|
|
C. elegans-based screen identifies lysosome-damaging alkaloids that induce STAT3-dependent lysosomal cell death |
Yang Li1,3( ), Yu Zhang2, Qiwen Gan3, Meng Xu3, Xiao Ding2, Guihua Tang2, Jingjing Liang3, Kai Liu3, Xuezhao Liu3, Xin Wang5, Lingli Guo2, Zhiyang Gao3, Xiaojiang Hao2,4( ), Chonglin Yang3,5( ) |
1. Department of Pharmacology, Key Laboratory of Metabolism and Molecular Medicine (The Ministry of Education), School of Basic Medical Science, Fudan University, Shanghai 200032, China 2. State Key Laboratory of Phytochemistry and Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650021, China 3. State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China 4. The Key Laboratory of Chemistry for Natural Product of Guizhou Province, Chinese Academy of Science, Guiyang 550002, China 5. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China |
|
|
Abstract Lysosomes are degradation and signaling centers within the cell, and their dysfunction impairs a wide variety of cellular processes. To understand the cellular effect of lysosome damage, we screened natural smallmolecule compounds that induce lysosomal abnormality using Caenorhabditis elegans (C. elegans) as a model system. A group of vobasinyl-ibogan type bisindole alkaloids (ervachinines A–D) were identified that caused lysosome enlargement in C. elegans macrophage-like cells. Intriguingly, these compounds triggered cell death in the germ line independently of the canonical apoptosis pathway. In mammalian cells, ervachinines A–D induced lysosomal enlargement and damage, leading to leakage of cathepsin proteases, inhibition of autophagosome degradation and necrotic cell death. Further analysis revealed that this ervachinine-induced lysosome damage and lysosomal cell death depended on STAT3 signaling, but not RIP1 or RIP3 signaling. These findings suggest that lysosomedamaging compounds are promising reagents for dissecting signaling mechanisms underlying lysosome homeostasis and lysosome-related human disorders.
|
Keywords
lysosome
alkaloids
lysosomal cell death
STAT3
Caenorhabditis elegans
|
Corresponding Author(s):
Yang Li,Xiaojiang Hao,Chonglin Yang
|
Issue Date: 19 December 2018
|
|
1 |
FAlmaguel, JLiu, FPacheco, DDe Leon, CCasiano, MDe Leon (2010) Lipotoxicity-mediated cell dysfunction and death involve lysosomal membrane permeabilization and cathepsin L activity. Brain Res 1318:133–143
https://doi.org/10.1016/j.brainres.2009.12.038
|
2 |
PBoya, GKroemer (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451
https://doi.org/10.1038/onc.2008.310
|
3 |
CChen, WChen, MZhou, SArttamangkul, RPHaugland (2000) Probing the cathepsin D using a BODIPY FL-pepstatin A: applications in fluorescence polarization and microscopy. J Biochem Biophys Methods 42(3):137–151
https://doi.org/10.1016/S0165-022X(00)00048-8
|
4 |
HFares, IGreenwald (2001) Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159(1):133–145
|
5 |
MFruh, HBRis, AXyrafas, SPeters, ROMirimanoff, OGautschi, MPless, RStupp (2016) Preoperative chemoradiotherapy with cisplatin and docetaxel for stage IIIB non-small-cell lung cancer: 10-year follow-up of the SAKK 16/01 trial. Ann Oncol 27 (10):1971–1973
https://doi.org/10.1093/annonc/mdw251
|
6 |
PGonzalez, IMader, ATchoghandjian, SEnzenmuller, SCristofanon, FBasit, KMDebatin, SFulda (2012) Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process. Cell Death Differ 19(8):1337–1346
https://doi.org/10.1038/cdd.2012.10
|
7 |
LGuo, HHe, YDi, SLi, YCheng, WYang, YLi, J,Yu YZhang, XHao (2012) Indole alkaloids from Ervatamia chinensis. Phytochemistry 74:140–145
https://doi.org/10.1016/j.phytochem.2011.11.002
|
8 |
HRHorvitz, SShaham, MOHengartner (1994) The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 59:377–385
https://doi.org/10.1101/SQB.1994.059.01.042
|
9 |
PKreuzaler, AStaniszewska, WLi, NOmidvar, BKedjouar, JTurkson, VPoli, RFlavell, RClarkson, CWatson (2011) Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol 13(3):303–309
https://doi.org/10.1038/ncb2171
|
10 |
YLi, MXu, XDing, CYan, ZSong, LChen, XHuang, XWang, YJian, GTang, CTang, YDi, SMu, XLiu, KLiu, TLi, Y,Wang LMiao, WGuo, XHao, CYang (2016) Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol 18 (10):1065–1077
https://doi.org/10.1038/ncb3407
|
11 |
FTLiu, DKHsu, RIZuberi, IKuwabara, EYChi, WR JrHenderson (1995) Expression and function of galectin-3, a beta-galactosidebinding lectin, in human monocytes and macrophages. Am J Pathol 147(4):1016–1028
|
12 |
KLiu, YJian, XSun, ZGao, ZZhang, XLiu, YLi, JXu, YJing, SMitani, SHe, CYang (2016) Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion. J Cell Biol 212(2):181–198
https://doi.org/10.1083/jcb.201506081
|
13 |
FLoison, HZhu, KKaratepe, AKasorn, PLiu, KYe, JZhou, SCao, HGong, DJenne, ERemold-O’Donnell, YXu, HRLuo (2014) Proteinase 3-dependent caspase-3 cleavage modulates neutrophil death and inflammation. J Clin Invest 124(10):4445–4458
https://doi.org/10.1172/JCI76246
|
14 |
SMacauley (2016) Combination therapies for lysosomal storage diseases: a complex answer to a simple problem. Pediatr Endocrinol Rev 13(Suppl 1):639–648
|
15 |
IMaejima, ATakahashi, HOmori, TKimura, YTakabatake, TSaitoh, AYamamoto, MHamasaki, TNoda, YIsaka, TYoshimori (2013) Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 32(17):2336–2347
https://doi.org/10.1038/emboj.2013.171
|
16 |
SMeschini, MCondello, ACalcabrini, MMarra, GFormisano, PLista, ADe Milito, EFederici, GArancia (2008) The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells. Autophagy 4(8):1020–1033
https://doi.org/10.4161/auto.6952
|
17 |
RNixon (2013) The role of autophagy in neurodegenerative disease. Nat Med 19(8):983–997
https://doi.org/10.1038/nm.3232
|
18 |
COberle, JHuai, TReinheckel, MTacke, MRassner, PGEkert, J,Buellesbach CBorner (2010) Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ 17(7):1167–1178
https://doi.org/10.1038/cdd.2009.214
|
19 |
KOno, SOKim, JHan (2003) Susceptibility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor alpha-induced cell death. Mol Cell Biol 23(2):665–676
https://doi.org/10.1128/MCB.23.2.665-676.2003
|
20 |
RPerera, SStoykova, BNicolay, K,Ross J,Fitamant MBoukhali, JLengrand, VDeshpande, MSelig, CFerrone, JSettleman, GStephanopoulos, NDyson, RZoncu, SRamaswamy, WHaas, NBardeesy (2015) Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524 (7565):361–365
https://doi.org/10.1038/nature14587
|
21 |
LPrince, SBianchi, KVaughan, MBewley, HMarriott, SWalmsley, GTaylor, DButtle, ISabroe, DDockrell, MWhyte (2008) Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin. J Immunol 180 (5):3502–3511
https://doi.org/10.4049/jimmunol.180.5.3502
|
22 |
PSaftig, JKlumperman (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10(9):623–635
https://doi.org/10.1038/nrm2745
|
23 |
TSargeant, BLloyd-Lewis, HResemann, ARamos-Montoya, JSkepper, CWatson(2014) Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat Cell Biol 16(11):1057–1068
https://doi.org/10.1038/ncb3043
|
24 |
KSato, ANorris, MSato, BGrant (2016) C. elegans as a model for membrane traffic. Wormbook.
|
25 |
MASukhai, SPrabha, RHurren, ACRutledge, AYLee, SSriskanthadevan, HSun, XWang, MSkrtic, ASeneviratne, MCusimano, BJhas, MGronda, NMacLean, EECho, PASpagnuolo, SSharmeen, MGebbia, MUrbanus, KEppert, DDissanayake, AJonet, ADassonville-Klimpt, XLi, ADatti, PSOhashi, JWrana, IRogers, P,Sonnet WYEllis, SJCorey, CEaves, MDMinden, JCWang, JEDick, CNislow, GGiaever, ADSchimmer (2013) Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. J Clin Invest 123(1):315–328
https://doi.org/10.1172/JCI64180
|
26 |
LSun, XWang (2014) A new kind of cell suicide: mechanisms and functions of programmed necrosis. Trends Biochem Sci 39 (12):587–593
https://doi.org/10.1016/j.tibs.2014.10.003
|
27 |
MTaniguchi, HOgiso, TTakeuchi, KKitatani, HUmehara, TOkazaki (2015) Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis. Cell Death Dis 6:e1717
https://doi.org/10.1038/cddis.2015.82
|
28 |
WVainchenker, SNConstantinescu (2013) JAK/STAT signaling in hematological malignancies. Oncogene 32(21):2601–2613
https://doi.org/10.1038/onc.2012.347
|
29 |
MXu, YLiu, LZhao, Q,Gan XWang, CYang (2014) The lysosomal cathepsin protease CPL-1 plays a leading role in phagosomal degradation of apoptotic cells in Caenorhabditis elegans.Mo.l.Biol Cell 25(13):2071–2083
https://doi.org/10.1091/mbc.e14-01-0015
|
30 |
WZhu, LTao, MQuick, AJoyce, JQu, ZLuo (2015) Sensing cytosolic RpsL by macrophages induces lysosomal cell death and termination of bacterial infection. PLoS Pathog 11(3): e1004704
https://doi.org/10.1371/journal.ppat.1004704
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|