Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (9) : 638-653    https://doi.org/10.1007/s13238-015-0179-8
REVIEW
Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine
Chunxiao Qi1,Xiaojun Yan1,Chenyu Huang3,Alexander Melerzanov4,Yanan Du1,2,*()
1. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
2. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
3. Department of Plastic and Reconstructive Surgery, Beijing Tsinghua Changgung Hospital; Medical Center, Tsinghua University, Beijing 102218, China
4. Cellular and Molecular Technologies Laboratory, MIPT, Dolgoprudny 141701, Russia
 Download: PDF(2395 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cell therapy has achieved tremendous success in regenerative medicine in the past several decades. However, challenges such as cell loss, death and immune-rejection after transplantation still persist. Biomaterials have been designed as carriers to deliver cells to desirable region for local tissue regeneration; as barriers to protect transplanted cells from host immune attack; or as reactors to stimulate host cell recruitment, homing and differentiation. With the assistance of biomaterials, improvement in treatment efficiency has been demonstrated in numerous animal models of degenerative diseases compared with routine free cell-based therapy. Emerging clinical applications of biomaterial assisted cell therapies further highlight their great promise in regenerative therapy and even cure for complex diseases, which have been failed to realize by conventional therapeutic approaches.

Keywords carrier      barrier      reactor      biomaterialassisted therapy      regenerative medicine     
Corresponding Author(s): Yanan Du   
Issue Date: 11 September 2015
 Cite this article:   
Chunxiao Qi,Xiaojun Yan,Chenyu Huang, et al. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine[J]. Protein Cell, 2015, 6(9): 638-653.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-015-0179-8
https://academic.hep.com.cn/pac/EN/Y2015/V6/I9/638
1 Agata H (2010) Characteristic change and loss of in vivo osteogenic abilities of human bone marrow stromal cells during passage. Tissue Eng Part A 16(2): 663―673
https://doi.org/10.1089/ten.tea.2009.0500
2 Antosiak-Iwanska M (2009) Isolation, banking, encapsulation and transplantation of different types of Langerhans islets. Pol Arch Med Wewn 119(5): 311―317
3 Astradsson A, Aziz TZ (2015) Parkinson’s disease: fetal cell or stem cell-derived treatments. BMJ Clin Evid 2015: 431―439
4 Avci-Adali M (2008) New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialisation of blood contacting materials. Biomaterials 29(29): 3936―3945
https://doi.org/10.1016/j.biomaterials.2008.07.002
5 Ayvazyan A (2011) Collagen-gelatin scaffold impregnated with bFGF accelerates palatal wound healing of palatal mucosa in dogs. J Surg Res 171(2): e247―e257
https://doi.org/10.1016/j.jss.2011.06.059
6 Bader A (1998) Tissue engineering of heart valves-human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14(3): 279―284
https://doi.org/10.1016/S1010-7940(98)00171-7
7 Badylak SF (1995) The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res 29(8): 977―985
https://doi.org/10.1002/jbm.820290809
8 Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13: 27―53
https://doi.org/10.1146/annurev-bioeng-071910-124743
9 Balasundaram G, Webster TJ (2007) An overview of nano-polymers for orthopedic applications. Macromol Biosci 7(5): 635―642
https://doi.org/10.1002/mabi.200600270
10 Barczyk M, Schmidt M, Mattoli S (2015) Stem cell-based therapy in idiopathic pulmonary fibrosis. Stem Cell Rev 21: 1550―8943
https://doi.org/10.1007/s12015-015-9587-7
11 Bashkin P (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28(4): 1737―1743
https://doi.org/10.1021/bi00430a047
12 Bello YM, Falabella AF, Eaglstein WH (2001) Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol 2(5): 305―313
https://doi.org/10.2165/00128071-200102050-00005
13 Blumenthal B (2010) Polyurethane scaffolds seeded with genetically engineered skeletal myoblasts: a promising tool to regenerate myocardial function. Artif Organs 34(2): E46―E54
https://doi.org/10.1111/j.1525-1594.2009.00937.x
14 Booth C (2002) Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 11(4): 457―462
15 Borschel GH, Dennis RG, Kuzon WM Jr (2004) Contractile skeletal muscle tissue-engineered on an acellular scaffold. Plast Reconstr Surg 113(2): 595―602
https://doi.org/10.1097/01.PRS.0000101064.62289.2F
16 Borselli C (2011) The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials 32(34): 8905―8914
https://doi.org/10.1016/j.biomaterials.2011.08.019
17 Brown KV (2011) Improving bone formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release. Tissue Eng Part A 17(13-14): 1735―1746
https://doi.org/10.1089/ten.tea.2010.0446
18 Butler CE (1999) Comparison of cultured and uncultured keratinocytes seeded into a collagen-GAG matrix for skin replacements. Br J Plast Surg 52(2): 127―132
https://doi.org/10.1054/bjps.1997.3047
19 Calafiore R (1999) Transplantation of pancreatic islets contained in minimal volume microcapsules in diabetic high mammalians. Ann N Y Acad Sci 875: 219―232
https://doi.org/10.1111/j.1749-6632.1999.tb08506.x
20 Cao Y (1997) Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 100(2): 297―302
https://doi.org/10.1097/00006534-199708000-00001
21 Carpentier B, Gautier A, Legallais C (2009) Artificial and bioartificial liver devices: present and future. Gut 58(12): 1690―1702
https://doi.org/10.1136/gut.2008.175380
22 Cartmell JS, Dunn MG (2000) Effect of chemical treatments on tendon cellularity and mechanical properties. J Biomed Mater Res 49(1): 134―140
https://doi.org/10.1002/(SICI)1097-4636(200001)49:1<134::AID-JBM17>3.0.CO;2-D
23 Chamberlain LJ (2000) Near-terminus axonal structure and function following rat sciatic nerve regeneration through a collagen-GAG matrix in a ten-millimeter gap. J Neurosci Res 60(5): 666&horbar;677
https://doi.org/10.1002/(SICI)1097-4547(20000601)60:5<666::AID-JNR12>3.0.CO;2-0
24 Chan G, Mooney DJ (2008) New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 26(7): 382&horbar;392
https://doi.org/10.1016/j.tibtech.2008.03.011
25 Chastain SR (2006) Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res A 78(1): 73&horbar;85
https://doi.org/10.1002/jbm.a.30686
26 Chen RN (2004) Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 25(13): 2679&horbar;2686
https://doi.org/10.1016/j.biomaterials.2003.09.070
27 Cheng TY (2013) Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34(8): 2005&horbar;2016
https://doi.org/10.1016/j.biomaterials.2012.11.043
28 Cirone P (2002) A novel approach to tumor suppression with microencapsulated recombinant cells. Hum Gene Ther 13(10): 1157&horbar;1166
https://doi.org/10.1089/104303402320138943
29 Colton CK (1995) Implantable biohybrid artificial organs. Cell Transplant 4(4): 415&horbar;436
https://doi.org/10.1016/0963-6897(95)00025-S
30 Conklin BS (2002) Development and evaluation of a novel decellularized vascular xenograft. Med Eng Phys 24(3): 173&horbar;183
https://doi.org/10.1016/S1350-4533(02)00010-3
31 Cooper ML (1991) In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 12(2): 243&horbar;248
https://doi.org/10.1016/0142-9612(91)90207-Q
32 Cortiella J (2010) Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16(8): 2565&horbar;2580
https://doi.org/10.1089/ten.tea.2009.0730
33 Currie LJ, Sharpe JR, Martin R (2001) The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast Reconstr Surg 108(6): 1713&horbar;1726
https://doi.org/10.1097/00006534-200111000-00045
34 Dahl SL (2003) Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 12(6): 659&horbar;666
https://doi.org/10.3727/000000003108747136
35 Daly AB (2012) Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng Part A 18(1-2): 1&horbar;16
https://doi.org/10.1089/ten.tea.2011.0301
36 David B (2004a) In vitro assessment of encapsulated C3A hepatocytes functions in a fluidized bed bioreactor. Biotechnol Prog 20(4): 1204&horbar;1212
https://doi.org/10.1021/bp034301z
37 David B (2004b) Mass transfers in a fluidized bed bioreactor using alginate beads for a future bioartificial liver. Int J Artif Organs 27(4): 284&horbar;293
38 de Graaff W (2003) Randomly inserted and targeted Hox/ reporter fusions transcriptionally silenced in Polycomb mutants. Proc Natl Acad Sci USA 100(23): 13362&horbar;13367
https://doi.org/10.1073/pnas.2237046100
39 de Vos P, Marchetti P (2002) Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol Med 8(8): 363&horbar;366
https://doi.org/10.1016/S1471-4914(02)02381-X
40 De Vos P (1993) Obstacles in the application of microencapsulation in islet transplantation. Int J Artif Organs 16(4): 205&horbar;212
41 De Vos P (1997) Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 40(3): 262&horbar;270
https://doi.org/10.1007/s001250050673
42 Desai TA (1999) Microfabricated biocapsules provide shortterm immunoisolation of insulinoma xenografts. Biomed Microdevices 1(2): 131&horbar;138
https://doi.org/10.1023/A:1009948524686
43 Desai TA, Hansford DJ, Ferrari M (2000) Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation. Biomol Eng 17(1): 23&horbar;36
https://doi.org/10.1016/S1389-0344(00)00063-0
44 Dionne KE (1996) Transport characterization of membranes for immunoisolation. Biomaterials 17(3): 257&horbar;266
https://doi.org/10.1016/0142-9612(96)85563-3
45 Dufrane D, Gianello P (2012) Macro- or microencapsulation of pig islets to cure type 1 diabetes. World J Gastroenterol 18(47): 6885&horbar;6893
https://doi.org/10.3748/wjg.v18.i47.6885
46 Efrat S (2008) Beta-cell replacement for insulin-dependent diabetes mellitus. Adv Drug Deliv Rev 60(2): 114&horbar;123
https://doi.org/10.1016/j.addr.2007.08.033
47 Egana JT (2009) Use of human mesenchymal cells to improve vascularization in a mouse model for scaffold-based dermal regeneration. Tissue Eng Part A 15(5): 1191&horbar;1200
https://doi.org/10.1089/ten.tea.2008.0097
48 Elisseeff J (2000) Photoencapsulation of chondrocytes in poly (ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 51(2): 164&horbar;171
https://doi.org/10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.0.CO;2-W
49 Elisseeff J (2006) The role of biomaterials in stem cell differentiation: applications in the musculoskeletal system. Stem Cells Dev 15(3): 295&horbar;303
https://doi.org/10.1089/scd.2006.15.295
50 Fisher RA, Strom SC (2006) Human hepatocyte transplantation: worldwide results. Transplantation 82(4): 441&horbar;449
https://doi.org/10.1097/01.tp.0000231689.44266.ac
51 Fishman JM (2013) Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc Natl Acad Sci USA 110(35): 14360&horbar;14365
https://doi.org/10.1073/pnas.1213228110
52 Freytes DO (2004) Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials 25(12): 2353&horbar;2361
https://doi.org/10.1016/j.biomaterials.2003.09.015
53 Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430): 1028&horbar;1032
https://doi.org/10.1126/science.285.5430.1028
54 Gilbert TW (2005) Production and characterization of ECM powder: implications for tissue engineering applications. Biomaterials 26(12): 1431&horbar;1435
https://doi.org/10.1016/j.biomaterials.2004.04.042
55 Gille J (2010) Mid-term results of Autologous Matrix-Induced Chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18(11): 1456&horbar;1464
https://doi.org/10.1007/s00167-010-1042-3
56 Grandoso L (2007) Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats. Int J Pharm 343(1-2): 69&horbar;78
https://doi.org/10.1016/j.ijpharm.2007.05.027
57 Greenhalgh DG (2013) Treating a collagen scaffold with a low concentration of nicotine-promoted angiogenesis and wound healing. J Surg Res 185(2): 543&horbar;544
https://doi.org/10.1016/j.jss.2012.10.026
58 Hao S (2005) A novel approach to tumor suppression using microencapsulated engineered J558/TNF-alpha cells. Exp Oncol 27(1): 56&horbar;60
59 He M, Callanan A (2013) Comparison of methods for whole-organ decellularization in tissue engineering of bioartificial organs. Tissue Eng Part B Rev 19(3): 194&horbar;208
https://doi.org/10.1089/ten.teb.2012.0340
60 Hedberg EL (2005) Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo. J Biomed Mater Res A 72(4): 343&horbar;353
https://doi.org/10.1002/jbm.a.30265
61 Hernandez RM (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62(7-8): 711&horbar;730
https://doi.org/10.1016/j.addr.2010.02.004
62 Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157(4): 657&horbar;663
https://doi.org/10.1083/jcb.200201049
63 Hofmann M (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17): 2198&horbar;2202
https://doi.org/10.1161/01.CIR.0000163546.27639.AA
64 Hortelano G, Chang PL (2000) Gene therapy for hemophilia. Artif Cells Blood Substit Immobil Biotechnol 28(1): 1&horbar;24
https://doi.org/10.3109/10731190009119782
65 Huang Q (2002) In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor beta1 and the potential for in situ chondrogenesis. Tissue Eng 8(3): 469&horbar;482
https://doi.org/10.1089/107632702760184727
66 Hubbell JA (2003) Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14(5): 551&horbar;558
https://doi.org/10.1016/j.copbio.2003.09.004
67 Hudson TW, Liu SY, Schmidt CE (2004) Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng 10(9-10): 1346&horbar;1358
https://doi.org/10.1089/ten.2004.10.1346
68 Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32(6): 733&horbar;742
https://doi.org/10.1007/s10529-010-0221-0
69 Hwang NS (2008) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci USA 105(52): 20641&horbar;20646
https://doi.org/10.1073/pnas.0809680106
70 Iwata H (1995) Does immunoisolation need to prevent the passage of antibodies and complements? Transplant Proc 27(6): 3224&horbar;3226
71 Jabbarzadeh E (2008) Induction of angiogenesis in tissueengineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci USA 105(32): 11099&horbar;11104
https://doi.org/10.1073/pnas.0800069105
72 Ji R (2012) The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials 33(35): 8995&horbar;9008
https://doi.org/10.1016/j.biomaterials.2012.08.058
73 Kagami H, Agata H, Tojo A (2011) Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. Int J Biochem Cell Biol 43(3): 286&horbar;289
https://doi.org/10.1016/j.biocel.2010.12.006
74 Kang A (2014) Cell encapsulation via microtechnologies. Biomaterials 35(9): 2651&horbar;2663
https://doi.org/10.1016/j.biomaterials.2013.12.073
75 Kasimir MT (2003) Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organ 26(5): 421&horbar;427
76 Kearney CJ, Mooney DJ (2013) Macroscale delivery systems for molecular and cellular payloads. Nat Mater 12(11): 1004&horbar;1017
https://doi.org/10.1038/nmat3758
77 Khalil M (2001) Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function. J Hepatol 34(1): 68&horbar;77
https://doi.org/10.1016/S0168-8278(00)00080-5
78 Kim BS, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18(1): 2&horbar;9
https://doi.org/10.1007/s003450050002
79 Kim D (2001) Transplantation of genetically modified fibroblasts expressing BDNF in adult rats with a subtotal hemisection improves specific motor and sensory functions. Neurorehabil Neural Repair 15(2): 141&horbar;150
https://doi.org/10.1177/154596830101500207
80 Kizilel S, Garfinkel M, Opara E (2005) The bioartificial pancreas: progress and challenges. Diabetes Technol Ther 7(6): 968&horbar;985
https://doi.org/10.1089/dia.2005.7.968
81 Klees RF (2008) Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization. Exp Cell Res 314(4): 763&horbar;773
https://doi.org/10.1016/j.yexcr.2007.12.007
82 Koffler J (2011) Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci USA 108(36): 14789&horbar;14794
https://doi.org/10.1073/pnas.1017825108
83 Kofron MD, Laurencin CT (2006) Bone tissue engineering by gene delivery. Adv Drug Deliv Rev 58(4): 555&horbar;576
https://doi.org/10.1016/j.addr.2006.03.008
84 Kolambkar YM (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1): 65&horbar;74
https://doi.org/10.1016/j.biomaterials.2010.08.074
85 Koshy ST (2014) Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 35(8): 2477&horbar;2487
https://doi.org/10.1016/j.biomaterials.2013.11.044
86 Krishnamurthy NV, Gimi B (2011) Encapsulated cell grafts to treat cellular deficiencies and dysfunction. Crit Rev Biomed Eng 39(6): 473&horbar;491
https://doi.org/10.1615/CritRevBiomedEng.v39.i6.10
87 Krol S (2006) Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett 6(9): 1933&horbar;1939
https://doi.org/10.1021/nl061049r
88 Kulig KM, Vacanti JP (2004) Hepatic tissue engineering. Transpl Immunol 12(3-4): 303&horbar;310
https://doi.org/10.1016/j.trim.2003.12.005
89 Kumar A (1999) bcl2 and v-abl oncogenes cooperate to immortalize murine B cells that secrete antigen specific antibodies. Immunol Lett 65(3): 153&horbar;159
https://doi.org/10.1016/S0165-2478(98)00085-6
90 Kyriakides TR (1999) Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proc Natl Acad Sci USA 96(8): 4449&horbar;4454
https://doi.org/10.1073/pnas.96.8.4449
91 Lacy PE (1991) Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 254(5039): 1782&horbar;1784
https://doi.org/10.1126/science.1763328
92 Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110): 920&horbar;926
https://doi.org/10.1126/science.8493529
93 Lee CH (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376(9739): 440&horbar;448
https://doi.org/10.1016/S0140-6736(10)60668-X
94 Li S (2010) Activin A binds to perlecan through its pro-region that has heparin/heparan sulfate binding activity. J Biol Chem 285(47): 36645&horbar;36655
https://doi.org/10.1074/jbc.M110.177865
95 Li Y (2014) Primed 3D injectable microniches enabling lowdosage cell therapy for critical limb ischemia. Proc Natl Acad Sci USA 111(37): 13511&horbar;13516
https://doi.org/10.1073/pnas.1411295111
96 Liem PH (2013) Treating a collagen scaffold with a low concentration of nicotine promoted angiogenesis and wound healing. J Surg Res 182(2): 353&horbar;361
https://doi.org/10.1016/j.jss.2012.10.018
97 Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472): 908&horbar;910
https://doi.org/10.1126/science.6776628
98 Lin P (2004) Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng 10(7-8): 1046&horbar;1053
https://doi.org/10.1089/ten.2004.10.1046
99 Liu Tsang V (2007) Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 21(3): 790&horbar;801
https://doi.org/10.1096/fj.06-7117com
100 Liu W (2014) Microcryogels as injectable 3-D cellular microniches for site-directed and augmented cell delivery. Acta Biomater 10(5): 1864&horbar;1875
https://doi.org/10.1016/j.actbio.2013.12.008
101 Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1): 47&horbar;55
https://doi.org/10.1038/nbt1055
102 Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462(7272): 433&horbar;441
https://doi.org/10.1038/nature08602
103 Lynch SE (1987) Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci USA 84(21): 7696&horbar;7700
https://doi.org/10.1073/pnas.84.21.7696
104 Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4-5): 207&horbar;233
https://doi.org/10.1016/j.addr.2007.03.012
105 Marston WA (2003) The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26(6): 1701&horbar;1705
https://doi.org/10.2337/diacare.26.6.1701
106 Martino MM, Hubbell JA (2010) The 12th-14th type III repeats of fibronectin function as a highly promiscuous growth factorbinding domain. FASEB J 24(12): 4711&horbar;4721
https://doi.org/10.1096/fj.09-151282
107 Martino MM (2010) Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med 3(100): 100ra89
108 Matthews JA (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2): 232&horbar;238
https://doi.org/10.1021/bm015533u
109 McLaughlin CR (2009) Bioengineered corneas for transplantation and in vitro toxicology. Front Biosci (Landmark Ed) 14: 3326&horbar;3337
https://doi.org/10.2741/3455
110 Meijer GJ (2008) Cell based bone tissue engineering in jaw defects. Biomaterials 29(21): 3053&horbar;3061
https://doi.org/10.1016/j.biomaterials.2008.03.012
111 Metcalfe AD, Ferguson MW (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4(14): 413&horbar;437
https://doi.org/10.1098/rsif.2006.0179
112 Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2(3): 205&horbar;213
https://doi.org/10.1016/j.stem.2008.02.005
113 Mooney DJ (1995) Biodegradable sponges for hepatocyte transplantation. J Biomed Mater Res 29(8): 959&horbar;965
https://doi.org/10.1002/jbm.820290807
114 Nafea EH (2011) Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J Control Release 154(2): 110&horbar;122
https://doi.org/10.1016/j.jconrel.2011.04.022
115 Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B 14(2): 149&horbar;165
https://doi.org/10.1089/ten.teb.2007.0332
116 Noth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol 4(7): 371&horbar;380
https://doi.org/10.1038/ncprheum0816
117 Okamoto T (2003) Cartilage regeneration using slow release of bone morphogenetic protein-2 from a gelatin sponge to treat experimental canine tracheomalacia: a preliminary report. ASAIO J 49(1): 63&horbar;69
https://doi.org/10.1097/00002480-200301000-00010
118 Omer A (2005) Long-term normoglycemia in rats receiving transplants with encapsulated islets. Transplantation 79(1): 52&horbar;58
https://doi.org/10.1097/01.TP.0000149340.37865.46
119 Orive G (2003) Cell encapsulation: promise and progress. Nat Med 9(1): 104&horbar;107
https://doi.org/10.1038/nm0103-104
120 Orive G (2005) Long-term expression of erythropoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Mol Ther 12(2): 283&horbar;289
https://doi.org/10.1016/j.ymthe.2005.04.002
121 O’Sullivan ES (2011) Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr Rev 32(6): 827&horbar;844
https://doi.org/10.1210/er.2010-0026
122 Ott HC (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2): 213&horbar;221
https://doi.org/10.1038/nm1684
123 Paredes Juarez GA (2014) Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng. Biotechnol 2: 26
https://doi.org/10.3389/fbioe.2014.00026
124 Park H (2007) Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28(21): 3217&horbar;3227
https://doi.org/10.1016/j.biomaterials.2007.03.030
125 Paul A (2009) Microencapsulated stem cells for tissue repairing: implications in cell-based myocardial therapy. Regen Med 4(5): 733&horbar;745
https://doi.org/10.2217/rme.09.43
126 Peng H (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110(6): 751&horbar;759
https://doi.org/10.1172/JCI15153
127 Pepper AR (2015) A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol 33: 518&horbar;523
https://doi.org/10.1038/nbt.3211
128 Petersen TH (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991): 538&horbar;541
https://doi.org/10.1126/science.1189345
129 Peterson B (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11(1-2): 120&horbar;129
https://doi.org/10.1089/ten.2005.11.120
130 Pouch SM (2015) Infectious complications of pancreatic islet transplantation: clinical experience and unanswered questions. Curr Infect Dis Rep 17(5): 482
https://doi.org/10.1007/s11908-015-0482-9
131 Prakash S, Chang TM(1996) Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 2(8): 883&horbar;887
https://doi.org/10.1038/nm0896-883
132 Price AP (2010) Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 16(8): 2581&horbar;2591
https://doi.org/10.1089/ten.tea.2009.0659
133 Rosario DJ (2008) Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen Med 3(2): 145&horbar;156
https://doi.org/10.2217/17460751.3.2.145
134 Sahni A, Odrljin T, Francis CW(1998) Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem 273(13): 7554&horbar;7559
https://doi.org/10.1074/jbc.273.13.7554
135 Scharp DW, Marchetti P (2014) Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev 67-68: 35&horbar;73
https://doi.org/10.1016/j.addr.2013.07.018
136 Schechner JS (2003) Engraftment of a vascularized human skin equivalent. FASEB J 17(15): 2250&horbar;2256
https://doi.org/10.1096/fj.03-0257com
137 Schneider S (2001) Multilayer capsules: a promising microencapsulation system for transplantation of pancreatic islets. Biomaterials 22(14): 1961&horbar;1970
https://doi.org/10.1016/S0142-9612(00)00380-X
138 Sellitto P (1995) Pressure-induced Hall-effect spectroscopy of silicon DX states in planar doped GaAs-AlAs superlattices. Phys Rev B 51(23): 16778&horbar;16784
https://doi.org/10.1103/PhysRevB.51.16778
139 Silva EA (2008) Material-based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci USA 105(38): 14347&horbar;14352
https://doi.org/10.1073/pnas.0803873105
140 Simmons CA (2004) Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35(2): 562&horbar;569
https://doi.org/10.1016/j.bone.2004.02.027
141 Street CN, Rajotte RV, Korbutt GS (2003) Stem cells: a promising source of pancreatic islets for transplantation in type 1 diabetes. Curr Top Dev Biol 58: 111&horbar;136
https://doi.org/10.1016/S0070-2153(03)58004-8
142 Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115(Pt 19): 3729&horbar;3738
https://doi.org/10.1242/jcs.00071
143 Sugiyama O (2005) Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 11(3): 390&horbar;398
https://doi.org/10.1016/j.ymthe.2004.10.019
144 Ti D (2014) Controlled release of thymosin beta 4 using a collagen-chitosan sponge scaffold augments cutaneous wound healing and increases angiogenesis in diabetic rats with hindlimb ischemia. Tissue Eng Part A 20(21-22): 3085&horbar;3087
145 Tomatsu S (2015) Impact of enzyme replacement therapy and hematopoietic stem cell transplantation in patients with Morquio A syndrome. Drug Des Devel Ther 9: 1937&horbar;1953
https://doi.org/10.2147/DDDT.S68562
146 Uchimura E (2003) Novel method of preparing acellular cardiovascular grafts by decellularization with poly(ethylene glycol). J Biomed Mater Res A 67(3): 834&horbar;837
https://doi.org/10.1002/jbm.a.10097
147 Uludag H, De Vos P, Tresco PA (2000a) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42(1-2): 29&horbar;64
https://doi.org/10.1016/S0169-409X(00)00053-3
148 Uludag H (2000b) Implantation of recombinant human bone morphogenetic proteins with biomaterial carriers: A correlation between protein pharmacokinetics and osteoinduction in the rat ectopic model. J Biomed Mater Res 50(2): 227&horbar;238
https://doi.org/10.1002/(SICI)1097-4636(200005)50:2<227::AID-JBM18>3.0.CO;2-2
149 Valentin JE (2006) Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am 88(12): 2673&horbar;2686
https://doi.org/10.2106/JBJS.E.01008
150 van der Windt DJ (2007) Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation 14(4): 288&horbar;297
https://doi.org/10.1111/j.1399-3089.2007.00419.x
151 Vermonden T (2008) Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility. Biomacromolecules 9(3): 919&horbar;926
https://doi.org/10.1021/bm7013075
152 Wainwright JM (2010) Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C 16(3): 525&horbar;532
https://doi.org/10.1089/ten.tec.2009.0392
153 Wang T (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nat Biotechnol 15(4): 358&horbar;362
https://doi.org/10.1038/nbt0497-358
154 Wang C, Varshney RR, Wang DA (2010) Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev 62(7-8): 699&horbar;710
https://doi.org/10.1016/j.addr.2010.02.001
155 Webber MJ (2015) A perspective on the clinical translation of scaffolds for tissue engineering. Ann Biomed Eng 43(3): 641&horbar;656
https://doi.org/10.1007/s10439-014-1104-7
156 Weber LM (2007) The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 28(19): 3004&horbar;3011
https://doi.org/10.1016/j.biomaterials.2007.03.005
157 Weber LM, Cheung CY, Anseth KS (2008) Multifunctional pancreatic islet encapsulation barriers achieved via multilayer PEG hydrogels. Cell Transplant 16(10): 1049&horbar;1057
https://doi.org/10.3727/000000007783472336
158 Wolf K (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160(2): 267&horbar;277
https://doi.org/10.1083/jcb.200209006
159 Wong H, Chang TM (1991) A novel two step procedure for immobilizing living cells in microcapsules for improving xenograft survival. Biomater Artif Cells Immobil Biotechnol 19(4): 687&horbar;697
https://doi.org/10.3109/10731199109117847
160 Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 26(35): 7339&horbar;7349
https://doi.org/10.1016/j.biomaterials.2005.05.066
161 Wyman JL (2007) Immunoisolating pancreatic islets by encapsulation with selective withdrawal. Small 3(4): 683&horbar;690
https://doi.org/10.1002/smll.200600231
162 Yamada Y (2004) Translational research for injectable tissueengineered bone regeneration using mesenchymal stem cells and platelet-rich plasma: from basic research to clinical case study. Cell Transplant 13(4): 343&horbar;355
https://doi.org/10.3727/000000004783983909
163 Yang HK, Yoon KH (2015) Current status of encapsulated islet transplantation. J Diabetes Complications 4(1): e13&horbar;e17
https://doi.org/10.1016/j.jdiacomp.2015.03.017
164 Yoo JJ (1998) Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51(2): 221&horbar;225
https://doi.org/10.1016/S0090-4295(97)00644-4
165 Zhang X (2008) A biodegradable, immunoprotective, dual nanoporous capsule for cell-based therapies. Biomaterials 29(31): 4253&horbar;4259
https://doi.org/10.1016/j.biomaterials.2008.07.032
166 Zimmermann H, Shirley SG, Zimmermann U (2007) Alginate-based encapsulation of cells: past, present, and future. Curr Diab Rep 7(4): 314&horbar;320
https://doi.org/10.1007/s11892-007-0051-1
[1] Lu Zhang, Yao Zhao, Ruogu Gao, Jun Li, Xiuna Yang, Yan Gao, Wei Zhao, Sudagar S. Gurcha, Natacha Veerapen, Sarah M. Batt, Kajelle Kaur Besra, Wenqing Xu, Lijun Bi, Xian’en Zhang, Luke W. Guddat8, Haitao Yang, Quan Wang, Gurdyal S. Besra, Zihe Rao. Cryo-EM snapshots of mycobacterial arabinosyltransferase complex EmbB2-AcpM2[J]. Protein Cell, 2020, 11(7): 505-517.
[2] Bo Jing, Chunxue Zhang, Xianjun Liu, Liqiang Zhou, Jiping Liu, Yinan Yao, Juehua Yu, Yuteng Weng, Min Pan, Jie Liu, Zuolin Wang, Yao Sun, Yi Eve Sun. Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity[J]. Protein Cell, 2018, 9(3): 298-309.
[3] Rui Li, Ye Bai, Tongtong Liu, Xiaoqun Wang, Qian Wu. Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases[J]. Prot Cell, 2013, 4(6): 415-424.
[4] Yuan Jiang, Mei-Jiang Zhang, Bao-Yang Hu. Specification of functional neurons and glia from human pluripotent stem cells[J]. Prot Cell, 2012, 3(11): 818-825.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed