1 |
Agata H (2010) Characteristic change and loss of in vivo osteogenic abilities of human bone marrow stromal cells during passage. Tissue Eng Part A 16(2): 663―673
https://doi.org/10.1089/ten.tea.2009.0500
|
2 |
Antosiak-Iwanska M (2009) Isolation, banking, encapsulation and transplantation of different types of Langerhans islets. Pol Arch Med Wewn 119(5): 311―317
|
3 |
Astradsson A, Aziz TZ (2015) Parkinson’s disease: fetal cell or stem cell-derived treatments. BMJ Clin Evid 2015: 431―439
|
4 |
Avci-Adali M (2008) New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialisation of blood contacting materials. Biomaterials 29(29): 3936―3945
https://doi.org/10.1016/j.biomaterials.2008.07.002
|
5 |
Ayvazyan A (2011) Collagen-gelatin scaffold impregnated with bFGF accelerates palatal wound healing of palatal mucosa in dogs. J Surg Res 171(2): e247―e257
https://doi.org/10.1016/j.jss.2011.06.059
|
6 |
Bader A (1998) Tissue engineering of heart valves-human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14(3): 279―284
https://doi.org/10.1016/S1010-7940(98)00171-7
|
7 |
Badylak SF (1995) The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res 29(8): 977―985
https://doi.org/10.1002/jbm.820290809
|
8 |
Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13: 27―53
https://doi.org/10.1146/annurev-bioeng-071910-124743
|
9 |
Balasundaram G, Webster TJ (2007) An overview of nano-polymers for orthopedic applications. Macromol Biosci 7(5): 635―642
https://doi.org/10.1002/mabi.200600270
|
10 |
Barczyk M, Schmidt M, Mattoli S (2015) Stem cell-based therapy in idiopathic pulmonary fibrosis. Stem Cell Rev 21: 1550―8943
https://doi.org/10.1007/s12015-015-9587-7
|
11 |
Bashkin P (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28(4): 1737―1743
https://doi.org/10.1021/bi00430a047
|
12 |
Bello YM, Falabella AF, Eaglstein WH (2001) Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol 2(5): 305―313
https://doi.org/10.2165/00128071-200102050-00005
|
13 |
Blumenthal B (2010) Polyurethane scaffolds seeded with genetically engineered skeletal myoblasts: a promising tool to regenerate myocardial function. Artif Organs 34(2): E46―E54
https://doi.org/10.1111/j.1525-1594.2009.00937.x
|
14 |
Booth C (2002) Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 11(4): 457―462
|
15 |
Borschel GH, Dennis RG, Kuzon WM Jr (2004) Contractile skeletal muscle tissue-engineered on an acellular scaffold. Plast Reconstr Surg 113(2): 595―602
https://doi.org/10.1097/01.PRS.0000101064.62289.2F
|
16 |
Borselli C (2011) The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials 32(34): 8905―8914
https://doi.org/10.1016/j.biomaterials.2011.08.019
|
17 |
Brown KV (2011) Improving bone formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release. Tissue Eng Part A 17(13-14): 1735―1746
https://doi.org/10.1089/ten.tea.2010.0446
|
18 |
Butler CE (1999) Comparison of cultured and uncultured keratinocytes seeded into a collagen-GAG matrix for skin replacements. Br J Plast Surg 52(2): 127―132
https://doi.org/10.1054/bjps.1997.3047
|
19 |
Calafiore R (1999) Transplantation of pancreatic islets contained in minimal volume microcapsules in diabetic high mammalians. Ann N Y Acad Sci 875: 219―232
https://doi.org/10.1111/j.1749-6632.1999.tb08506.x
|
20 |
Cao Y (1997) Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 100(2): 297―302
https://doi.org/10.1097/00006534-199708000-00001
|
21 |
Carpentier B, Gautier A, Legallais C (2009) Artificial and bioartificial liver devices: present and future. Gut 58(12): 1690―1702
https://doi.org/10.1136/gut.2008.175380
|
22 |
Cartmell JS, Dunn MG (2000) Effect of chemical treatments on tendon cellularity and mechanical properties. J Biomed Mater Res 49(1): 134―140
https://doi.org/10.1002/(SICI)1097-4636(200001)49:1<134::AID-JBM17>3.0.CO;2-D
|
23 |
Chamberlain LJ (2000) Near-terminus axonal structure and function following rat sciatic nerve regeneration through a collagen-GAG matrix in a ten-millimeter gap. J Neurosci Res 60(5): 666―677
https://doi.org/10.1002/(SICI)1097-4547(20000601)60:5<666::AID-JNR12>3.0.CO;2-0
|
24 |
Chan G, Mooney DJ (2008) New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 26(7): 382―392
https://doi.org/10.1016/j.tibtech.2008.03.011
|
25 |
Chastain SR (2006) Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res A 78(1): 73―85
https://doi.org/10.1002/jbm.a.30686
|
26 |
Chen RN (2004) Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 25(13): 2679―2686
https://doi.org/10.1016/j.biomaterials.2003.09.070
|
27 |
Cheng TY (2013) Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34(8): 2005―2016
https://doi.org/10.1016/j.biomaterials.2012.11.043
|
28 |
Cirone P (2002) A novel approach to tumor suppression with microencapsulated recombinant cells. Hum Gene Ther 13(10): 1157―1166
https://doi.org/10.1089/104303402320138943
|
29 |
Colton CK (1995) Implantable biohybrid artificial organs. Cell Transplant 4(4): 415―436
https://doi.org/10.1016/0963-6897(95)00025-S
|
30 |
Conklin BS (2002) Development and evaluation of a novel decellularized vascular xenograft. Med Eng Phys 24(3): 173―183
https://doi.org/10.1016/S1350-4533(02)00010-3
|
31 |
Cooper ML (1991) In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 12(2): 243―248
https://doi.org/10.1016/0142-9612(91)90207-Q
|
32 |
Cortiella J (2010) Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16(8): 2565―2580
https://doi.org/10.1089/ten.tea.2009.0730
|
33 |
Currie LJ, Sharpe JR, Martin R (2001) The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast Reconstr Surg 108(6): 1713―1726
https://doi.org/10.1097/00006534-200111000-00045
|
34 |
Dahl SL (2003) Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 12(6): 659―666
https://doi.org/10.3727/000000003108747136
|
35 |
Daly AB (2012) Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng Part A 18(1-2): 1―16
https://doi.org/10.1089/ten.tea.2011.0301
|
36 |
David B (2004a) In vitro assessment of encapsulated C3A hepatocytes functions in a fluidized bed bioreactor. Biotechnol Prog 20(4): 1204―1212
https://doi.org/10.1021/bp034301z
|
37 |
David B (2004b) Mass transfers in a fluidized bed bioreactor using alginate beads for a future bioartificial liver. Int J Artif Organs 27(4): 284―293
|
38 |
de Graaff W (2003) Randomly inserted and targeted Hox/ reporter fusions transcriptionally silenced in Polycomb mutants. Proc Natl Acad Sci USA 100(23): 13362―13367
https://doi.org/10.1073/pnas.2237046100
|
39 |
de Vos P, Marchetti P (2002) Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol Med 8(8): 363―366
https://doi.org/10.1016/S1471-4914(02)02381-X
|
40 |
De Vos P (1993) Obstacles in the application of microencapsulation in islet transplantation. Int J Artif Organs 16(4): 205―212
|
41 |
De Vos P (1997) Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 40(3): 262―270
https://doi.org/10.1007/s001250050673
|
42 |
Desai TA (1999) Microfabricated biocapsules provide shortterm immunoisolation of insulinoma xenografts. Biomed Microdevices 1(2): 131―138
https://doi.org/10.1023/A:1009948524686
|
43 |
Desai TA, Hansford DJ, Ferrari M (2000) Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation. Biomol Eng 17(1): 23―36
https://doi.org/10.1016/S1389-0344(00)00063-0
|
44 |
Dionne KE (1996) Transport characterization of membranes for immunoisolation. Biomaterials 17(3): 257―266
https://doi.org/10.1016/0142-9612(96)85563-3
|
45 |
Dufrane D, Gianello P (2012) Macro- or microencapsulation of pig islets to cure type 1 diabetes. World J Gastroenterol 18(47): 6885―6893
https://doi.org/10.3748/wjg.v18.i47.6885
|
46 |
Efrat S (2008) Beta-cell replacement for insulin-dependent diabetes mellitus. Adv Drug Deliv Rev 60(2): 114―123
https://doi.org/10.1016/j.addr.2007.08.033
|
47 |
Egana JT (2009) Use of human mesenchymal cells to improve vascularization in a mouse model for scaffold-based dermal regeneration. Tissue Eng Part A 15(5): 1191―1200
https://doi.org/10.1089/ten.tea.2008.0097
|
48 |
Elisseeff J (2000) Photoencapsulation of chondrocytes in poly (ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 51(2): 164―171
https://doi.org/10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.0.CO;2-W
|
49 |
Elisseeff J (2006) The role of biomaterials in stem cell differentiation: applications in the musculoskeletal system. Stem Cells Dev 15(3): 295―303
https://doi.org/10.1089/scd.2006.15.295
|
50 |
Fisher RA, Strom SC (2006) Human hepatocyte transplantation: worldwide results. Transplantation 82(4): 441―449
https://doi.org/10.1097/01.tp.0000231689.44266.ac
|
51 |
Fishman JM (2013) Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc Natl Acad Sci USA 110(35): 14360―14365
https://doi.org/10.1073/pnas.1213228110
|
52 |
Freytes DO (2004) Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials 25(12): 2353―2361
https://doi.org/10.1016/j.biomaterials.2003.09.015
|
53 |
Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430): 1028―1032
https://doi.org/10.1126/science.285.5430.1028
|
54 |
Gilbert TW (2005) Production and characterization of ECM powder: implications for tissue engineering applications. Biomaterials 26(12): 1431―1435
https://doi.org/10.1016/j.biomaterials.2004.04.042
|
55 |
Gille J (2010) Mid-term results of Autologous Matrix-Induced Chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18(11): 1456―1464
https://doi.org/10.1007/s00167-010-1042-3
|
56 |
Grandoso L (2007) Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats. Int J Pharm 343(1-2): 69―78
https://doi.org/10.1016/j.ijpharm.2007.05.027
|
57 |
Greenhalgh DG (2013) Treating a collagen scaffold with a low concentration of nicotine-promoted angiogenesis and wound healing. J Surg Res 185(2): 543―544
https://doi.org/10.1016/j.jss.2012.10.026
|
58 |
Hao S (2005) A novel approach to tumor suppression using microencapsulated engineered J558/TNF-alpha cells. Exp Oncol 27(1): 56―60
|
59 |
He M, Callanan A (2013) Comparison of methods for whole-organ decellularization in tissue engineering of bioartificial organs. Tissue Eng Part B Rev 19(3): 194―208
https://doi.org/10.1089/ten.teb.2012.0340
|
60 |
Hedberg EL (2005) Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo. J Biomed Mater Res A 72(4): 343―353
https://doi.org/10.1002/jbm.a.30265
|
61 |
Hernandez RM (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62(7-8): 711―730
https://doi.org/10.1016/j.addr.2010.02.004
|
62 |
Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157(4): 657―663
https://doi.org/10.1083/jcb.200201049
|
63 |
Hofmann M (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17): 2198―2202
https://doi.org/10.1161/01.CIR.0000163546.27639.AA
|
64 |
Hortelano G, Chang PL (2000) Gene therapy for hemophilia. Artif Cells Blood Substit Immobil Biotechnol 28(1): 1―24
https://doi.org/10.3109/10731190009119782
|
65 |
Huang Q (2002) In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor beta1 and the potential for in situ chondrogenesis. Tissue Eng 8(3): 469―482
https://doi.org/10.1089/107632702760184727
|
66 |
Hubbell JA (2003) Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14(5): 551―558
https://doi.org/10.1016/j.copbio.2003.09.004
|
67 |
Hudson TW, Liu SY, Schmidt CE (2004) Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng 10(9-10): 1346―1358
https://doi.org/10.1089/ten.2004.10.1346
|
68 |
Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32(6): 733―742
https://doi.org/10.1007/s10529-010-0221-0
|
69 |
Hwang NS (2008) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci USA 105(52): 20641―20646
https://doi.org/10.1073/pnas.0809680106
|
70 |
Iwata H (1995) Does immunoisolation need to prevent the passage of antibodies and complements? Transplant Proc 27(6): 3224―3226
|
71 |
Jabbarzadeh E (2008) Induction of angiogenesis in tissueengineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci USA 105(32): 11099―11104
https://doi.org/10.1073/pnas.0800069105
|
72 |
Ji R (2012) The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials 33(35): 8995―9008
https://doi.org/10.1016/j.biomaterials.2012.08.058
|
73 |
Kagami H, Agata H, Tojo A (2011) Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. Int J Biochem Cell Biol 43(3): 286―289
https://doi.org/10.1016/j.biocel.2010.12.006
|
74 |
Kang A (2014) Cell encapsulation via microtechnologies. Biomaterials 35(9): 2651―2663
https://doi.org/10.1016/j.biomaterials.2013.12.073
|
75 |
Kasimir MT (2003) Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organ 26(5): 421―427
|
76 |
Kearney CJ, Mooney DJ (2013) Macroscale delivery systems for molecular and cellular payloads. Nat Mater 12(11): 1004―1017
https://doi.org/10.1038/nmat3758
|
77 |
Khalil M (2001) Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function. J Hepatol 34(1): 68―77
https://doi.org/10.1016/S0168-8278(00)00080-5
|
78 |
Kim BS, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18(1): 2―9
https://doi.org/10.1007/s003450050002
|
79 |
Kim D (2001) Transplantation of genetically modified fibroblasts expressing BDNF in adult rats with a subtotal hemisection improves specific motor and sensory functions. Neurorehabil Neural Repair 15(2): 141―150
https://doi.org/10.1177/154596830101500207
|
80 |
Kizilel S, Garfinkel M, Opara E (2005) The bioartificial pancreas: progress and challenges. Diabetes Technol Ther 7(6): 968―985
https://doi.org/10.1089/dia.2005.7.968
|
81 |
Klees RF (2008) Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization. Exp Cell Res 314(4): 763―773
https://doi.org/10.1016/j.yexcr.2007.12.007
|
82 |
Koffler J (2011) Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci USA 108(36): 14789―14794
https://doi.org/10.1073/pnas.1017825108
|
83 |
Kofron MD, Laurencin CT (2006) Bone tissue engineering by gene delivery. Adv Drug Deliv Rev 58(4): 555―576
https://doi.org/10.1016/j.addr.2006.03.008
|
84 |
Kolambkar YM (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1): 65―74
https://doi.org/10.1016/j.biomaterials.2010.08.074
|
85 |
Koshy ST (2014) Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 35(8): 2477―2487
https://doi.org/10.1016/j.biomaterials.2013.11.044
|
86 |
Krishnamurthy NV, Gimi B (2011) Encapsulated cell grafts to treat cellular deficiencies and dysfunction. Crit Rev Biomed Eng 39(6): 473―491
https://doi.org/10.1615/CritRevBiomedEng.v39.i6.10
|
87 |
Krol S (2006) Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett 6(9): 1933―1939
https://doi.org/10.1021/nl061049r
|
88 |
Kulig KM, Vacanti JP (2004) Hepatic tissue engineering. Transpl Immunol 12(3-4): 303―310
https://doi.org/10.1016/j.trim.2003.12.005
|
89 |
Kumar A (1999) bcl2 and v-abl oncogenes cooperate to immortalize murine B cells that secrete antigen specific antibodies. Immunol Lett 65(3): 153―159
https://doi.org/10.1016/S0165-2478(98)00085-6
|
90 |
Kyriakides TR (1999) Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proc Natl Acad Sci USA 96(8): 4449―4454
https://doi.org/10.1073/pnas.96.8.4449
|
91 |
Lacy PE (1991) Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 254(5039): 1782―1784
https://doi.org/10.1126/science.1763328
|
92 |
Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110): 920―926
https://doi.org/10.1126/science.8493529
|
93 |
Lee CH (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376(9739): 440―448
https://doi.org/10.1016/S0140-6736(10)60668-X
|
94 |
Li S (2010) Activin A binds to perlecan through its pro-region that has heparin/heparan sulfate binding activity. J Biol Chem 285(47): 36645―36655
https://doi.org/10.1074/jbc.M110.177865
|
95 |
Li Y (2014) Primed 3D injectable microniches enabling lowdosage cell therapy for critical limb ischemia. Proc Natl Acad Sci USA 111(37): 13511―13516
https://doi.org/10.1073/pnas.1411295111
|
96 |
Liem PH (2013) Treating a collagen scaffold with a low concentration of nicotine promoted angiogenesis and wound healing. J Surg Res 182(2): 353―361
https://doi.org/10.1016/j.jss.2012.10.018
|
97 |
Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472): 908―910
https://doi.org/10.1126/science.6776628
|
98 |
Lin P (2004) Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng 10(7-8): 1046―1053
https://doi.org/10.1089/ten.2004.10.1046
|
99 |
Liu Tsang V (2007) Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 21(3): 790―801
https://doi.org/10.1096/fj.06-7117com
|
100 |
Liu W (2014) Microcryogels as injectable 3-D cellular microniches for site-directed and augmented cell delivery. Acta Biomater 10(5): 1864―1875
https://doi.org/10.1016/j.actbio.2013.12.008
|
101 |
Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1): 47―55
https://doi.org/10.1038/nbt1055
|
102 |
Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462(7272): 433―441
https://doi.org/10.1038/nature08602
|
103 |
Lynch SE (1987) Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci USA 84(21): 7696―7700
https://doi.org/10.1073/pnas.84.21.7696
|
104 |
Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4-5): 207―233
https://doi.org/10.1016/j.addr.2007.03.012
|
105 |
Marston WA (2003) The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26(6): 1701―1705
https://doi.org/10.2337/diacare.26.6.1701
|
106 |
Martino MM, Hubbell JA (2010) The 12th-14th type III repeats of fibronectin function as a highly promiscuous growth factorbinding domain. FASEB J 24(12): 4711―4721
https://doi.org/10.1096/fj.09-151282
|
107 |
Martino MM (2010) Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med 3(100): 100ra89
|
108 |
Matthews JA (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2): 232―238
https://doi.org/10.1021/bm015533u
|
109 |
McLaughlin CR (2009) Bioengineered corneas for transplantation and in vitro toxicology. Front Biosci (Landmark Ed) 14: 3326―3337
https://doi.org/10.2741/3455
|
110 |
Meijer GJ (2008) Cell based bone tissue engineering in jaw defects. Biomaterials 29(21): 3053―3061
https://doi.org/10.1016/j.biomaterials.2008.03.012
|
111 |
Metcalfe AD, Ferguson MW (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4(14): 413―437
https://doi.org/10.1098/rsif.2006.0179
|
112 |
Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2(3): 205―213
https://doi.org/10.1016/j.stem.2008.02.005
|
113 |
Mooney DJ (1995) Biodegradable sponges for hepatocyte transplantation. J Biomed Mater Res 29(8): 959―965
https://doi.org/10.1002/jbm.820290807
|
114 |
Nafea EH (2011) Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J Control Release 154(2): 110―122
https://doi.org/10.1016/j.jconrel.2011.04.022
|
115 |
Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B 14(2): 149―165
https://doi.org/10.1089/ten.teb.2007.0332
|
116 |
Noth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol 4(7): 371―380
https://doi.org/10.1038/ncprheum0816
|
117 |
Okamoto T (2003) Cartilage regeneration using slow release of bone morphogenetic protein-2 from a gelatin sponge to treat experimental canine tracheomalacia: a preliminary report. ASAIO J 49(1): 63―69
https://doi.org/10.1097/00002480-200301000-00010
|
118 |
Omer A (2005) Long-term normoglycemia in rats receiving transplants with encapsulated islets. Transplantation 79(1): 52―58
https://doi.org/10.1097/01.TP.0000149340.37865.46
|
119 |
Orive G (2003) Cell encapsulation: promise and progress. Nat Med 9(1): 104―107
https://doi.org/10.1038/nm0103-104
|
120 |
Orive G (2005) Long-term expression of erythropoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Mol Ther 12(2): 283―289
https://doi.org/10.1016/j.ymthe.2005.04.002
|
121 |
O’Sullivan ES (2011) Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr Rev 32(6): 827―844
https://doi.org/10.1210/er.2010-0026
|
122 |
Ott HC (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2): 213―221
https://doi.org/10.1038/nm1684
|
123 |
Paredes Juarez GA (2014) Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng. Biotechnol 2: 26
https://doi.org/10.3389/fbioe.2014.00026
|
124 |
Park H (2007) Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28(21): 3217―3227
https://doi.org/10.1016/j.biomaterials.2007.03.030
|
125 |
Paul A (2009) Microencapsulated stem cells for tissue repairing: implications in cell-based myocardial therapy. Regen Med 4(5): 733―745
https://doi.org/10.2217/rme.09.43
|
126 |
Peng H (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110(6): 751―759
https://doi.org/10.1172/JCI15153
|
127 |
Pepper AR (2015) A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol 33: 518―523
https://doi.org/10.1038/nbt.3211
|
128 |
Petersen TH (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991): 538―541
https://doi.org/10.1126/science.1189345
|
129 |
Peterson B (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11(1-2): 120―129
https://doi.org/10.1089/ten.2005.11.120
|
130 |
Pouch SM (2015) Infectious complications of pancreatic islet transplantation: clinical experience and unanswered questions. Curr Infect Dis Rep 17(5): 482
https://doi.org/10.1007/s11908-015-0482-9
|
131 |
Prakash S, Chang TM(1996) Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 2(8): 883―887
https://doi.org/10.1038/nm0896-883
|
132 |
Price AP (2010) Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 16(8): 2581―2591
https://doi.org/10.1089/ten.tea.2009.0659
|
133 |
Rosario DJ (2008) Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen Med 3(2): 145―156
https://doi.org/10.2217/17460751.3.2.145
|
134 |
Sahni A, Odrljin T, Francis CW(1998) Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem 273(13): 7554―7559
https://doi.org/10.1074/jbc.273.13.7554
|
135 |
Scharp DW, Marchetti P (2014) Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev 67-68: 35―73
https://doi.org/10.1016/j.addr.2013.07.018
|
136 |
Schechner JS (2003) Engraftment of a vascularized human skin equivalent. FASEB J 17(15): 2250―2256
https://doi.org/10.1096/fj.03-0257com
|
137 |
Schneider S (2001) Multilayer capsules: a promising microencapsulation system for transplantation of pancreatic islets. Biomaterials 22(14): 1961―1970
https://doi.org/10.1016/S0142-9612(00)00380-X
|
138 |
Sellitto P (1995) Pressure-induced Hall-effect spectroscopy of silicon DX states in planar doped GaAs-AlAs superlattices. Phys Rev B 51(23): 16778―16784
https://doi.org/10.1103/PhysRevB.51.16778
|
139 |
Silva EA (2008) Material-based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci USA 105(38): 14347―14352
https://doi.org/10.1073/pnas.0803873105
|
140 |
Simmons CA (2004) Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35(2): 562―569
https://doi.org/10.1016/j.bone.2004.02.027
|
141 |
Street CN, Rajotte RV, Korbutt GS (2003) Stem cells: a promising source of pancreatic islets for transplantation in type 1 diabetes. Curr Top Dev Biol 58: 111―136
https://doi.org/10.1016/S0070-2153(03)58004-8
|
142 |
Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115(Pt 19): 3729―3738
https://doi.org/10.1242/jcs.00071
|
143 |
Sugiyama O (2005) Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 11(3): 390―398
https://doi.org/10.1016/j.ymthe.2004.10.019
|
144 |
Ti D (2014) Controlled release of thymosin beta 4 using a collagen-chitosan sponge scaffold augments cutaneous wound healing and increases angiogenesis in diabetic rats with hindlimb ischemia. Tissue Eng Part A 20(21-22): 3085―3087
|
145 |
Tomatsu S (2015) Impact of enzyme replacement therapy and hematopoietic stem cell transplantation in patients with Morquio A syndrome. Drug Des Devel Ther 9: 1937―1953
https://doi.org/10.2147/DDDT.S68562
|
146 |
Uchimura E (2003) Novel method of preparing acellular cardiovascular grafts by decellularization with poly(ethylene glycol). J Biomed Mater Res A 67(3): 834―837
https://doi.org/10.1002/jbm.a.10097
|
147 |
Uludag H, De Vos P, Tresco PA (2000a) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42(1-2): 29―64
https://doi.org/10.1016/S0169-409X(00)00053-3
|
148 |
Uludag H (2000b) Implantation of recombinant human bone morphogenetic proteins with biomaterial carriers: A correlation between protein pharmacokinetics and osteoinduction in the rat ectopic model. J Biomed Mater Res 50(2): 227―238
https://doi.org/10.1002/(SICI)1097-4636(200005)50:2<227::AID-JBM18>3.0.CO;2-2
|
149 |
Valentin JE (2006) Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am 88(12): 2673―2686
https://doi.org/10.2106/JBJS.E.01008
|
150 |
van der Windt DJ (2007) Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation 14(4): 288―297
https://doi.org/10.1111/j.1399-3089.2007.00419.x
|
151 |
Vermonden T (2008) Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility. Biomacromolecules 9(3): 919―926
https://doi.org/10.1021/bm7013075
|
152 |
Wainwright JM (2010) Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C 16(3): 525―532
https://doi.org/10.1089/ten.tec.2009.0392
|
153 |
Wang T (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nat Biotechnol 15(4): 358―362
https://doi.org/10.1038/nbt0497-358
|
154 |
Wang C, Varshney RR, Wang DA (2010) Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev 62(7-8): 699―710
https://doi.org/10.1016/j.addr.2010.02.001
|
155 |
Webber MJ (2015) A perspective on the clinical translation of scaffolds for tissue engineering. Ann Biomed Eng 43(3): 641―656
https://doi.org/10.1007/s10439-014-1104-7
|
156 |
Weber LM (2007) The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 28(19): 3004―3011
https://doi.org/10.1016/j.biomaterials.2007.03.005
|
157 |
Weber LM, Cheung CY, Anseth KS (2008) Multifunctional pancreatic islet encapsulation barriers achieved via multilayer PEG hydrogels. Cell Transplant 16(10): 1049―1057
https://doi.org/10.3727/000000007783472336
|
158 |
Wolf K (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160(2): 267―277
https://doi.org/10.1083/jcb.200209006
|
159 |
Wong H, Chang TM (1991) A novel two step procedure for immobilizing living cells in microcapsules for improving xenograft survival. Biomater Artif Cells Immobil Biotechnol 19(4): 687―697
https://doi.org/10.3109/10731199109117847
|
160 |
Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 26(35): 7339―7349
https://doi.org/10.1016/j.biomaterials.2005.05.066
|
161 |
Wyman JL (2007) Immunoisolating pancreatic islets by encapsulation with selective withdrawal. Small 3(4): 683―690
https://doi.org/10.1002/smll.200600231
|
162 |
Yamada Y (2004) Translational research for injectable tissueengineered bone regeneration using mesenchymal stem cells and platelet-rich plasma: from basic research to clinical case study. Cell Transplant 13(4): 343―355
https://doi.org/10.3727/000000004783983909
|
163 |
Yang HK, Yoon KH (2015) Current status of encapsulated islet transplantation. J Diabetes Complications 4(1): e13―e17
https://doi.org/10.1016/j.jdiacomp.2015.03.017
|
164 |
Yoo JJ (1998) Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51(2): 221―225
https://doi.org/10.1016/S0090-4295(97)00644-4
|
165 |
Zhang X (2008) A biodegradable, immunoprotective, dual nanoporous capsule for cell-based therapies. Biomaterials 29(31): 4253―4259
https://doi.org/10.1016/j.biomaterials.2008.07.032
|
166 |
Zimmermann H, Shirley SG, Zimmermann U (2007) Alginate-based encapsulation of cells: past, present, and future. Curr Diab Rep 7(4): 314―320
https://doi.org/10.1007/s11892-007-0051-1
|