|
|
Structural insight into enhanced calcium indicator GCaMP3 and GCaMPJ to promote further improvement |
Yingxiao Chen, Xianqiang Song, Sheng Ye, Lin Miao, Yun Zhu, Rong-Guang Zhang( ), Guangju Ji( ) |
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China |
|
|
Abstract Genetically encoded Ca2+ indicators (GECI) are important for the measurement of Ca2+in vivo. GCaMP2, a widelyused GECI, has recently been iteratively improved. Among the improved variants, GCaMP3 exhibits significantly better fluorescent intensity. In this study, we developed a new GECI called GCaMPJ and determined the crystal structures of GCaMP3 and GCaMPJ. GCaMPJ has a 1.5- fold increase in fluorescence and 1.3-fold increase in calcium affinity over GCaMP3. Upon Ca2+ binding, GCaMP3 exhibits both monomeric and dimeric forms. The structural superposition of these two forms reveals the role of Arg-376 in improving monomer performance. However, GCaMPJ seldom forms dimers under conditions similar to GCaMP3. St ructural and mutagenesis studies on Tyr-380 confirmed its importance in blocking the cpEGFP β-barrel holes. Our study proposes an efficient tool for mapping Ca2+ signals in intact organs to facilitate the further improvement of GCaMP sensors.
|
Keywords
genetically encoded calcium indicator
mutants
crystal structure
fluorescentintensity
dimerization
|
Corresponding Author(s):
Zhang Rong-Guang,Email:rzhang@sun5.ibp.ac.cn; Ji Guangju,Email:gj28@ibp.ac.cn
|
Issue Date: 01 April 2013
|
|
1 |
Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., . (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221 . doi: 10.1107/S0907444909052925
|
2 |
Akerboom, J., Rivera, J.D., Guilbe, M.M., Malave, E.C., Hernandez, H.H., Tian, L., Hires, S.A., Marvin, J.S., Looger, L.L., and Schreiter, E.R. (2009). Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 284, 6455-6464 . doi: 10.1074/jbc.M807657200
|
3 |
Borghuis, B.G., Tian, L., Xu, Y., Nikonov, S.S., Vardi, N., Zemelman, B.V., and Looger, L.L. (2011). Imaging light responses of targeted neuron populations in the rodent retina. J Neurosci 31, 2855-2867 . doi: 10.1523/JNEUROSCI.6064-10.2011
|
4 |
Brejc, K., Sixma, T.K., Kitts, P.A., Kain, S.R., Tsien, R.Y., Ormo, M., and Remington, S.J. (1997). Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci U S A 94, 2306-2311 . doi: 10.1073/pnas.94.6.2306
|
5 |
Chattoraj, M., King, B.A., Bublitz, G.U., and Boxer, S.G. (1996). Ultra fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci U S A 93, 8362-8367 . doi: 10.1073/pnas.93.16.8362
|
6 |
Dombeck, D.A., Harvey, C.D., Tian, L., Looger, L.L., and Tank, D.W. (2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13, 1433-1440 . doi: 10.1038/nn.2648
|
7 |
Elsliger, M.A., Wachter, R.M., Hanson, G.T., Kallio, K., and Remington, S.J. (1999). Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry 38, 5296-5301 . doi: 10.1021/bi9902182
|
8 |
Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 . doi: 10.1107/S0907444904019158
|
9 |
Hires, S.A., Tian, L., and Looger, L.L. (2008). Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol 36, 69-86 . doi: 10.1007/s11068-008-9029-4
|
10 |
Ji, G., Feldman, M.E., Deng, K.Y., Greene, K.S., Wilson, J., Lee, J.C., Johnston, R.C., Rishniw, M., Tallini, Y., Zhang, J., . (2004). Ca2+-sensing transgenic mice: postsynaptic signaling in smooth muscle. J Biol Chem 279, 21461-21468 . doi: 10.1074/jbc.M401084200
|
11 |
Jung, G., Wiehler, J., and Zumbusch, A. (2005). The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222. Biophys J 88,1932-1947 . doi: 10.1529/biophysj.104.044412
|
12 |
Kotlikoff, M.I. (2007). Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J Physiol 578, 55-67 . doi: 10.1113/jphysiol.2006.120212
|
13 |
Kummer, A.D., Wiehler, J., Rehaber, H., Kompa, C., Steipe, B., and Michel-Beyerle, M.E. (2000). Effects of threonine 203 replacements on excited-state dynamics and fluorescence properties of the green fluorescent protein (GFP). J Physical Chem B 104, 4791-4798 . doi: 10.1021/jp9942522
|
14 |
McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674 . doi: 10.1107/S0021889807021206
|
15 |
Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-255 . doi: 10.1107/S0907444996012255
|
16 |
Nagai, T., Sawano, A., Park, E.S., and Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98, 3197-3202 . doi: 10.1073/pnas.051636098
|
17 |
Ohkura, M., Matsuzaki, M., Kasai, H., Imoto, K., and Nakai, J. (2005). Genetically encoded bright Ca2+ probe applicable for dynamic Ca2+ imaging of dendritic spines. Anal Chem 77, 5861-5869 . doi: 10.1021/ac0506837
|
18 |
Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., and Remington, S.J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392-1395 . doi: 10.1126/science.273.5280.1392
|
19 |
Seelig, J.D., Chiappe, M.E., Lott, G.K., Dutta, A., Osborne, J.E., Reiser, M.B., and Jayaraman, V. (2010). Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat Methods 7, 535-540 . doi: 10.1038/nmeth.1468
|
20 |
Shiba, Y., Fernandes, S., Zhu, W.Z., Filice, D., Muskheli, V., Kim, J., Palpant, N.J., Gantz, J., Moyes, K.W., Reinecke, H., . (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489, 322-325 doi: 10.1038/nature11317
|
21 |
Stoner-Ma, D., Jaye, A.A., Matousek, P., Towrie, M., Meech, S.R., and Tonge, P.J. (2005). Observation of excited-state proton transfer in green fluorescent protein using ultrafast vibrational spectroscopy. J Am Chem Soc 127, 2864-2865 . doi: 10.1021/ja042466d
|
22 |
Tallini, Y.N., Ohkura, M., Choi, B.R., Ji, G., Imoto, K., Doran, R., Lee, J., Plan, P., Wilson, J., Xin, H.B., . (2006). Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ in- dicator GCaMP2. Proc Natl Acad Sci U S A 103, 4753-4758 . doi: 10.1073/pnas.0509378103
|
23 |
Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., Petreanu, L., Akerboom, J., McKinney, S.A., Schreiter, E.R., . (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6, 875-881 . doi: 10.1038/nmeth.1398
|
24 |
Tsien, R.Y. (1998). The green fluorescent protein. Annu Rev Biochem 67, 509-544 . doi: 10.1146/annurev.biochem.67.1.509
|
25 |
Wang, Q., Shui, B., Kotlikoff, M.I., and Sondermann, H. (2008). Struc tural basis for calcium sensing by GCaMP2. Structure 16, 1817-1827 . doi: 10.1016/j.str.2008.10.008
|
26 |
Yang, F., Moss, L.G., and Phillips, G.N., Jr. (1996). The molecular structure of green fluorescent protein. Nat Biotechnol 14, 1246-1251 . doi: 10.1038/nbt1096-1246
|
27 |
Zhao, Y., Araki, S., Wu, J., Teramoto, T., Chang, Y.F., Nakano, M., Abdelfattah, A.S., Fujiwara, M., Ishihara, T., Nagai, T., . (2011). An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333, 1888-1891 . doi: 10.1126/science.1208592
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|