Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2013, Vol. 4 Issue (9) : 677-686    https://doi.org/10.1007/s13238-013-3055-4
REVIEW
Genome-wide association studies on prostate cancer: the end or the beginning?
Rui Chen, Shancheng Ren, Yinghao Sun()
Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
 Download: PDF(290 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men. Ge nome-wide association st udies (GWAS) has been highly successful in discovering susceptibility loci for prostate cancer. Currently, more than twenty GWAS have identified more than fifty common variants associated with susceptibility with PCa. Yet with the increase in loci, voices from the scientific society are calling for more. In this review, we summarize current findings, discuss the common problems troubling current studies and shed light upon possible breakthroughs in the future. GWAS is the beginning of something wonderful. Although we are quite near the end of the beginning, post-GWAS studies are just taking off and future studies are needed extensively. It is believed that in the future GWAS information will be helpful to build a comprehensive system intergraded with PCa prevention, diagnosis, molecular classification, personalized therapy.

Keywords prostate cancer      genome-wide association study     
Corresponding Author(s): Sun Yinghao,Email:sunyh@medmail.com.cn   
Issue Date: 01 September 2013
 Cite this article:   
Rui Chen,Shancheng Ren,Yinghao Sun. Genome-wide association studies on prostate cancer: the end or the beginning?[J]. Prot Cell, 2013, 4(9): 677-686.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-013-3055-4
https://academic.hep.com.cn/pac/EN/Y2013/V4/I9/677
1 Ahn, J., Berndt, S.I., Wacholder, S., Kraft, P., Kibel, A.S., Yeager, M., Albanes, D., Giovannucci, E., Stampfer, M.J., Virtamo, J., . (2008). Variation in KLK genes, prostate-specific antigen and risk of prostate cancer. Nat Genet 40, 1032-1034 ; author reply 1035-1036 .
doi: 10.1038/ng0908-1032
2 Ahn, J., Kibel, A.S., Park, J.Y., Rebbeck, T.R., Rennert, H., Stanford, J.L., Ostrander, E.A., Chanock, S., Wang, M.H., Mittal, R.D., . (2011). Prostate cancer predisposition loci and risk of metastatic disease and prostate cancer recurrence. Clin Cancer Res 17, 1075-1081 .
doi: 10.1158/1078-0432.CCR-10-0881
3 Amin Al Olama, A., Kote-Jarai, Z., Schumacher, F.R., Wiklund, F., Berndt, S.I., Benlloch, S., Giles, G.G., Severi, G., Neal, D.E., Hamdy, F.C., . (2013). A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Hum Mol Genet 22, 408-415 .
doi: 10.1093/hmg/dds425
4 Arteaga, C.L., Sliwkowski, M.X., Osborne, C.K., Perez, E.A., Puglisi, F., and Gianni, L. (2012). Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9, 16-32 .
doi: 10.1038/nrclinonc.2011.177
5 Bensen, J.T., Xu, Z., Smith, G.J., Mohler, J.L., Fontham, E.T., and Taylor, J.A. (2013). Genetic polymorphism and prostate cancer aggressiveness: a case-only study of 1,536 GWAS and candidate SNPs in African-Americans and European-Americans. Prostate 73, 11-22 .
doi: 10.1002/pros.22532
6 Berger, M.F., Lawrence, M.S., Demichelis, F., Drier, Y., Cibulskis, K., Sivachenko, A.Y., Sboner, A., Esgueva, R., Pflueger, D., Sougnez, C., . (2011). The genomic complexity of primary human prostate cancer. Nature 470, 214-220 .
doi: 10.1038/nature09744
7 Chan, J.Y., Li, H., Singh, O., Mahajan, A., Ramasamy, S., Subramaniyan, K., Kanesvaran, R., Sim, H.G., Chong, T.W., Teo, Y.Y., . (2012). 8 q24 and 17q Prostate cancer susceptibility loci in a multiethnic Asian cohort(☆). Urol Oncol .(In press).
doi: 10.1016/j.urolonc.2012.02.009
8 Chang, B.L., Cramer, S.D., Wiklund, F., Isaacs, S.D., Stevens, V.L., Sun, J., Smith, S., Pruett, K., Romero, L.M., Wiley, K.E., . (2009). Fine mapping association study and functional analysis implicate a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk. Hum Mol Genet 18, 1368-1375 .
doi: 10.1093/hmg/ddp035
9 Chang, B.L., Spangler, E., Gallagher, S., Haiman, C.A., Henderson, B., Isaacs, W., Benford, M.L., Kidd, L.R., Cooney, K., Strom, S., . (2011). Validation of genome-wide prostate cancer associations in men of African descent. Cancer Epidemiol Biomarkers Prev 20, 23-32 .
doi: 10.1158/1055-9965.EPI-10-0698
10 Cheng, I., Chen, G.K., Nakagawa, H., He, J., Wan, P., Laurie, C.C., Shen, J., Sheng, X., Pooler, L.C., Crenshaw, A.T., . (2012). Evaluating genetic risk for prostate cancer among Japanese and Latinos. Cancer Epidemiol Biomarkers Prev 21, 2048-2058 .
doi: 10.1158/1055-9965.EPI-12-0598
11 Chung, C.C., Magalhaes, W.C., Gonzalez-Bosquet, J., and Chanock, S.J. (2010). Genome-wide association studies in cancer—current and future directions. Carcinogenesis 31, 111-120 .
doi: 10.1093/carcin/bgp273
12 Eeles, R.A., Kote-Jarai, Z., AlOlama, A.A., Giles, G.G., Guy, M., Severi, G., Muir, K., Hopper, J.L., Henderson, B.E., Haiman, C.A., . (2009). Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat Genet 41, 1116-1121 .
doi: 10.1038/ng.450
13 Eeles, R.A., Kote-Jarai, Z., Giles, G.G., Olama, A.A., Guy, M., Jugurnauth, S.K., Mulholland, S., Leongamornlert, D.A., Edwards, S.M., Morrison, J., . (2008). Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40, 316-321 .
doi: 10.1038/ng.90
14 Elston, R.C., Lin, D., and Zheng, G. (2007). Multistage sampling for genetic studies. Annu Rev Genomics Hum Genet 8, 327-342 .
doi: 10.1146/annurev.genom.8.080706.092357
15 FitzGerald, L.M., Kwon, E.M., Conomos, M.P., Kolb, S., Holt, S.K., Levine, D., Feng, Z., Ostrander, E.A., and Stanford, J.L. (2011). Genome-wide association study identifies a genetic variant associated with risk for more aggressive prostate cancer. Cancer Epidemiol Biomarkers Prev 20, 1196-1203 .
doi: 10.1158/1055-9965.EPI-10-1299
16 FitzGerald, L.M., Zhang, X., Kolb, S., Kwon, E.M., Liew, Y.C., HurtadoColl, A., Knudsen, B.S., Ostrander, E.A., and Stanford, J.L. (2013). Investigation of the relationship between prostate cancer and MSMB and NCOA4 genetic variants and protein expression. Hum Mutat 34, 149-156 .
doi: 10.1002/humu.22176
17 Freedman, M.L., Monteiro, A.N., Gayther, S.A., Coetzee, G.A., Risch, A., Plass, C., Casey, G., De Biasi, M., Carlson, C., Duggan, D., . (2011). Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet 43, 513-518 .
doi: 10.1038/ng.840
18 Garcia-Donas, J., Esteban, E., Leandro-Garcia, L.J., Castellano, D.E., del Alba, A.G., Climent, M.A., Arranz, J.A., Gallardo, E., Puente, J., Bellmunt, J., . (2011). Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study. Lancet Oncol 12, 1143-1150 .
doi: 10.1016/S1470-2045(11)70266-2
19 Goh, C.L., Saunders, E.J., Leongamornlert, D.A., Tymrakiewicz, M., Thomas, K., Selvadurai, E.D., Woode-Amissah, R., Dadaev, T., Mahmud, N., Castro, E., . (2013). Clinical implications of family history of prostate cancer and genetic risk single nucleotide polymorphism (SNP) profiles in an active surveillance cohort. BJU Int .(In Press).
doi: 10.1111/j.1464-410X.2012.11648.x
20 Gudmundsson, J., Sulem, P., Rafnar, T., Bergthorsson, J.T., Manolescu, A., Gudbjartsson, D., Agnarsson, B.A., Sigurdsson, A., Benediktsdottir, K.R., Blondal, T., . (2008). Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40, 281-283 .
doi: 10.1038/ng.89
21 Gudmundsson, J., Sulem, P., Steinthorsdottir, V., Bergthorsson, J.T., Thorleifsson, G., Manolescu, A., Rafnar, T., Gudbjartsson, D., Agnarsson, B.A., Baker, A., . (2007). Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 39, 977-983 .
doi: 10.1038/ng2062
22 Haiman, C.A., Chen, G.K., Blot, W.J., Strom, S.S., Berndt, S.I., Kittles, R.A., Rybicki, B.A., Isaacs, W.B., Ingles, S.A., Stanford, J.L., . (2011). Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet 7, e1001387.
doi: 10.1371/journal.pgen.1001387
23 Hawkins, R.D., Hon, G.C., and Ren, B. (2010). Next-generation genomics: an integrative approach. Nat Rev Genet 11, 476-486 .
24 Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M., Mehta, J.P., Collins, F.S., and Manolio, T.A. (2009). Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106, 9362-9367 .
doi: 10.1073/pnas.0903103106
25 Hirschhorn, J.N., and Daly, M.J. (2005). Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6, 95-108 .
doi: 10.1038/nrg1521
26 Hooker, S., Hernandez, W., Chen, H., Robbins, C., Torres, J.B., Ahaghotu, C., Carpten, J., and Kittles, R.A. (2010). Replication of prostate cancer risk loci on 8q24, 11q13, 17q12, 19q33, and Xp11 in African Americans. Prostate 70, 270-275 .
27 Ikegawa, S. (2012). A short history of the genome-wide association study: where we were and where we are going. Genomics Inform 10, 220-225 .
doi: 10.5808/GI.2012.10.4.220
28 Ishak, M.B., and Giri, V.N. (2011). A systematic review of replication studies of prostate cancer susceptibility genetic variants in high-risk men originally identified from genome-wide association studies. Cancer Epidemiol Biomarkers Prev 20, 1599-1610 .
doi: 10.1158/1055-9965.EPI-11-0312
29 Jia, P., Liu, Y., and Zhao, Z. (2012). I ntegrative pathway analysis of genome-wide association studies and gene expression data in prostate cancer. BMC Syst Biol 6 Suppl 3, S13.
doi: 10.1186/1752-0509-6-S3-S13
30 Juran, B.D., and Lazaridis, K.N. (2011). Ge nomics in the post-GWAS era. Semin Liver Dis 31, 215-222 .
doi: 10.1055/s-0031-1276641
31 Kader, A.K., Sun, J., Reck, B.H., Newcombe, P.J., Kim, S.T., Hsu, F.C., D’Agostino, R.B., Jr., Tao, S., Zhang, Z., Turner, A.R., . (2012). Potential impact of adding genetic markers to clinical parameters in predicting prostate biopsy outcomes in men following an initial negative biopsy: findings from the REDUCE trial. Eur Urol 62, 953-961 .
doi: 10.1016/j.eururo.2012.05.006
32 Kerns, S.L., Stock, R., Stone, N., Buckstein, M., Shao, Y., Campbell, C., Rath, L., De Ruysscher, D., Lammering, G., Hixson, R., . (2013). A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of erectile dysfunction following radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 85, e21-28 .
doi: 10.1016/j.ijrobp.2012.08.003
33 Kim, H.J., Bae, J.S., Lee, J., Chang, I.H., Kim, K.D., Shin, H.D., Han, J.H., Lee, S.Y., Kim, W., and Myung, S.C. (2011). HN F1B polymorphism associated with development of prostate cancer in Korean patients. Urology 78, 969. e1-6 .
34 Konety, B.R., Bird, V.Y., Deorah, S., and Dahmoush, L. (2005). Co mparison of the incidence of latent prostate cancer detected at autopsy before and after the prostate specific antigen era. J Urol 174, 1785-1788 ; discussion 1788 .
35 Lai, J., Kedda, M.A., Hinze, K., Smith, R.L., Yaxley, J., Spurdle, A.B., Morris, C.P., Harris, J., and Clements, J.A. (2007). PSA/KLK3 AREI promoter polymorphism alters androgen receptor binding and is associated with prostate cancer susceptibility. Carcinogenesis 28, 1032-1039 .
doi: 10.1093/carcin/bgl236
36 Lichtenstein, P., Holm, N.V., Verkasalo, P.K., Iliadou, A., Kaprio, J., Koskenvuo, M., Pukkala, E., Skytthe, A., and Hemminki, K. (2000). Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343, 78-85 .
doi: 10.1056/NEJM200007133430201
37 Liu, H., Wang, B., and Han, C. (2011). Meta-analysis of genome-wide and replication association studies on prostate cancer. Prostate 71, 209-224 .
doi: 10.1002/pros.21235
38 Lou, H., Li, H., Yeager, M., Im, K., Gold, B., Schneider, T.D., Fraumeni, J.F., Jr., Chanock, S.J., Anderson, S.K., and Dean, M. (2012). Promoter variants in the MSMB gene associated with prostate cancer regulate MSMB/NCOA4 fusion transcripts. Hum Genet 131, 1453-1466 .
doi: 10.1007/s00439-012-1182-2
39 Mehra, R., Han, B., Tomlins, S.A., Wang, L., Menon, A., Wasco, M.J., Shen, R., Montie, J.E., Chinnaiyan, A.M., and Shah, R.B. (2007). Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res 67, 7991-7995 .
doi: 10.1158/0008-5472.CAN-07-2043
40 Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., . (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553-560 .
doi: 10.1038/nature06008
41 Miyamoto, Y., Shi, D., Nakajima, M., Ozaki, K., Sudo, A., Kotani, A., Uchida, A., Tanaka, T., Fukui, N., Tsunoda, T., . (2008). Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis. Nat Genet 40, 994-998 .
doi: 10.1038/ng.176
42 Nam, R.K., Zhang, W., Siminovitch, K., Shlien, A., Kattan, M.W., Klotz, L.H., Trachtenberg, J., Lu, Y., Zhang, J., Yu, C., . (2011). New variants at 10q26 and 15q21 are associated with aggressive prostate cancer in a genome-wide association study from a prostate biopsy screening cohort. Cancer Biol Ther 12, 997-1004 .
doi: 10.4161/cbt.12.11.18366
43 Panagopoulos, I., Moller, E., Collin, A., and Mertens, F. (2008). The POU5F1P1 pseudogene encodes a putative protein similar to POU5F1 isoform 1. Oncol Rep 20, 1029-1033 .
44 Prokunina-Olsson, L., Fu, Y.P., Tang, W., Jacobs, K.B., Hayes, R.B., Kraft, P., Berndt, S.I., Wacholder, S., Yu, K., Hutchinson, A., . (2010). Refining the prostate cancer genetic association within the JAZF1 gene on chromosome 7p15.2. Cancer Epidemiol Biomarkers Prev 19, 1349-1355 .
doi: 10.1158/1055-9965.EPI-09-1181
45 Ritchie, M.D. (2012). The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-GWAS era. Hum Genet 131, 1615-1626 .
doi: 10.1007/s00439-012-1221-z
46 Sanna, S., Jackson, A.U., Nagaraja, R., Willer, C.J., Chen, W.M., Bonnycastle, L.L., Shen, H., Timpson, N., Lettre, G., Usala, G., . (2008). Common variants in the GDF5-UQCC region are associated with variation in human height. Nat Genet 40, 198-203 .
doi: 10.1038/ng.74
47 Schumacher, F.R., Berndt, S.I., Siddiq, A., Jacobs, K.B., Wang, Z., Lindstrom, S., Stevens, V.L., Chen, C., Mondul, A.M., Travis, R.C., . (2011). Genome-wide association study identifies new prostate cancer susceptibility loci. Hum Mol Genet 20, 3867-3875 .
doi: 10.1093/hmg/ddr295
48 Seng, K.C., and Seng, C.K. (2008). Th e success of the genome-wide association approach: a brief story of a long struggle. Eur J Hum Genet 16, 554-564 .
doi: 10.1038/ejhg.2008.12
49 Severi, G., Hayes, V.M., Neufing, P., Padilla, E.J., Tilley, W.D., Eggleton, S.A., Morris, H.A., English, D.R., Southey, M.C., Hopper, J.L., . (2006). Variants in the prostate-specific antigen (PSA) gene and prostate cancer risk, survival, and circulating PSA. Cancer Epidemiol Biomarkers Prev 15, 1142-1147 .
doi: 10.1158/1055-9965.EPI-05-0984
50 Siegel, R., Naishadham, D., and Jemal, A. (2013). Ca ncer statistics, 2013. CA Cancer J Clin 63, 11-30 .
doi: 10.3322/caac.21166
51 Sotelo, J., Esposito, D., Duhagon, M.A., Banfield, K., Mehalko, J., Liao, H., Stephens, R.M., Harris, T.J., Munroe, D.J., and Wu, X. (2010). Long-range enhancers on 8q24 regulate c-Myc. Proc Natl Acad Sci U S A 107, 3001-3005 .
doi: 10.1073/pnas.0906067107
52 Stadler, Z.K., Thom, P., Robson, M.E., Weitzel, J.N., Kauff, N.D., Hurley, K.E., Devlin, V., Gold, B., Klein, R.J., and Offit, K. (2010). Genome-wide association studies of cancer. J Clin Oncol 28, 4255-4267 .
doi: 10.1200/JCO.2009.25.7816
53 Stevens, V.L., Ahn, J., Sun, J., Jacobs, E.J., Moore, S.C., Patel, A.V., Berndt, S.I., Albanes, D., and Hayes, R.B. (2010). HNF1B and JAZF1 genes, diabetes, and prostate cancer risk. Prostate 70, 601-607 .
doi: 10.1002/pros.21094
54 Studies, N.-N.W.G.o.R.i.A., Chanock, S.J., Manolio, T., Boehnke, M., Boerwinkle, E., Hunter, D.J., Thomas, G., Hirschhorn, J.N., Abecasis, G., Altshuler, D., . (2007). Replicating genotype-phenotype associations. Nature 447, 655-660 .
doi: 10.1038/447655a
55 Takata, R., Akamatsu, S., Kubo, M., Takahashi, A., Hosono, N., Kawaguchi, T., Tsunoda, T., Inazawa, J., Kamatani, N., Ogawa, O., . (2010). Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet 42, 751-754 .
doi: 10.1038/ng.635
56 Thomas, G., Jacobs, K.B., Yeager, M., Kraft, P., Wacholder, S., Orr, N., Yu, K., Chatterjee, N., Welch, R., Hutchinson, A., . (2008). Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40, 310-315 .
doi: 10.1038/ng.91
57 Trevino, L.R., Shimasaki, N., Yang, W., Panetta, J.C., Cheng, C., Pei, D., Chan, D., Sparreboom, A., Giacomini, K.M., Pui, C.H., . (2009). Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol 27, 5972-5978 .
doi: 10.1200/JCO.2008.20.4156
58 Vickers, A., Cronin, A., Roobol, M., Savage, C., Peltola, M., Pettersson, K., Scardino, P.T., Schroder, F., and Lilja, H. (2010). Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: an independent replication. J Clin Oncol 28, 2493-2498 .
doi: 10.1200/JCO.2009.24.1968
59 Wang, M., Liu, F., Hsing, A.W., Wang, X., Shao, Q., Qi, J., Ye, Y., Wang, Z., Chen, H., Gao, X., . (2012). Replication and cumulative effects of GWAS-identified genetic variations for prostate cancer in Asians: a case-control study in the ChinaPCa consortium. Carcinogenesis 33, 356-360 .
doi: 10.1093/carcin/bgr279
60 Wasserman, N.F., Aneas, I., and Nobrega, M.A. (2010). An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Ge nome Res 20, 1191-1197 .
doi: 10.1101/gr.105361.110
61 Wheeler, H.E., Maitland, M.L., Dolan, M.E., Cox, N.J., and Ratain, M.J. (2013). Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet 14, 23-34 .
doi: 10.1038/nrg3352
62 Wright, J.B., Brown, S.J., and Cole, M.D. (2010). Upregulation of cMYC in cis through a large chromatin loop linked to a cancer riskassociated single-nucleotide polymorphism in colorectal cancer cells. Mol Cell Biol 30, 1411-1420 .
doi: 10.1128/MCB.01384-09
63 Xu, J., Mo, Z., Ye, D., Wang, M., Liu, F., Jin, G., Xu, C., Wang, X., Shao, Q., Chen, Z., . (2012). Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31.2 and 19q13.4. Nat Genet 44, 1231-1235 .
doi: 10.1038/ng.2424
64 Xu, J., Zheng, S.L., Isaacs, S.D., Wiley, K.E., Wiklund, F., Sun, J., Kader, A.K., Li, G., Purcell, L.D., Kim, S.T., . (2010). In herited genetic variant predisposes to aggressive but not indolent prostate cancer. Proc Natl Acad Sci U S A 107, 2136-2140 .
doi: 10.1073/pnas.0914061107
65 Yaspan, B.L., and Veatch, O.J. (2011). Strategies for pathway analysis from GWAS data. Curr Protoc Hum Genet. Chapter 1, Unit1.20.
doi: 10.1002/0471142905.hg0120s71
66 Yeager, M., Chatterjee, N., Ciampa, J., Jacobs, K.B., Gonzalez-Bosquet, J., Hayes, R.B., Kraft, P., Wacholder, S., Orr, N., Berndt, S., . (2009). Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nat Genet 41, 1055-1057 .
doi: 10.1038/ng.444
67 Yeager, M., Orr, N., Hayes, R.B., Jacobs, K.B., Kraft, P., Wacholder, S., Minichiello, M.J., Fearnhead, P., Yu, K., Chatterjee, N., . (2007). Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39, 645-649 .
doi: 10.1038/ng2022
68 Yi, H.G., Kim, H.J., Kim, Y.J., Han, S.W., Oh, D.Y., Lee, S.H., Kim, D.W., Im, S.A., Kim, T.Y., Kim, C.S., . (2009). Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are effective for leptomeningeal metastasis from non-small cell lung cancer patients with sensitive EGFR mutation or other predictive factors of good response for EGFR TKI. Lung Cancer 65, 80-84 .
doi: 10.1016/j.lungcan.2008.10.016
69 Zeggini, E., Scott, L.J., Saxena, R., Voight, B.F., Marchini, J.L., Hu, T., de Bakker, P.I., Abecasis, G.R., Almgren, P., Andersen, G., . (2008). Meta-analysis of genome-wide association data and largescale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40, 638-645 .
doi: 10.1038/ng.120
70 Zheng, J., Liu, F., Lin, X., Wang, X., Ding, Q., Jiang, H., Chen, H., Lu, D., Jin, G., Hsing, A.W., . (2012). Predictive performance of prostate cancer risk in Chinese men using 33 reported prostate cancer risk-associated SNPs. Prostate 72, 577-583 .
doi: 10.1002/pros.21462
[1] Mona Teng, Stanley Zhou, Changmeng Cai, Mathieu Lupien, Housheng Hansen He. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
[2] Xuelin Zhang,Yang Wang,Pingsheng Liu. Omic studies reveal the pathogenic lipid droplet proteins in non-alcoholic fatty liver disease[J]. Protein Cell, 2017, 8(1): 4-13.
[3] Yewei Liu, Qian Reuben Xie, Boshi Wang, Jiaxiang Shao, Tingting Zhang, Tengyuan Liu, Gang Huang, Weiliang Xia. Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics[J]. Prot Cell, 2013, 4(9): 702-710.
[4] Yeqing Angela Yang, Jindan Yu. EZH2, an epigenetic driver of prostate cancer[J]. Prot Cell, 2013, 4(5): 331-341.
[5] Jijing Luo, Xiaoqi Liu. Polo-like kinase 1, on the rise from cell cycle regulation to prostate cancer development[J]. Prot Cell, 2012, 3(3): 182-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed