahai, S., Lu, W.Y., Zhang, Y., Yang, B.B., and B?hler, J. (2008a). MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS ONE 3, e2420.
doi: 10.1371/journal.pone.0002420
56 Wang, G., Mao, W., and Zheng, S. (2008b). MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett 582, 3663-3668 .
doi: 10.1016/j.febslet.2008.09.051
57 Wang, G., Mao, W., Zheng, S., and Ye, J. (2009). Epidermal growth factor receptor-regulated miR-125a-5p—a metastatic inhibitor of lung cancer. FEBS J 276, 5571-5578 .
doi: 10.1111/j.1742-4658.2009.07238.x
58 Wang, X., Hu, G., and Zhou, J. (2010b). Repression of versican expression by microRNA-143. J Biol Chem 285, 23241-23250 .
doi: 10.1074/jbc.M109.084673
59 Xia, H., Qi, Y., Ng, S.S., Chen, X., Li, D., Chen, S., Ge, R., Jiang, S., Li, G., Chen, Y., . (2009). microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res 1269, 158-165 .
doi: 10.1016/j.brainres.2009.02.037
60 Yan, D., Dong, X.E., Chen, X., Wang, L., Lu, C., Wang, J., Qu, J., and Tu, L. (2009). MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J Biol Chem 284, 29596-29604 .
doi: 10.1074/jbc.M109.020511
61 Yao, J., Liang, L., Huang, S., Ding, J., Tan, N., Zhao, Y., Yan, M., Ge, C., Zhang, Z., Chen, T., . (2010). MicroRNA-30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma. Hepatology 51, 846-856 .
62 Yu, Z., Willmarth, N.E., Zhou, J., Katiyar, S., Wang, M., Liu, Y., McCue, P.A., Quong, A.A., Lisanti, M.P., and Pestell, R.G. (2010). microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A 107, 8231-8236 .
doi: 10.1073/pnas.1002080107
63 Zhang, X., Liu, S., Hu, T., Liu, S., He, Y., and Sun, S. (2009). Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology 50, 490-499 .
doi: 10.1002/hep.23008
64 Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., . (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39, 133-144 .
doi: 10.1016/j.molcel.2010.06.010
[1] Henry Y. Jiang, Sara Najmeh, Guy Martel, Elyse MacFadden-Murphy, Raquel Farias, Paul Savage, Arielle Leone, Lucie Roussel, Jonathan Cools-Lartigue, Stephen Gowing, Julie Berube, Betty Giannias, France Bourdeau, Carlos H. F. Chan, Jonathan D. Spicer, Rebecca McClure, Morag Park, Simon Rousseau, Lorenzo E. Ferri. Activation of the pattern recognition receptor NOD1 augments colon cancer metastasis[J]. Protein Cell, 2020, 11(3): 187-201.
[2] Weiwei Jiang, Fangfang Cai, Huangru Xu, Yanyan Lu, Jia Chen, Jia Liu, Nini Cao, Xiangyu Zhang, Xiao Chen, Qilai Huang, Hongqin Zhuang, Zi-Chun Hua. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner[J]. Protein Cell, 2020, 11(11): 825-845.
[3] Xi Chen, Lin Wang, Rujin Huang, Hui Qiu, Peizhe Wang, Daren Wu, Yonglin Zhu, Jia Ming, Yangming Wang, Jianbin Wang, Jie Na. Dgcr8 deletion in the primitive heart uncovered novel microRNA regulating the balance of cardiac-vascular gene program[J]. Protein Cell, 2019, 10(5): 327-346.
[4] Wei Shao, Shasha Li, Lu Li, Kequan Lin, Xinhong Liu, Haiyan Wang, Huili Wang, Dong Wang. Chemical genomics reveals inhibition of breast cancer lung metastasis by Ponatinib via c-Jun[J]. Protein Cell, 2019, 10(3): 161-177.
[5] Boyi Zhang, Fei Chen, Qixia Xu, Liu Han, Jiaqian Xu, Libin Gao, Xiaochen Sun, Yiwen Li, Yan Li, Min Qian, Yu Sun. Revisiting ovarian cancer microenvironment: a friend or a foe?[J]. Protein Cell, 2018, 9(8): 674-692.
[6] Na Qu, Zhao Ma, Mengrao Zhang, Muaz N. Rushdi, Christopher J. Krueger, Antony K. Chen. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation[J]. Protein Cell, 2018, 9(7): 640-651.
[7] Yuanyuan Gu, Shuoxin Liu, Xiaodan Zhang, Guimin Chen, Hongwei Liang, Mengchao Yu, Zhicong Liao, Yong Zhou, Chen-Yu Zhang, Tao Wang, Chen Wang, Junfeng Zhang, Xi Chen. Oncogenic miR-19a and miR-19b co-regulate tumor suppressor MTUS1 to promote cell proliferation and migration in lung cancer[J]. Protein Cell, 2017, 8(6): 455-466.
[8] Zhujun Jiang,Jingtao Chen,Xuemei Du,Hang Cheng,Xiaohu Wang,Chen Dong. IL-25 blockade inhibits metastasis in breast cancer[J]. Protein Cell, 2017, 8(3): 191-201.
[9] Qingzhao Feng,Xionglin Wu,Fuchao Li,Beibei Ning,Xiaofeng Lu,Yin Zhang,Ying Pan,Wenxian Guan. miR-27b inhibits gastric cancer metastasis by targeting NR2F2[J]. Protein Cell, 2017, 8(2): 114-122.
[10] Shaohong Chen, Guangxia Gao. MicroRNAs recruit eIF4E2 to repress translation of target mRNAs[J]. Protein Cell, 2017, 8(10): 750-761.
[11] Zhiju Zhao,Shu Li,Erwei Song,Suling Liu. The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells[J]. Protein Cell, 2016, 7(2): 89-99.
[12] Qian Fan,Xiangrui Meng,Hongwei Liang,Huilai Zhang,Xianming Liu,Lanfang Li,Wei Li,Wu Sun,Haiyang Zhang,Ke Zen,Chen-Yu Zhang,Zhen Zhou,Xi Chen,Yi Ba. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma[J]. Protein Cell, 2016, 7(12): 899-912.
[13] Yanqing Liu,Uzair-ur-Rehman,Yu Guo,Hongwei Liang,Rongjie Cheng,Fei Yang,Yeting Hong,Chihao Zhao,Minghui Liu,Mengchao Yu,Xinyan Zhou,Kai Yin,Jiangning Chen,Junfeng Zhang,Chen-Yu Zhang,Feng Zhi,Xi Chen. miR-181b functions as an oncomiR in colorectal cancer by targeting PDCD4[J]. Protein Cell, 2016, 7(10): 722-734.
[14] Lin Lin,Qingqing Cai,Xiaoyan Zhang,Hongwei Zhang,Yang Zhong,Congjian Xu,Yanyun Li. Two less common human microRNAs miR-875 and miR-3144 target a conserved site of E6 oncogene in most high-risk human papillomavirus subtypes[J]. Protein Cell, 2015, 6(8): 575-588.
[15] Chuankai Zhang,Yunda Zhang,Weiji Ding,Yancheng Lin,Zhengjie Huang,Qi Luo. MiR-33a suppresses breast cancer cell proliferation and metastasis by targeting ADAM9 and ROS1[J]. Protein Cell, 2015, 06(12): 881-889.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed