Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (5) : 351-362    https://doi.org/10.1007/s13238-015-0163-3
RESEARCH ARTICLE
Insight into the Ebola virus nucleocapsid assembly mechanism: crystal structure of Ebola virus nucleoprotein core domain at 1.8 ? resolution
Shishang Dong1,2,3,Peng Yang1,3,Guobang Li1,3,Baocheng Liu2,3,Wenming Wang2,3,Xiang Liu3,Boran Xia3,Cheng Yang1,3,Zhiyong Lou1,Yu Guo1,3,*(),Zihe Rao1,2,3,*()
1. State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
2. College of Life Sciences, Nankai University, Tianjin 300071, China
3. Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin 300457, China
 Download: PDF(2417 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ebola virus (EBOV) is a key member of Filoviridae family and causes severe human infectious diseases with high morbidity and mortality. As a typical negative-sense single-stranded RNA (-ssRNA) viruses, EBOV possess a nucleocapsid protein (NP) to facilitate genomic RNA encapsidation to form viral ribonucleoprotein complex (RNP) together with genome RNA and polymerase, which plays the most essential role in virus proliferation cycle. However, the mechanism of EBOV RNP formation remains unclear. In this work, we solved the high resolution structure of core domain of EBOV NP. The polypeptide of EBOV NP core domain (NPcore) possesses an N-lobe and C-lobe to clamp a RNA binding groove, presenting similarities with the structures of the other reported viral NPs encoded by the members from Mononegavirales order. Most strikingly, a hydrophobic pocket at the surface of the C-lobe is occupied by an α-helix of EBOV NPcore itself, which is highly conserved among filoviridae family. Combined with other biochemical and biophysical evidences, our results provides great potential for understanding the mechanism underlying EBOV RNP formation via the mobility of EBOV NP element and enables the development of antiviral therapies targeting EBOV RNP formation.

Keywords Filoviridae      Ebola virus      nucleoprotein      nucleocapsid      crystal structure      assembly mechanism     
Corresponding Author(s): Yu Guo,Zihe Rao   
Issue Date: 08 May 2015
 Cite this article:   
Shishang Dong,Peng Yang,Guobang Li, et al. Insight into the Ebola virus nucleocapsid assembly mechanism: crystal structure of Ebola virus nucleoprotein core domain at 1.8 ? resolution[J]. Protein Cell, 2015, 6(5): 351-362.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-015-0163-3
https://academic.hep.com.cn/pac/EN/Y2015/V6/I5/351
1 Adams PD (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58(Pt 11): 1948-1954
https://doi.org/10.1107/S0907444902016657
2 Albertini AA (2006) Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313(5785): 360-363
https://doi.org/10.1126/science.1125280
3 Ariza A (2013) Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization. Nucleic Acids Res 41(11): 5912-5926
https://doi.org/10.1093/nar/gkt268
4 Arranz R (2013) The structure of native influenza virion ribonucleoproteins. Science 338(6114): 1634-1637
https://doi.org/10.1126/science.1228172
5 Bharat TA (2011) Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLoS Biol 9(11): e1001196
https://doi.org/10.1371/journal.pbio.1001196
6 Bharat TA (2012) Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc Natl Acad Sci USA 109(11): 4275-4280
https://doi.org/10.1073/pnas.1120453109
7 Chenavas S (2013) Monomeric nucleoprotein of influenza a virus. PLoS Pathog 9(3): e1003275
https://doi.org/10.1371/journal.ppat.1003275
8 DeLano W (2002) The PyMOL Molecular Graphics System 2002
9 Dong H (2013) Structure of Schmallenberg orthobunyavirus nucleoprotein suggests a novel mechanism of genome encapsidation. J Virol 87(10): 5593-5601
https://doi.org/10.1128/JVI.00223-13
10 Dziubanska PJ (2014) The structure of the C-terminal domain of the Zaire ebolavirus nucleoprotein. Acta Crystallogr D Biol Crystallogr 70(Pt 9): 2420-2429
https://doi.org/10.1107/S1399004714014710
11 Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1): 2126-2132
https://doi.org/10.1107/S0907444904019158
12 Ferron F (2011) The hexamer structure of Rift Valley fever virus nucleoprotein suggests a mechanism for its assembly into ribonucleoprotein complexes. PLoS Pathog 7(5): e1002030
https://doi.org/10.1371/journal.ppat.1002030
13 Gerritz SW (2011) Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers. Proc Natl Acad Sci USA 108(37): 15366-15371
https://doi.org/10.1073/pnas.1107906108
14 Green TJ, Luo M (2009) Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P. Proc Natl Acad Sci USA 106(28): 11713-11718
https://doi.org/10.1073/pnas.0903228106
15 Green TJ (2006) Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 313(5785): 357-360
https://doi.org/10.1126/science.1126953
16 Guo Y (2012) Crimean-Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in bunyaviruses. Proc Natl Acad Sci USA 109(13): 5046-5051
https://doi.org/10.1073/pnas.1200808109
17 Hastie KM (2011a) Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3’ to 5’ exonuclease activity essential for immune suppression. Proc Natl Acad Sci USA 108(6): 2396-2401
https://doi.org/10.1073/pnas.1016404108
18 Hastie KM (2011b) Crystal structure of the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA binding. Proc Natl Acad Sci USA 108(48): 19365-19370
https://doi.org/10.1073/pnas.1108515108
19 Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucl Acids Res 38: W545-W549
https://doi.org/10.1093/nar/gkq366
20 Huang Y (2002) The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 10(2): 307-316
https://doi.org/10.1016/S1097-2765(02)00588-9
21 Jiao L (2013) Structure of severe Fever with thrombocytopenia syndrome virus nucleocapsid protein in complex with suramin reveals therapeutic potential. J Virol 87(12): 6829-6839
https://doi.org/10.1128/JVI.00672-13
22 Kao RY (2010) Identification of influenza A nucleoprotein as an antiviral target. Nat Biotechnol 28(6): 600-605
https://doi.org/10.1038/nbt.1638
23 Kranzusch PJ, Whelan SP (2011) Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex. Proc Natl Acad Sci USA 108(49): 19743-19748
https://doi.org/10.1073/pnas.1112742108
24 Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1): 2256-2268
https://doi.org/10.1107/S0907444904026460
25 Kuhn JH (2010) Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol 155(12): 2083-2103
https://doi.org/10.1007/s00705-010-0814-x
26 Leung DW (2015) An intrinsically disordered peptide from Ebola Virus VP35 controls viral RNA synthesis by modulating nucleoprotein-RNA interactions. Cell Rep 11: 1-14
https://doi.org/10.1016/j.celrep.2015.03.034
27 Li B (2013) Bunyamwera virus possesses a distinct nucleocapsid protein to facilitate genome encapsidation. Proc Natl Acad Sci USA 110(22): 9048-9053
https://doi.org/10.1073/pnas.1222552110
28 Lovell SC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50(3): 437-450
https://doi.org/10.1002/prot.10286
29 Minor W (2006) HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 62(Pt 8): 859-866
https://doi.org/10.1107/S0907444906019949
30 Moeller A (2013) Organization of the influenza virus replication machinery. Science 338(6114): 1631-1634
https://doi.org/10.1126/science.1227270
31 Muhlberger E (1999) Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 73(3): 2333-2342
32 Ng AK (2008) Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design. Faseb J 22(10): 3638-3647
https://doi.org/10.1096/fj.08-112110
33 Niu F (2013) Structure of the Leanyer orthobunyavirus nucleoprotein-RNA complex reveals unique architecture for RNA encapsidation. Proc Natl Acad Sci USA 110(22): 9054-9059
https://doi.org/10.1073/pnas.1300035110
34 Noda T (2010) Characterization of the Ebola virus nucleoprotein-RNA complex. J Gen Virol 91(Pt 6): 1478-1483
https://doi.org/10.1099/vir.0.019794-0
35 Qi X (2011) Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature 468(7325): 779-783
https://doi.org/10.1038/nature09605
36 Raymond DD (2010) Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation. Proc Natl Acad Sci USA 107(26): 11769-11774
https://doi.org/10.1073/pnas.1001760107
37 Raymond DD (2012) Phleboviruses encapsidate their genomes by sequestering RNA bases. Proc Natl Acad Sci USA 109(47): 19208-19213
https://doi.org/10.1073/pnas.1213553109
38 Reguera J (2013) Structural basis for encapsidation of genomic RNA by La Crosse Orthobunyavirus nucleoprotein. Proc Natl Acad Sci USA 110(18): 7246-7251
https://doi.org/10.1073/pnas.1302298110
39 Rudolph MG (2003) Crystal structure of the borna disease virus nucleoprotein. Structure 11(10): 1219-1226
https://doi.org/10.1016/j.str.2003.08.011
40 Ruigrok RW, Crepin T, Kolakofsky D (2011) Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol 14(4): 504-510
https://doi.org/10.1016/j.mib.2011.07.011
41 Sun Y, Guo Y, Lou Z (2012) A versatile building block: the structures and functions of negative-sense single-stranded RNA virus nucleocapsid proteins. Protein Cell 3(12): 893-902
https://doi.org/10.1007/s13238-012-2087-5
42 Tawar RG (2009) Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science 326(5957): 1279-1283
https://doi.org/10.1126/science.1177634
43 Watanabe S, Noda T, Kawaoka Y (2006) Functional mapping of the nucleoprotein of Ebola virus. J Virol 80(8): 3743-3751
https://doi.org/10.1128/JVI.80.8.3743-3751.2006
44 Yabukarski F (2014) Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone. Nat Struct Mol Biol 21(9): 754-759
https://doi.org/10.1038/nsmb.2868
45 Ye Q, Krug RM, Tao YJ (2006) The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444(7122): 1078-1082
https://doi.org/10.1038/nature05379
46 Zhou H (2013) Structural perspective on the formation of ribonucleoprotein complex in negative-sense single-stranded RNA viruses. Trends Microbiol 21(9): 475-484
https://doi.org/10.1016/j.tim.2013.07.006
[1] Vsevolod V. Gurevich, Eugenia V. Gurevich, Vladimir N. Uversky. Arrestins: structural disorder creates rich functionality[J]. Protein Cell, 2018, 9(12): 986-1003.
[2] Yusuke Mimura, Toshihiko Katoh, Radka Saldova, Roisin O’Flaherty, Tomonori Izumi, Yuka Mimura-Kimura, Toshiaki Utsunomiya, Yoichi Mizukami, Kenji Yamamoto, Tsuneo Matsumoto, Pauline M. Rudd. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy[J]. Protein Cell, 2018, 9(1): 47-62.
[3] Hongliang Tian,Xiaoyun Ji,Xiaoyun Yang,Zhongxin Zhang,Zuokun Lu,Kailin Yang,Cheng Chen,Qi Zhao,Heng Chi,Zhongyu Mu,Wei Xie,Zefang Wang,Huiqiang Lou,Haitao Yang,Zihe Rao. Structural basis of Zika virus helicase in recognizing its substrates[J]. Protein Cell, 2016, 7(8): 562-570.
[4] Aihua Deng,Wei Lin,Nana Shi,Jie Wu,Zhaopeng Sun,Qinyun Sun,Hua Bai,Yongxin Pan,Tingyi Wen. In vitro assembly of the bacterial actin protein MamK from ‘Candidatus Magnetobacterium casensis’ in the phylum Nitrospirae[J]. Protein Cell, 2016, 7(4): 267-280.
[5] Ping Wang,Chang Sun,Tingting Zhu,Yanhui Xu. Structural insight into mechanisms for dynamic regulation of PKM2[J]. Protein Cell, 2015, 6(4): 275-287.
[6] Ning Hao,Yutao Chen,Ming Xia,Ming Tan,Wu Liu,Xiaotao Guan,Xi Jiang,Xuemei Li,Zihe Rao. Crystal structures of GI.8 Boxer virus P dimers in complex with HBGAs, a novel evolutionary path selected by the Lewis epitope[J]. Protein Cell, 2015, 6(2): 101-116.
[7] Chenjun Jia,Mei Li,Jianjun Li,Jingjing Zhang,Hongmei Zhang,Peng Cao,Xiaowei Pan,Xuefeng Lu,Wenrui Chang. Structural insights into the catalytic mechanism of aldehyde-deformylating oxygenases[J]. Protein Cell, 2015, 6(1): 55-67.
[8] Kelei Bi,Yueting Zheng,Feng G"ao,Jianshu Dong,Jiangyun Wang,Yi Wang,Weimin Gong. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition[J]. Protein Cell, 2014, 5(2): 151-159.
[9] Fengfeng Niu, Heng Ru, Wei Ding, Songying Ouyang, Zhi-Jie Liu. Structural biology study of human TNF receptor associated factor 4 TRAF domain[J]. Prot Cell, 2013, 4(9): 687-694.
[10] Jun Li, Yu Dong, Xingru Lü, Lu Wang, Wei Peng, Xuejun C. Zhang, Zihe Rao. Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6[J]. Prot Cell, 2013, 4(7): 548-561.
[11] Honggang Zhou, Yuna Sun, Ying Wang, Min Liu, Chao Liu, Wenming Wang, Xiang Liu, Le Li, Fei Deng, Hualin Wang, Yu Guo, Zhiyong Lou. The nucleoprotein of severe fever with thrombocytopenia syndrome virus processes a stable hexameric ring to facilitate RNA encapsidation[J]. Prot Cell, 2013, 4(6): 445-455.
[12] Yingxiao Chen, Xianqiang Song, Sheng Ye, Lin Miao, Yun Zhu, Rong-Guang Zhang, Guangju Ji. Structural insight into enhanced calcium indicator GCaMP3 and GCaMPJ to promote further improvement[J]. Prot Cell, 2013, 4(4): 299-309.
[13] Yu-Chung Chang, Hao Zhang, Mark L. Brennan, Jinhua Wu. Crystal structure of Lamellipodin implicates diverse functions in actin polymerization and Ras signaling[J]. Prot Cell, 2013, 4(3): 211-219.
[14] Neil Shaw, Songying Ouyang, Zhi-Jie Liu. Binding of bacterial secondary messenger molecule c di-GMP is a STING operation[J]. Prot Cell, 2013, 4(2): 117-129.
[15] Demeng Sun, Qing Liu, Yao He, Chengliang Wang, Fangming Wu, Changlin Tian, Jianye Zang. The putative propeptide of MycP1 in mycobacterial type VII secretion system does not inhibit protease activity but improves protein stability[J]. Prot Cell, 2013, 4(12): 921-931.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed