Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2013, Vol. 4 Issue (6) : 415-424    https://doi.org/10.1007/s13238-013-2089-y      PMID: 23686735
REVIEW
Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases
Rui Li, Ye Bai, Tongtong Liu, Xiaoqun Wang(), Qian Wu()
State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(317 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Human embryonic stem cells (hESCs) are pluripotent cells that have the ability of unlimited self-renewal and can be differentiated into different cell lineages, including neural stem (NS) cells. Diverse regulatory signaling pathways of neural stem cells differentiation have been discovered, and this will be of great benefit to uncover the mechanisms of neuronal differentiation in vivo and in vitro. However, the limitations of hESCs resource along with the religious and ethical concerns impede the progress of ESCs application. Therefore, the induced pluripotent stem cells (iPSCs) via somatic cell reprogramming have opened up another new territory for regenerative medicine. iPSCs now can be derived from a number of lineages of cells, and are able to differentiate into certain cell types, including neurons. Patient-specific iPSCs are being used in human neurodegenerative disease modeling and drug screening. Furthermore, with the development of somatic direct reprogramming or lineage reprogramming technique, a more effective approach for regenerative medicine could become a complement for iPSCs.

Keywords human embryonic stem cells (hESCs)      neuronal differentiation      induced pluripotent stem cells (iPSCs)      somatic direct reprogramming      lineage reprogramming      regenerative medicine     
Corresponding Author(s): Wang Xiaoqun,Email:xiaoqunwang@ibp.ac.cn; Wu Qian,Email:qianwu@moon.ibp.ac.cn   
Issue Date: 01 June 2013
 Cite this article:   
Rui Li,Ye Bai,Xiaoqun Wang, et al. Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases[J]. Prot Cell, 2013, 4(6): 415-424.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-013-2089-y
https://academic.hep.com.cn/pac/EN/Y2013/V4/I6/415
1 Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., . (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276-1284 .
doi: 10.1038/nbt.1503
2 Altman, J., and Das, G.D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124, 319-335 .
doi: 10.1002/cne.901240303
3 Ambasudhan, R., Talantova, M., Coleman, R., Yuan, X., Zhu, S., Lipton, S.A., and Ding, S. (2011). Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9, 113-118 .
doi: 10.1016/j.stem.2011.07.002
4 Ambros, V. (2003). MicroRNA pathways in fl ies and worms: growth, death, fat, stress, and timing. Cell 113, 673-676 .
doi: 10.1016/S0092-8674(03)00428-8
5 Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355 .
doi: 10.1038/nature02871
6 Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., and Yamanaka, S. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699-702 .
doi: 10.1126/science.1154884
7 Attisano, L., and Wrana, J.L. (2002). Signal transduction by the TGFbeta superfamily. Science 296, 1646-1647 .
doi: 10.1126/science.1071809
8 Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes & development 17, 126-140 .
doi: 10.1101/gad.224503
9 Botquin, V., Hess, H., Fuhrmann, G., Anastassiadis, C., Gross, M.K., Vriend, G., and Scholer, H.R. (1998). New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct-4 and Sox-2. Genes & development 12, 2073-2090 .
doi: 10.1101/gad.12.13.2073
10 Boulting, G.L., Kiskinis, E., Croft, G.F., Amoroso, M.W., Oakley, D.H., Wainger, B.J., Williams, D.J., Kahler, D.J., Yamaki, M., Davidow, L., . (2011). A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol 29, 279-286 .
doi: 10.1038/nbt.1783
11 Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., . (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947-956 .
doi: 10.1016/j.cell.2005.08.020
12 Brennand, K.J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., Li, Y., Mu, Y., Chen, G., Yu, D., . (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221-225 .
doi: 10.1038/nature09915
13 Caiazzo, M., Dell’Anno, M.T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., Sotnikova, T.D., Menegon, A., Roncaglia, P., Colciago, G., . (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224-227 .
doi: 10.1038/nature10284
14 Chambers, S.M., and Studer, L. (2011). Cell fate plug and play: direct reprogramming and induced pluripotency. Cell 145, 827-830 .
doi: 10.1016/j.cell.2011.05.036
15 Chen, J., Liu, J., Yang, J., Chen, Y., Ni, S., Song, H., Zeng, L., Ding, K., and Pei, D. (2011). BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone. Cell Res 21, 205-212 .
doi: 10.1038/cr.2010.172
16 Cheng, L.C., Pastrana, E., Tavazoie, M., and Doetsch, F. (2009). miR124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12, 399-408 .
doi: 10.1038/nn.2294
17 Chin, M.H., Mason, M.J., Xie, W., Volinia, S., Singer, M., Peterson, C., Ambartsumyan, G., Aimiuwu, O., Richter, L., Zhang, J., . (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5, 111-123 .
doi: 10.1016/j.stem.2009.06.008
18 Choi, J., Costa, M.L., Mermelstein, C.S., Chagas, C., Holtzer, S., and Holtzer, H. (1990). MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci U S A 87, 7988-7992 .
doi: 10.1073/pnas.87.20.7988
19 Cobaleda, C., Jochum, W., and Busslinger, M. (2007). Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473-477 .
doi: 10.1038/nature06159
20 Cordero-Llana, O., Scott, S.A., Maslen, S.L., Anderson, J.M., Boyle, J., Chowhdury, R.R., Tyers, P., Barker, R.A., Kelly, C.M., Rosser, A.E., . (2011). Clusterin secreted by astrocytes enhances neuronal differentiation from human neural precursor cells. Cell Death Differ 18, 907-913 .
doi: 10.1038/cdd.2010.169
21 Deng, J., Shoemaker, R., Xie, B., Gore, A., LeProust, E.M., AntosiewiczBourget, J., Egli, D., Maherali, N., Park, I.H., Yu, J., . (2009). Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 27, 353-360 .
doi: 10.1038/nbt.1530
22 Denham, M., and Dottori, M. (2009). Signals involved in neural differentiation of human embryonic stem cells. Neurosignals 17, 234-241 .
doi: 10.1159/000231890
23 Dessaud, E., McMahon, A.P., and Briscoe, J. (2008). Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogenregulated transcriptional network. Development 135, 2489-2503 .
doi: 10.1242/dev.009324
24 Dhara, S.K., and Stice, S.L. (2008). Neural differentiation of human embryonic stem cells. J Cell Biochem 105, 633-640 .
doi: 10.1002/jcb.21891
25 Dill, H., Linder, B., Fehr, A., and Fischer, U. (2012). Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2. Genes Dev 26, 25-30 .
doi: 10.1101/gad.177774.111
26 Dimos, J.T., Rodolfa, K.T., Niakan, K.K., Weisenthal, L.M., Mitsumoto, H., Chung, W., Croft, G.F., Saphier, G., Leibel, R., Goland, R., . (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218-1221 .
doi: 10.1126/science.1158799
27 Ebert, A.D., Yu, J., Rose, F.F., Jr., Mattis, V.B., Lorson, C.L., Thomson, J.A., and Svendsen, C.N. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277-280 .
doi: 10.1038/nature07677
28 Elkabetz, Y., and Studer, L. (2008). Human ESC-derived neural rosettes and neural stem cell progression. Cold Spring Harb Symp Quant Biol 73, 377-387 .
doi: 10.1101/sqb.2008.73.052
29 Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156 .
doi: 10.1038/292154a0
30 Gaspard, N., and Vanderhaeghen, P. (2010). Mechanisms of neural specification from embryonic stem cells. Curr Opin Neurobiol 20, 37-43 .
doi: 10.1016/j.conb.2009.12.001
31 Goll, M.G., and Bestor, T.H. (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74, 481-514 .
doi: 10.1146/annurev.biochem.74.010904.153721
32 Gonzalez, F., Boue, S., and Izpisua Belmonte, J.C. (2011). Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 12, 231-242 .
doi: 10.1038/nrg2937
33 Guttman, M., Donaghey, J., Carey, B.W., Garber, M., Grenier, J.K., Munson, G., Young, G., Lucas, A.B., Ach, R., Bruhn, L., . (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295-300 .
doi: 10.1038/nature10398
34 Han, D.W., Tapia, N., Hermann, A., Hemmer, K., Hoing, S., ArauzoBravo, M.J., Zaehres, H., Wu, G., Frank, S., Moritz, S., . (2012). Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10, 465-472 .
doi: 10.1016/j.stem.2012.02.021
35 Hanna, J., Markoulaki, S., Schorderet, P., Carey, B.W., Beard, C., Wernig, M., Creyghton, M.P., Steine, E.J., Cassady, J.P., Foreman, R., . (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250-264 .
doi: 10.1016/j.cell.2008.03.028
36 Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M., . (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920-1923 .
doi: 10.1126/science.1152092
37 Hanna, J.H., Saha, K., and Jaenisch, R. (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143, 508-525 .
doi: 10.1016/j.cell.2010.10.008
38 Hart, A.H., Hartley, L., Ibrahim, M., and Robb, L. (2004). Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Developmental dynamics : an official publication of the American Association of Anatomists 230, 187-198 .
doi: 10.1002/dvdy.20034
39 He, L., and Hannon, G.J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522-531 .
doi: 10.1038/nrg1379
40 Israel, M.A., and Goldstein, L.S. (2011). Capturing Alzheimer’s disease genomes with induced pluripotent stem cells: prospects and challenges. Genome Med 3, 49.
doi: 10.1186/gm265
41 Israel, M.A., Yuan, S.H., Bardy, C., Reyna, S.M., Mu, Y., Herrera, C., Hefferan, M.P., Van Gorp, S., Nazor, K.L., Boscolo, F.S., . (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482, 216-220 .
42 Joo, K.M., Jin, J., Kang, B.G., Lee, S.J., Kim, K.H., Yang, H., Lee, Y.A., Cho, Y.J., Im, Y.S., Lee, D.S., . (2012). Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PLoS One 7, e25936.
doi: 10.1371/journal.pone.0025936
43 Juliandi, B., Abematsu, M., and Nakashima, K. (2010). Chromatin remodeling in neural stem cell differentiation. Curr Opin Neurobiol 20, 408-415 .
doi: 10.1016/j.conb.2010.04.001
44 Kang, L., Wang, J., Zhang, Y., Kou, Z., and Gao, S. (2009). iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5, 135-138 .
doi: 10.1016/j.stem.2009.07.001
45 Karumbayaram, S., Novitch, B.G., Patterson, M., Umbach, J.A., Richter, L., Lindgren, A., Conway, A.E., Clark, A.T., Goldman, S.A., Plath, K., . (2009). Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27, 806-811 .
doi: 10.1002/stem.31
46 Kim, J., Efe, J.A., Zhu, S., Talantova, M., Yuan, X., Wang, S., Lipton, S.A., Zhang, K., and Ding, S. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108, 7838-7843 .
doi: 10.1073/pnas.1103113108
47 Kim, J.B., Sebastiano, V., Wu, G., Arauzo-Bravo, M.J., Sasse, P., Gentile, L., Ko, K., Ruau, D., Ehrich, M., van den Boom, D., . (2009). Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411-419 .
doi: 10.1016/j.cell.2009.01.023
48 Kim, J.B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., Arauzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M., . (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646-650 .
doi: 10.1038/nature07061
49 Kim, P.C., Mo, R., and Hui Cc, C. (2001). Murine models of VACTERL syndrome: Role of sonic hedgehog signaling pathway. J Pediatr Surg 36, 381-384 .
doi: 10.1053/jpsu.2001.20722
50 Kondo, T., and Raff, M. (2000). Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754-1757 .
doi: 10.1126/science.289.5485.1754
51 Kuo, M.H., and Allis, C.D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615-626 .
doi: 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H
52 Lee, J., Platt, K.A., Censullo, P., and Ruizi Altaba, A. (1997). Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124, 2537-2552 .
53 Liu, G.H., Barkho, B.Z., Ruiz, S., Diep, D., Qu, J., Yang, S.L., Panopoulos, A.D., Suzuki, K., Kurian, L., Walsh, C., . (2011a). Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472, 221-225 .
doi: 10.1038/nature09879
54 Liu, G.H., Suzuki, K., Qu, J., Sancho-Martinez, I., Yi, F., Li, M., Kumar, S., Nivet, E., Kim, J., Soligalla, R.D., . (2011b). Targeted gene correction of laminopathy-associated LMNA mutations in patientspecific iPSCs. Cell Stem Cell 8, 688-694 .
doi: 10.1016/j.stem.2011.04.019
55 Loewer, S., Cabili, M.N., Guttman, M., Loh, Y.H., Thomas, K., Park, I.H., Garber, M., Curran, M., Onder, T., Agarwal, S., . (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42, 1113-1117 .
doi: 10.1038/ng.710
56 Loh, Y.H., Agarwal, S., Park, I.H., Urbach, A., Huo, H., Heffner, G.C., Kim, K., Miller, J.D., Ng, K., and Daley, G.Q. (2009). Generation of induced pluripotent stem cells from human blood. Blood 113, 5476-5479 .
doi: 10.1182/blood-2009-02-204800
57 Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T.C., and Wernig, M. (2012). Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 109, 2527-2532 .
doi: 10.1073/pnas.1121003109
58 Ma, D.K., Jang, M.H., Guo, J.U., Kitabatake, Y., Chang, M.L., PowAnpongkul, N., Flavell, R.A., Lu, B., Ming, G.L., and Song, H. (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074-1077 .
doi: 10.1126/science.1166859
59 Marchetto, M.C., Carromeu, C., Acab, A., Yu, D., Yeo, G.W., Mu, Y., Chen, G., Gage, F.H., and Muotri, A.R. (2010a). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527-539 .
doi: 10.1016/j.cell.2010.10.016
60 Marchetto, M.C., Winner, B., and Gage, F.H. (2010b). Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases. Hum Mol Genet 19, R71-76 .
doi: 10.1093/hmg/ddq159
61 Marti, E., Takada, R., Bumcrot, D.A., Sasaki, H., and McMahon, A.P. (1995). Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 121, 2537-2547 .
62 Mullor, J.L., Sanchez, P., and Ruizi Altaba, A. (2002). Pathways and consequences: Hedgehog signaling in human disease. Trends Cell Biol 12, 562-569 .
doi: 10.1016/S0962-8924(02)02405-4
63 Muroyama, Y., Kondoh, H., and Takada, S. (2004). Wnt proteins promote neuronal differentiation in neural stem cell culture. Biochem Biophys Res Commun 313, 915-921 .
doi: 10.1016/j.bbrc.2003.12.023
64 Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, 101-106 .
doi: 10.1038/nbt1374
65 Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391 .
doi: 10.1016/S0092-8674(00)81769-9
66 Niwa, H., Miyazaki, J., and Smith, A.G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372-376 .
doi: 10.1038/74199
67 Nusse, R. (2008). Wnt signaling and stem cell control. Cell Res 18, 523-527 .
doi: 10.1038/cr.2008.47
68 Okita, K., Hong, H., Takahashi, K., and Yamanaka, S. (2010). Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 5, 418-428 .
doi: 10.1038/nprot.2009.231
69 Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317 .
doi: 10.1038/nature05934
70 Okita, K., Nakagawa, M., Hong, H.J., Ichisaka, T., and Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949-953 .
doi: 10.1126/science.1164270
71 Orkin, S.H., and Zon, L.I. (2008). Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631-644 .
doi: 10.1016/j.cell.2008.01.025
72 Pang, Z.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang, T.Q., Citri, A., Sebastiano, V., Marro, S., Sudhof, T.C., . (2011). Induction of human neuronal cells by defined transcription factors. Nature 476, 220-223 .
73 Park, I.H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., and Daley, G.Q. (2008). Disease-specific induced pluripotent stem cells. Cell 134, 877-886 .
doi: 10.1016/j.cell.2008.07.041
74 Peljto, M., and Wichterle, H. (2011). Programming embryonic stem cells to neuronal subtypes. Curr Opin Neurobiol 21, 43-51 .
doi: 10.1016/j.conb.2010.09.012
75 Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelander, J., Dufour, A., Bjorklund, A., Lindvall, O., Jakobsson, J., and Parmar, M. (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108, 10343-10348 .
doi: 10.1073/pnas.1105135108
76 Qiang, L., Fujita, R., Yamashita, T., Angulo, S., Rhinn, H., Rhee, D., Doege, C., Chau, L., Aubry, L., Vanti, W.B., . (2011). Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 146, 359-371 .
doi: 10.1016/j.cell.2011.07.007
77 Ring, K.L., Tong, L.M., Balestra, M.E., Javier, R., Andrews-Zwilling, Y., Li, G., Walker, D., Zhang, W.R., Kreitzer, A.C., and Huang, Y. (2012). Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11, 100-109 .
doi: 10.1016/j.stem.2012.05.018
78 Saha, K., and Jaenisch, R. (2009). Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5, 584-595 .
doi: 10.1016/j.stem.2009.11.009
79 Sheng, C., Zheng, Q., Wu, J., Xu, Z., Wang, L., Li, W., Zhang, H., Zhao, X.Y., Liu, L., Wang, Z., . (2012). Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Res 22, 208-218 .
doi: 10.1038/cr.2011.175
80 Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T.W., and Smith, A. (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6, e253.
doi: 10.1371/journal.pbio.0060253
81 Soldner, F., Laganiere, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan, R., Khurana, V., Golbe, L.I., Myers, R.H., Lindquist, S., . (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318-331 .
doi: 10.1016/j.cell.2011.06.019
82 Son, E.Y., Ichida, J.K., Wainger, B.J., Toma, J.S., Rafuse, V.F., Woolf, C.J., and Eggan, K. (2011). Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205-218 .
doi: 10.1016/j.stem.2011.07.014
83 Song, K., Nam, Y.J., Luo, X., Qi, X., Tan, W., Huang, G.N., Acharya, A., Smith, C.L., Tallquist, M.D., Neilson, E.G., . (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599-604 .
doi: 10.1038/nature11139
84 Stadtfeld, M., Brennand, K., and Hochedlinger, K. (2008a). Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18, 890-894 .
doi: 10.1016/j.cub.2008.05.010
85 Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., and Hochedlinger, K. (2008b). Induced pluripotent stem cells generated without viral integration. Science 322, 945-949 .
doi: 10.1126/science.1162494
86 Sterner, D.E., and Berger, S.L. (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435-459 .
doi: 10.1128/MMBR.64.2.435-459.2000
87 Surani, M.A., Hayashi, K., and Hajkova, P. (2007). Genetic and epigenetic regulators of pluripotency. Cell 128, 747-762 .
doi: 10.1016/j.cell.2007.02.010
88 Tabata, T., and Takei, Y. (2004). Morphogens, their identification and regulation. Development 131, 703-712 .
doi: 10.1242/dev.01043
89 Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 .
doi: 10.1016/j.cell.2007.11.019
90 Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 .
doi: 10.1016/j.cell.2006.07.024
91 Tay, Y., Zhang, J., Thomson, A.M., Lim, B., and Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124-1128 .
doi: 10.1038/nature07299
92 Thier, M., Worsdorfer, P., Lakes, Y.B., Gorris, R., Herms, S., Opitz, T., Seiferling, D., Quandel, T., Hoffmann, P., Nothen, M.M., . (2012). Direct Conversion of Fibroblasts into Stably Expandable Neural Stem Cells. Cell Stem Cell 10, 473-479 .
doi: 10.1016/j.stem.2012.03.003
93 Thomson, J.A. (1998). Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 282, 1145-1147 .
doi: 10.1126/science.282.5391.1145
94 Varga, A.C., and Wrana, J.L. (2005). The disparate role of BMP in stem cell biology. Oncogene 24, 5713-5721 .
doi: 10.1038/sj.onc.1208919
95 Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., and Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041 .
doi: 10.1038/nature08797
96 Wang, B., Fallon, J.F., and Beachy, P.A. (2000). Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423-434 .
doi: 10.1016/S0092-8674(00)80678-9
97 Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li, H., Lau, F., Ebina, W., Mandal, P.K., Smith, Z.D., Meissner, A., . (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618-630 .
doi: 10.1016/j.stem.2010.08.012
98 Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E., and Jaenisch, R. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318-324 .
doi: 10.1038/nature05944
99 Wernig, M., Zhao, J.P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., and Jaenisch, R. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 105, 5856-5861 .
doi: 10.1073/pnas.0801677105
100 Wichterle, H., Lieberam, I., Porter, J.A., and Jessell, T.M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385-397 .
doi: 10.1016/S0092-8674(02)00835-8
101 Wu, H., Coskun, V., Tao, J., Xie, W., Ge, W., Yoshikawa, K., Li, E., Zhang, Y., and Sun, Y.E. (2010). Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444-448 .
doi: 10.1126/science.1190485
102 Xie, H., Ye, M., Feng, R., and Graf, T. (2004). Stepwise reprogramming of B cells into macrophages. Cell 117, 663-676 .
doi: 10.1016/S0092-8674(04)00419-2
103 Yao, J., Mu, Y., and Gage, F.H. (2012). Neural stem cells: mechanisms and modeling. Protein Cell 3, 251-261 .
doi: 10.1007/s13238-012-2033-6
104 Yusa, K., Rashid, S.T., Strick-Marchand, H., Varela, I., Liu, P.Q., Paschon, D.E., Miranda, E., Ordonez, A., Hannan, N.R., Rouhani, F.J., . (2011). Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391-394 .
doi: 10.1038/nature10424
105 Zhang, S.C. (2006). Neural subtype specification from embryonic stem cells. Brain Pathol 16, 132-142 .
doi: 10.1111/j.1750-3639.2006.00008.x
106 Zhao, X.Y., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., Hao, J., Guo, C.L., Ma, Q.W., Wang, L., . (2009). iPS cells produce viable mice through tetraploid complementation. Nature 461, 86-90 .
doi: 10.1038/nature08267
107 Zhou, H., Wu, S., Joo, J.Y., Zhu, S., Han, D.W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., . (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381-384 .
doi: 10.1016/j.stem.2009.04.005
108 Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., and Melton, D.A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455, 627-632 .
doi: 10.1038/nature07314
109 Zhu, H., Lensch, M.W., Cahan, P., and Daley, G.Q. (2011). Investigating monogenic and complex diseases with pluripotent stem cells. Nat Rev Genet 12, 266-275 .
doi: 10.1038/nrg2951
[1] Wei Li, Wenchen Shen, Bo Zhang, Kuan Tian, Yamu Li, Lili Mu, Zhiyuan Luo, Xiaoling Zhong, Xudong Wu, Ying Liu, Yan Zhou. Long non-coding RNA LncKdm2bregulates cortical neuronal differentiation by cis-activating Kdm2b[J]. Protein Cell, 2020, 11(3): 161-186.
[2] Jie Gao,Yue Ma,Hua-Lin Fu,Qian Luo,Zhen Wang,Yu-Huan Xiao,Hao Yang,Da-Xiang Cui,Wei-Lin Jin. Non-catalytic roles for TET1 protein negatively regulating neuronal differentiation through srGAP3 in neuroblastoma cells[J]. Protein Cell, 2016, 7(5): 351-361.
[3] Chunxiao Qi,Xiaojun Yan,Chenyu Huang,Alexander Melerzanov,Yanan Du. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine[J]. Protein Cell, 2015, 6(9): 638-653.
[4] Sun-Ku Chung,Shengyun Zhu,Yang Xu,Xuemei Fu. Functional analysis of the acetylation of human p53 in DNA damage responses[J]. Protein Cell, 2014, 5(7): 544-551.
[5] Yuan Jiang, Mei-Jiang Zhang, Bao-Yang Hu. Specification of functional neurons and glia from human pluripotent stem cells[J]. Prot Cell, 2012, 3(11): 818-825.
[6] Qi Gu, Jie Hao, Xiao-yang Zhao, Wei Li, Lei Liu, Liu Wang, Zhong-hua Liu, Qi Zhou. Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions[J]. Prot Cell, 2012, 3(1): 71-79.
[7] Changhai Tian, Yongxiang Wang, Lijun Sun, Kangmu Ma, Jialin C. Zheng. Reprogrammed mouse astrocytes retain a “memory” of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts[J]. Prot Cell, 2011, 2(2): 128-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed