Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2016, Vol. 7 Issue (8) : 562-570    https://doi.org/10.1007/s13238-016-0293-2
RESEARCH ARTICLE
Structural basis of Zika virus helicase in recognizing its substrates
Hongliang Tian1,2,Xiaoyun Ji3,Xiaoyun Yang1,Zhongxin Zhang4,Zuokun Lu5,Kailin Yang6,Cheng Chen1,Qi Zhao7,Heng Chi1,Zhongyu Mu1,Wei Xie1,Zefang Wang1,Huiqiang Lou4,Haitao Yang1,2(),Zihe Rao5
1. School of Life Sciences, Tianjin University, Tianjin 300072, China
2. Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
3. The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
4. State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
5. College of Life Sciences, Nankai University, Tianjin 300071, China
6. Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
7. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
 Download: PDF(1976 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The recent explosive outbreak of Zika virus (ZIKV) infection has been reported in South and Central America and the Caribbean. Neonatal microcephaly associated with ZIKV infection has already caused a public health emergency of international concern. No specific vaccines or drugs are currently available to treat ZIKV infection. The ZIKV helicase, which plays a pivotal role in viral RNA replication, is an attractive target for therapy. We determined the crystal structures of ZIKV helicase-ATP-Mn2+ and ZIKV helicase-RNA. This is the first structure of any flavivirus helicase bound to ATP. Comparisons with related flavivirus helicases have shown that although the critical P-loop in the active site has variable conformations among different species, it adopts an identical mode to recognize ATP/Mn2+. The structure of ZIKV helicase-RNA has revealed that upon RNA binding, rotations of the motor domains can cause significant conformational changes. Strikingly, although ZIKV and dengue virus (DENV) apo-helicases share conserved residues for RNA binding, their different manners of motor domain rotations result in distinct individual modes for RNA recognition. It suggests that flavivirus helicases could have evolved a conserved engine to convert chemical energy from nucleoside triphosphate to mechanical energy for RNA unwinding, but different motor domain rotations result in variable RNA recognition modes to adapt to individual viral replication.

Keywords Zika virus      helicase      ATP      crystal structure      flavivirus     
Corresponding Author(s): Haitao Yang   
Issue Date: 12 September 2016
 Cite this article:   
Hongliang Tian,Xiaoyun Ji,Xiaoyun Yang, et al. Structural basis of Zika virus helicase in recognizing its substrates[J]. Protein Cell, 2016, 7(8): 562-570.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-016-0293-2
https://academic.hep.com.cn/pac/EN/Y2016/V7/I8/562
1 Brasil P, Pereira JPJr, Raja Gabaglia C, Damasceno L, Wakimoto M, Ribeiro Nogueira RM, Carvalho de Sequeira P, Machado Siqueira A, Abreu de Carvalho LM, Cotrim da Cunha D (2016) Zika virus infection in pregnant women in Rio de Janeiro—preliminary report. N Engl J Med.
2 Cowtan K (2006) The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002–1011
https://doi.org/10.1107/S0907444906022116
3 Dick GW, Kitchen SF, Haddow AJ (1952) Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46:509–520
https://doi.org/10.1016/0035-9203(52)90042-4
4 Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C (2009) Zika virus outbreak on Yap Island, federated states of Micronesia. N Engl J Med 360:2536–2543
https://doi.org/10.1056/NEJMoa0805715
5 Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132
https://doi.org/10.1107/S0907444904019158
6 Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H, Tesh RB, Weaver SC (2012) Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 6:e1477
7 Hennessey M, Fischer M, Staples JE (2016) Zika virus spreads to new areas—region of the Americas, May 2015–January 2016. MMWR Morb Mortal Wkly Rep 65:55–58
https://doi.org/10.15585/mmwr.mm6503e1
8 Ioos S, Mallet HP, Leparc Goffart I, Gauthier V, Cardoso T, Herida M (2014) Current Zika virus epidemiology and recent epidemics. Med Mal Infect 44:302–307
https://doi.org/10.1016/j.medmal.2014.04.008
9 Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97
https://doi.org/10.1016/0003-2697(79)90115-5
10 Lazear HM, Diamond MS (2016) Zika virus: new clinical syndromes and its emergence in the Western Hemisphere. J Virol.
https://doi.org/10.1128/JVI.00252-16
11 Lindenbach BD, Rice CM (2001) Fundamental virology. Lippincott-Raven, Philadelphia, PA
12 Luo D, Xu T, Watson RP, Scherer-Becker D, Sampath A, Jahnke W, Yeong SS, Wang CH, Lim SP, Strongin A (2008) Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO J 27:3209–3219
https://doi.org/10.1038/emboj.2008.232
13 McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674
https://doi.org/10.1107/S0021889807021206
14 Minor W, Otwinowski Z (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods in enzymology volume 276: macromolecular crystallography, part A. Academic Press, New York, pp 307–326
15 Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodusek V (2016) Zika virus associated with microcephaly. N Engl J Med 374:951–958
https://doi.org/10.1056/NEJMoa1600651
16 Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367
https://doi.org/10.1107/S0907444911001314
17 Noble CG, Chen YL, Dong H, Gu F, Lim SP, Schul W, Wang QY, Shi PY (2010) Strategies for development of Dengue virus inhibitors. Antiviral Res 85:450–462
https://doi.org/10.1016/j.antiviral.2009.12.011
18 Pierson TC, Diamond MS (2013) Flaviviruses, vol 2, 6th edn. Wolter Kluwer, Philadelphia
19 Rodrigues LC (2016) Microcephaly and Zika virus infection. The Lancet.
https://doi.org/10.1016/S0140-6736(16)00742-X
20 Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Yao B, Shin J, Zhang F, Lee EM (2016) Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell.
https://doi.org/10.1016/j.stem.2016.02.016
21 Tian H, Ji X, Yang X, Xie W, Yang K, Chen C, Wu C, Chi H, Mu Z, Wang Z (2016) The crystal structure of Zika virus helicase: basis for antiviral drug design. Protein Cell 7:450–454
https://doi.org/10.1007/s13238-016-0275-4
22 Wikan N, Smith DR (2016) Zika virus: history of a newly emerging arbovirus. Lancet Infect Dis 16:e119–e126
[1] PAC-0562-16913-YHT_suppl_1 Download
[1] Shuhui Wang, Kaixuan Zhou, Xiaolin Yang, Bing Zhang, Yao Zhao, Yu Xiao, Xiuna Yang, Haitao Yang, Luke W. Guddat, Jun Li, Zihe Rao. Structural insights into substrate recognition by the type VII secretion system[J]. Protein Cell, 2020, 11(2): 124-137.
[2] Jing-Xiang Wu, Dian Ding, Mengmeng Wang, Yunlu Kang, Xin Zeng, Lei Chen. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels[J]. Protein Cell, 2018, 9(6): 553-567.
[3] Vsevolod V. Gurevich, Eugenia V. Gurevich, Vladimir N. Uversky. Arrestins: structural disorder creates rich functionality[J]. Protein Cell, 2018, 9(12): 986-1003.
[4] Yusuke Mimura, Toshihiko Katoh, Radka Saldova, Roisin O’Flaherty, Tomonori Izumi, Yuka Mimura-Kimura, Toshiaki Utsunomiya, Yoichi Mizukami, Kenji Yamamoto, Tsuneo Matsumoto, Pauline M. Rudd. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy[J]. Protein Cell, 2018, 9(1): 47-62.
[5] Yan Jiang,Yanping Zhu,Zhi-Jie Liu,Songying Ouyang. The emerging roles of the DDX41 protein in immunity and diseases[J]. Protein Cell, 2017, 8(2): 83-89.
[6] Shishang Dong,Peng Yang,Guobang Li,Baocheng Liu,Wenming Wang,Xiang Liu,Boran Xia,Cheng Yang,Zhiyong Lou,Yu Guo,Zihe Rao. Insight into the Ebola virus nucleocapsid assembly mechanism: crystal structure of Ebola virus nucleoprotein core domain at 1.8 ? resolution[J]. Protein Cell, 2015, 6(5): 351-362.
[7] Ping Wang,Chang Sun,Tingting Zhu,Yanhui Xu. Structural insight into mechanisms for dynamic regulation of PKM2[J]. Protein Cell, 2015, 6(4): 275-287.
[8] Zhongmin Liu,Jia Wang,Gang Li,Hong-Wei Wang. Structure of precursor microRNA’s terminal loop regulates human Dicer’s dicing activity by switching DExH/D domain[J]. Protein Cell, 2015, 6(3): 185-193.
[9] Ning Hao,Yutao Chen,Ming Xia,Ming Tan,Wu Liu,Xiaotao Guan,Xi Jiang,Xuemei Li,Zihe Rao. Crystal structures of GI.8 Boxer virus P dimers in complex with HBGAs, a novel evolutionary path selected by the Lewis epitope[J]. Protein Cell, 2015, 6(2): 101-116.
[10] Chenjun Jia,Mei Li,Jianjun Li,Jingjing Zhang,Hongmei Zhang,Peng Cao,Xiaowei Pan,Xuefeng Lu,Wenrui Chang. Structural insights into the catalytic mechanism of aldehyde-deformylating oxygenases[J]. Protein Cell, 2015, 6(1): 55-67.
[11] Qian Gao,Xiongfei Chen,Hongxia Duan,Zhaoqing Wang,Jing Feng,Dongling Yang,Lina Song,Ningxin Zhou,Xiyun Yan. FXYD6: a novel therapeutic target toward hepatocellular carcinoma[J]. Protein Cell, 2014, 5(7): 532-543.
[12] Kelei Bi,Yueting Zheng,Feng G"ao,Jianshu Dong,Jiangyun Wang,Yi Wang,Weimin Gong. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition[J]. Protein Cell, 2014, 5(2): 151-159.
[13] Fengfeng Niu, Heng Ru, Wei Ding, Songying Ouyang, Zhi-Jie Liu. Structural biology study of human TNF receptor associated factor 4 TRAF domain[J]. Prot Cell, 2013, 4(9): 687-694.
[14] Jun Li, Yu Dong, Xingru Lü, Lu Wang, Wei Peng, Xuejun C. Zhang, Zihe Rao. Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6[J]. Prot Cell, 2013, 4(7): 548-561.
[15] Honggang Zhou, Yuna Sun, Ying Wang, Min Liu, Chao Liu, Wenming Wang, Xiang Liu, Le Li, Fei Deng, Hualin Wang, Yu Guo, Zhiyong Lou. The nucleoprotein of severe fever with thrombocytopenia syndrome virus processes a stable hexameric ring to facilitate RNA encapsidation[J]. Prot Cell, 2013, 4(6): 445-455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed