Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2023, Vol. 14 Issue (11) : 787-806    https://doi.org/10.1093/procel/pwad023
REVIEW
Nutri-microbiome epidemiology, an emerging field to disentangle the interplay between nutrition and microbiome for human health
Wanglong Gou1,2,3, Zelei Miao1,2,3, Kui Deng1,2,3, Ju-Sheng Zheng1,2,3()
1. Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
2. Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
3. Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
 Download: PDF(5628 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Diet and nutrition have a substantial impact on the human microbiome, and interact with the microbiome, especially gut microbiome, to modulate various diseases and health status. Microbiome research has also guided the nutrition field to a more integrative direction, becoming an essential component of the rising area of precision nutrition. In this review, we provide a broad insight into the interplay among diet, nutrition, microbiome, and microbial metabolites for their roles in the human health. Among the microbiome epidemiological studies regarding the associations of diet and nutrition with microbiome and its derived metabolites, we summarize those most reliable findings and highlight evidence for the relationships between diet and disease-associated microbiome and its functional readout. Then, the latest advances of the microbiome-based precision nutrition research and multidisciplinary integration are described. Finally, we discuss several outstanding challenges and opportunities in the field of nutri-microbiome epidemiology.

Keywords microbiome      nutrition      human health      epidemiology     
Corresponding Author(s): Ju-Sheng Zheng   
Issue Date: 14 December 2023
 Cite this article:   
Wanglong Gou,Zelei Miao,Kui Deng, et al. Nutri-microbiome epidemiology, an emerging field to disentangle the interplay between nutrition and microbiome for human health[J]. Protein Cell, 2023, 14(11): 787-806.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1093/procel/pwad023
https://academic.hep.com.cn/pac/EN/Y2023/V14/I11/787
1 QY Ang, M Alexander, JC Newman et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 2020;181:1263–1275.e16.
https://doi.org/10.1016/j.cell.2020.04.027
2 F Asnicar, SE Berry, AM Valdes et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 2021;12:13.
https://doi.org/10.1038/s41591-020-01183-8
3 N Bar, T Korem, O Weissbrod et al. A reference map of potential determinants for the human serum metabolome. Nature 2020;588:135–140.
https://doi.org/10.1038/s41586-020-2896-2
4 SMP Bennet, L Böhn, S Störsrud et al. Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut 2018;67:872–881.
https://doi.org/10.1136/gutjnl-2016-313128
5 O Ben-Yacov, A Godneva, M Rein et al. Personalized postprandial glucose response-targeting diet versus Mediterranean diet for glycemic control in prediabetes. Diabetes Care 2021;44:1980–1991.
https://doi.org/10.2337/dc21-0162
6 SE Berry, AM Valdes, DA Drew et al. Human postprandial responses to food and potential for precision nutrition. Nat Med 2020;26:964–973.
https://doi.org/10.1038/s41591-020-0934-0
7 LA Bolte, A Vich Vila, F Imhann et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 2021;70:1–12.
https://doi.org/10.1136/gutjnl-2020-322670
8 K Borodulin, H Tolonen, P Jousilahti et al. Cohort profile: the National FINRISK Study. Int J Epidemiol 2018;47:696–696i.
https://doi.org/10.1093/ije/dyx239
9 A Boronat, J Rodriguez-Morató, G Serreli et al. Contribution of biotransformations carried out by the microbiota, drug-metabolizing enzymes, and transport proteins to the biological activities of phytochemicals found in the diet. Adv Nutr 2021;12:2172–2189.
https://doi.org/10.1093/advances/nmab085
10 TA Breuninger, N Wawro, J Breuninger et al. Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation. Microbiome 2021;9:1–18.
https://doi.org/10.1186/s40168-020-00969-9
11 JM Brown, SL Hazen. Microbial modulation of cardiovascular disease. Nat Rev Microbiol 2018;16:171–181.
https://doi.org/10.1038/nrmicro.2017.149
12 B Chassaing, O Koren, JK Goodrich et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015;519:92–96.
https://doi.org/10.1038/nature14232
13 L Chen, DV Zhernakova, A Kurilshikov et al. Influence of the micro-biome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat Med 2022;28:2333–2343.
https://doi.org/10.1038/s41591-022-02014-8
14 L Costantini, R Molinari, B Farinon et al. Impact of Omega-3 fatty acids on the gut microbiota. Int J Mol Sci 2017;18:2645.
https://doi.org/10.3390/ijms18122645
15 A Cotillard, SP Kennedy, LC Kong et al. Dietary intervention impact on gut microbial gene richness. Nature 2013;500:585–588.
https://doi.org/10.1038/nature12480
16 A Cuevas-Sierra, FI Milagro, P Aranaz et al. Gut microbiota differences according to ultra-processed food consumption in a Spanish population. Nutrients 2021;13:2710.
https://doi.org/10.3390/nu13082710
17 M Dall’Asta, L Laghi, S Morselli et al. Pre-pregnancy diet and vaginal environment in caucasian pregnant women: an exploratory study. Front Mol Biosci 2021;8:702370.
https://doi.org/10.3389/fmolb.2021.702370
18 AT Dang, BJ Marsland. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol 2019;12:843–850.
https://doi.org/10.1038/s41385-019-0160-6
19 EC Deehan, C Yang, ME Perez-Muñoz et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe 2020;27:389–404.e6.
https://doi.org/10.1016/j.chom.2020.01.006
20 F De Filippis, N Pellegrini, L Vannini et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016;65:1812–1821.
https://doi.org/10.1136/gutjnl-2015-309957
21 P Dehghan, MA Farhangi, L Nikniaz et al. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: an exploratory systematic review and dose-response meta- analysis. Obes Rev 2020;21:e12993.
https://doi.org/10.1111/obr.12993
22 S Deleu, K Machiels, J Raes et al. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? EBioMedicine 2021;66:103293.
https://doi.org/10.1016/j.ebiom.2021.103293
23 J de la Cuesta-Zuluaga, NT Mueller, R Álvarez-Quintero et al. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 2018;11:1–16.
https://doi.org/10.3390/nu11010051
24 G Ecklu-Mensah, J Gilbert, S Devkota. Dietary selection pressures and their impact on the gut microbiome. Cell Mol Gastroenterol Hepatol 2022;13:7–18.
https://doi.org/10.1016/j.jcmgh.2021.07.009
25 A Esberg, L Eriksson, P Hasslöf et al. Using oral microbiota data to design a short sucrose intake index. Nutrients 2021;13:1400.
https://doi.org/10.3390/nu13051400
26 Y Fan, O Pedersen. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021;19:55–71.
https://doi.org/10.1038/s41579-020-0433-9
27 A Faria, I Fernandes, S Norberto et al. Interplay between anthocyanins and gut microbiota. J Agric Food Chem 2014;62:6898–6902.
https://doi.org/10.1021/jf501808a
28 M France, M Alizadeh, S Brown et al. Towards a deeper understanding of the vaginal microbiota. Nat Microbiol 2022;7:367–378.
https://doi.org/10.1038/s41564-022-01083-2
29 NB Gabler, N Duan, S Vohra et al. N-of-1 trials in the medical literature: a systematic review. Med Care 2011;49:761–768.
https://doi.org/10.1097/MLR.0b013e318215d90d
30 I Garcia-Mantrana, M Selma-Royo, C Alcantara et al. Shifts on gut microbiota associated to Mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol 2018;9:890.
https://doi.org/10.3389/fmicb.2018.00890
31 TS Ghosh, S Rampelli, B Jeffery et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 2020;69:1218–1228.
https://doi.org/10.1136/gutjnl-2019-319654
32 W Gou, C-W Ling, Y He et al. Interpretable machine learning framework reveals robust gut microbiome features associated with Type 2 diabetes. Diabetes Care 2021;44:358–366.
https://doi.org/10.2337/dc20-1536
33 W Gou, C-W Ling, Y He et al. Westlake gut project: a consortium of microbiome epidemiology for the gut microbiome and health research in China. Med Microecol 2022;14:100064.
https://doi.org/10.1016/j.medmic.2022.100064
34 J He, P Zhang, L Shen et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci 2020;21:6356.
https://doi.org/10.3390/ijms21176356
35 MF Hjorth, HM Roager, TM Larsen et al. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int J Obes (Lond) 2018;42:580–583.
https://doi.org/10.1038/ijo.2017.220
36 MF Hjorth, T Blædel, LQ Bendtsen et al. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int J Obes (Lond) 2019;43:149–157.
https://doi.org/10.1038/s41366-018-0093-2
37 Y Hu, Y Song, AA Franke et al. A prospective investigation of the association between urinary excretion of dietary lignan metabolites and weight change in US women. Am J Epidemiol 2015;182:503–511.
https://doi.org/10.1093/aje/kwv091
38 X Huang, Y Gao, W Chen et al. Dietary variety relates to gut microbiota diversity and abundance in humans. Eur J Nutr 2022;61:3915–3928.
https://doi.org/10.1007/s00394-022-02929-5
39 Z Jiang, T Sun, Y He et al. Dietary fruit and vegetable intake, gut microbiota, and type 2 diabetes: results from two large human cohort studies. BMC Med 2020;18:1–11.
https://doi.org/10.1186/s12916-020-01842-0
40 Z Jiang, L Zhuo, Y He et al. The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases. Nat Commun 2022;13:3002.
https://doi.org/10.1038/s41467-022-30712-x
41 AJ Johnson, P Vangay, GA Al-Ghalith et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 2019;25:789–802.e5.
https://doi.org/10.1016/j.chom.2019.05.005
42 JW Kang, X Tang, CJ Walton et al. Multi-omic analyses reveal bifidogenic effect and metabolomic shifts in healthy human cohort supplemented with a prebiotic dietary fiber blend. Front Nutr 2022;9:908534.
https://doi.org/10.3389/fnut.2022.908534
43 H Kim, LE Caulfield, V Garcia-Larsen et al. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J Am Heart Assoc 2019;8:e012865.
https://doi.org/10.1161/JAHA.119.012865
44 RA Koeth, Z Wang, BS Levison et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19:576–585.
https://doi.org/10.1038/nm.3145
45 AA Kolodziejczyk, D Zheng, E. Elinav Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol 2019;17:742–753.
https://doi.org/10.1038/s41579-019-0256-8
46 T Korem, D Zeevi, N Zmora et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab 2017;25:1243–1253.e5.
https://doi.org/10.1016/j.cmet.2017.05.002
47 KA Krautkramer, J Fan, F. Bäckhed Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol 2021;19:77–94.
https://doi.org/10.1038/s41579-020-0438-4
48 KC Lam, RE Araya, A Huang et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 2021;184:5338–5356.e21.
https://doi.org/10.1016/j.cell.2021.09.019
49 RJ Lamont, H Koo, G. Hajishengallis The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018;16:745–759.
https://doi.org/10.1038/s41579-018-0089-x
50 Y Lee, I Nemet, Z Wang et al. Longitudinal plasma measures of trimethylamine N-Oxide and risk of atherosclerotic cardiovascular disease events in community-based older adults. J Am Heart Assoc 2021;10:e020646.
https://doi.org/10.1161/JAHA.120.020646
51 L LeMay-Nedjelski, MR Asbury, J Butcher et al. Maternal diet and infant feeding practices are associated with variation in the human milk microbiota at 3 months postpartum in a cohort of women with high rates of gestational glucose intolerance. J Nutr 2021;151:320–329.
https://doi.org/10.1093/jn/nxaa248
52 XS Li, S Obeid, R Klingenberg et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 2017;38:814–824.
https://doi.org/10.1093/eurheartj/ehw582
53 J Li, Y Li, KL Ivey et al. Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: findings from a longitudinal cohort of US men. Gut 2022;71:724–733.
https://doi.org/10.1136/gutjnl-2020-322473
54 Y Liu, NJ Ajami, HB El-Serag et al. Dietary quality and the colonic mucosa–associated gut microbiome in humans. Am J Clin Nutr 2019;110:701.
https://doi.org/10.1093/ajcn/nqz139
55 B Liu, J Zhao, Y Liu et al. Diversity and temporal dynamics of breast milk microbiome and its influencing factors in Chinese women during the first 6 months postpartum. Front Microbiol 2022;13:1016759.
https://doi.org/10.3389/fmicb.2022.1016759
56 S Lommi, M Manzoor, E Engberg et al. The composition and functional capacities of saliva microbiota differ between children with low and high sweet treat consumption. Front Nutr 2022;9:864687.
https://doi.org/10.3389/fnut.2022.864687
57 C Losasso, EM Eckert, E Mastrorilli et al. Assessing the influence of vegan, vegetarian and omnivore oriented westernized dietary styles on human gut microbiota: a cross sectional study. Front Microbiol 2018;9:317.
https://doi.org/10.3389/fmicb.2018.00317
58 Y Ma, Y Fu, Y Tian et al. Individual postprandial glycemic responses to diet in n-of-1 trials: Westlake N-of-1 trials for macronutrient intake (WE-MACNUTR). J Nutr 2021;151:3158–3167.
https://doi.org/10.1093/jn/nxab227
59 A Mardinoglu, H Wu, E Bjornson et al. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab 2018;27:559–571.e5.
https://doi.org/10.1016/j.cmet.2018.01.005
60 D McDonald, E Hyde, JW Debelius et al. American gut: an open platform for citizen science microbiome research. MSystems 2018;3:e00031-18.
61 H Mendes-Soares, T Raveh-Sadka, S Azulay et al. Model of personalized postprandial glycemic response to food developed for an Israeli cohort predicts responses in Midwestern American individuals. Am J Clin Nutr 2019;110:63–75.
https://doi.org/10.1093/ajcn/nqz028
62 C Menni, J Zierer, T Pallister et al. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep 2017;7:11079.
https://doi.org/10.1038/s41598-017-10382-2
63 C Menni, P Louca, SE Berry et al. High intake of vegetables is linked to lower white blood cell profile and the effect is mediated by the gut microbiome. BMC Med 2021;19:1–10.
https://doi.org/10.1186/s12916-021-01913-w
64 J Merino, I Linenberg, KM Bermingham et al. Validity of continuous glucose monitoring for categorizing glycemic responses to diet: implications for use in personalized nutrition. Am J Clin Nutr 2022;115:1569–1576.
https://doi.org/10.1093/ajcn/nqac026
65 G Merra, A Noce, G Marrone et al. Influence of mediterranean diet on human gut microbiota. Nutrients 2021;13:1–12.
https://doi.org/10.3390/nu13010007
66 Z Miao, J-S Lin, Y Mao et al. Erythrocyte n-6 polyunsaturated fatty acids, gut microbiota, and incident Type 2 diabetes: a prospective cohort study. 2020;43:2435–2443.
https://doi.org/10.2337/dc20-0631
67 Z Miao, W Du, C Xiao et al. Gut microbiota signatures of long-term and short-term plant-based dietary pattern and cardiometabolic health: a prospective cohort study. BMC Med 2022;20:1–15.
https://doi.org/10.1186/s12916-022-02402-4
68 Z Miao, GD Chen, S Huo et.al. Interaction of n-3 polyunsaturated fatty acids with host CD36 genetic variant for gut microbiome and blood lipids in human cohorts. Clin Nutr 2022;41:1724–1734.
https://doi.org/10.1016/j.clnu.2022.05.021
69 AE Millen, R Dahhan, JL Freudenheim et al. Dietary carbohydrate intake is associated with the subgingival plaque oral microbiome abundance and diversity in a cohort of postmenopausal women. Sci Rep 2022;12:2643.
https://doi.org/10.1038/s41598-022-06421-2
70 EK Mitsou, A Kakali, S Antonopoulou et al. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr 2017;117:1645–1655.
https://doi.org/10.1017/S0007114517001593
71 E Molina-Montes, E Salamanca-Fernández, B Garcia-Villanova et al. The impact of plant-based dietary patterns on cancer-related outcomes: a rapid review and meta-analysis. Nutrients 2020;12:20101–20131.
https://doi.org/10.3390/nu12072010
72 A Molinaro, P Bel Lassen, M Henricsson et al. Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat Commun 2020;11:5881.
https://doi.org/10.1038/s41467-020-19589-w
73 I Moreno-Indias, L Sánchez-Alcoholado, P Pérez-Martínez et al. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct 2016;7:1775–1787.
https://doi.org/10.1039/C5FO00886G
74 WJ Murdoch, C Singh, K Kumbier et al. Definitions, methods, and applications in interpretable machine learning. Proc Natl Acad Sci USA 2019;116:22071–22080.
https://doi.org/10.1073/pnas.1900654116
75 S Naimi, E Viennois, AT Gewirtz et al. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 2021;9:66.
https://doi.org/10.1186/s40168-020-00996-6
76 J Neuffer, R González-Domínguez, S Lefèvre-Arbogast et al. Exploration of the gut-brain axis through metabolomics identifies serum propionic acid associated with higher cognitive decline in older persons. Nutrients 2022;14:4688.
https://doi.org/10.3390/nu14214688
77 Y Nishimoto, Y Mizuguchi, Y Mori et al. Resistant maltodextrin intake reduces virulent metabolites in the gut environment: a randomized control study in a Japanese cohort. Front Microbiol 2022;13:644146.
https://doi.org/10.3389/fmicb.2022.644146
78 E Nordlund, A-M Aura, I Mattila et al. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. J Agric Food Chem 2012;60:8134–8145.
https://doi.org/10.1021/jf3008037
79 LM Olsson, F Boulund, S Nilsson et al. Dynamics of the normal gut microbiota: a longitudinal one-year population study in Sweden. Cell Host Microbe 2022;30:726–739.e3.
https://doi.org/10.1016/j.chom.2022.03.002
80 BA Peters, ML McCullough, MP Purdue et al. Association of coffee and tea intake with the oral microbiome: results from a large cross-sectional study. Cancer Epidemiol Biomarkers Prev 2018;27:814–821.
https://doi.org/10.1158/1055-9965.EPI-18-0184
81 M Pignanelli, C Bogiatzi, G Gloor et al. Moderate renal impairment and toxic metabolites produced by the intestinal microbiome: dietary implications. J Ren Nutr 2019;29:55–64.
https://doi.org/10.1053/j.jrn.2018.05.007
82 T Potter, R Vieira, B. de Roos Perspective: application of N-of-1 methods in personalized nutrition research. Adv Nutr 2021;12:579–589.
https://doi.org/10.1093/advances/nmaa173
83 Q Qi, J Li, B Yu et al. Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut 2022;71:1095–1105.
https://doi.org/10.1136/gutjnl-2021-324053
84 F Qian, G Liu, FB Hu et al. Association between plant-based dietary patterns and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA Intern Med 2019;179:1335–1344.
https://doi.org/10.1001/jamainternmed.2019.2195
85 MI Queipo-Ortuño, M Boto-Ordóñez, M Murri et al. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 2012;95:1323–1334.
https://doi.org/10.3945/ajcn.111.027847
86 S Rath, K Rox, S Kleine Bardenhorst et al. Higher Trimethylamine-N-Oxide plasma levels with increasing age are mediated by diet and trimethylamine-forming bacteria. MSystems 2021;6:e0094521.
https://doi.org/10.1128/mSystems.00945-21
87 Z Ren, Y Shi, S Xu et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018;359:1151–1156.
https://doi.org/10.1126/science.aao5774
88 E Rinott, AY Meir, G Tsaban et al. The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. Genome Med 2022;14:29.
https://doi.org/10.1186/s13073-022-01015-z
89 HM Roager, TR. Licht Microbial tryptophan catabolites in health and disease. Nat Commun 2018;9:3294.
https://doi.org/10.1038/s41467-018-05470-4
90 GP Rodgers, FS. Collins Precision nutrition-the answer to “What to Eat to Stay Healthy”. JAMA 2020;324:735–736.
https://doi.org/10.1001/jama.2020.13601
91 EM Rosen, CL Martin, AM Siega-Riz et al. Is prenatal diet associated with the composition of the vaginal microbiome? Paediatr Perinat Epidemiol 2022;36:243–253.
https://doi.org/10.1111/ppe.12830
92 F Sánchez-Patán, C Cueva, M Monagas et al. In vitro fermentation of a red wine extract by human gut microbiota: changes in microbial groups and formation of phenolic metabolites. J Agric Food Chem 2012;60:2136–2147.
https://doi.org/10.1021/jf2040115
93 S Sanna, NR van Zuydam, A Mahajan et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 2019;51:600–605.
https://doi.org/10.1038/s41588-019-0350-x
94 JR Sempionatto, VR-V Montiel, E Vargas et al. Wearable and mobile sensors for personalized nutrition. ACS Sensors 2021;6:1745–1760.
https://doi.org/10.1021/acssensors.1c00553
95 R Sender, S Fuchs, R. Milo Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533.
https://doi.org/10.1371/journal.pbio.1002533
96 V Senthong, Z Wang, XS Li et al. Intestinal microbiota-generated metabolite Trimethylamine-N-Oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc 2016;5:e002816.
https://doi.org/10.1161/JAHA.115.002816
97 A Shaalan, S Lee, C Feart et al. Alterations in the oral microbiome associated with diabetes, overweight, and dietary components. Front Nutr 2022;9:914715.
https://doi.org/10.3389/fnut.2022.914715
98 T Shankar Ghosh, S Rampelli, B Jeffery et al. Gut microbiota Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 2020:1–11.
https://doi.org/10.1136/gutjnl-2019-319654
99 M Shuai, LSY Zuo, Z Miao et al. Multi-omics analyses reveal relationships among dairy consumption, gut microbiota and cardiometabolic health. EBioMedicine 2021;66:103284.
https://doi.org/10.1016/j.ebiom.2021.103284
100 RK Singh, HW Chang, D Yan et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med 2017;15:1–17.
https://doi.org/10.1186/s12967-017-1175-y
101 J Suez, Y Cohen, R Valdés-Mas et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022;185:3307–3328.e19.
https://doi.org/10.1016/j.cell.2022.07.016
102 F Szabo de Edelenyi, C Philippe, N Druesne-Pecollo et al. Depressive symptoms, fruit and vegetables consumption and urinary 3-indoxylsulfate concentration: a nested case-control study in the French Nutrinet-Sante cohort. Eur J Nutr 2021;60:1059–1069.
https://doi.org/10.1007/s00394-020-02306-0
103 EF Tigchelaar, A Zhernakova, JAM Dekens et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 2015;5:e006772.
https://doi.org/10.1136/bmjopen-2014-006772
104 I Trefflich, H-U Marschall, R Giuseppe et al. Associations between dietary patterns and bile acids-results from a cross-sectional study in vegans and omnivores. Nutrients 2019;12:47.
https://doi.org/10.3390/nu12010047
105 A Tripathi, J Debelius, DA Brenner et al. The gut–liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018;15:397–411.
https://doi.org/10.1038/s41575-018-0011-z
106 AM Valdes, J Walter, E Segal et al. Role of the gut microbiota in nutrition and health. BMJ 2018a;361:k2179.
https://doi.org/10.1136/bmj.k2179
107 AM Valdes, J Walter, E Segal et al. Role of the gut microbiota in nutrition and health. BMJ 2018b;361:36–44.
https://doi.org/10.1136/bmj.k2179
108 M Van de Wouw, H Schellekens, TG Dinan et al. Microbiota-gutbrain axis: modulator of host metabolism and appetite. J Nutr 2017;147:727–745.
https://doi.org/10.3945/jn.116.240481
109 SM Vanegas, M Meydani, JB Barnett et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr 2017;105:635–650.
https://doi.org/10.3945/ajcn.116.146928
110 S Vendrame, S Guglielmetti, P Riso et al. Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J Agric Food Chem 2011;59:12815–12820.
https://doi.org/10.1021/jf2028686
111 C Vetrani, G Costabile, D Luongo et al. Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome. Nutrition 2016;32:217–221.
https://doi.org/10.1016/j.nut.2015.08.006
112 Y Wan, F Wang, J Yuan et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 2019;68:1417–1429.
https://doi.org/10.1136/gutjnl-2018-317609
113 Z Wang, WH Tang, JA Buffa et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 2014;35:904–910.
https://doi.org/10.1093/eurheartj/ehu002
114 DD Wang, LH Nguyen, Y Li et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat Med 2021a;27:333–343.
https://doi.org/10.1038/s41591-020-01223-3
115 D Wang, M Doestzada, L Chen et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 2021b;29:1802–1814.e5.
https://doi.org/10.1016/j.chom.2021.11.003
116 H Wang, W Gou, C Su et al. Association of gut microbiota with glycaemic traits and incident type 2 diabetes, and modulation by habitual diet: a population-based longitudinal cohort study in Chinese adults. Diabetologia 2022a;65:1145–1156.
https://doi.org/10.1007/s00125-022-05687-5
117 M Wang, Z Wang, Y Lee et al. Dietary meat, Trimethylamine N-oxiderelated metabolites, and incident cardiovascular disease among older adults: the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol 2022b;42:e273–e288.
https://doi.org/10.1161/ATVBAHA.121.316533
118 Y Wang, Q Dong, S Hu et al. Decoding microbial genomes to understand their functional roles in human complex diseases. IMeta 2022c;1:e14.
https://doi.org/10.1002/imt2.14
119 H Watson, S Mitra, FC Croden et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 2018;67:1974–1983.
https://doi.org/10.1136/gutjnl-2017-314968
120 L Wedlake, N Slack, HJN Andreyev et al. Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm Bowel Dis 2014;20:576–586.
https://doi.org/10.1097/01.MIB.0000437984.92565.31
121 H Wei, M Zhao, M Huang et al. FMO3-TMAO axis modulates the clinical outcome in chronic heart-failure patients with reduced ejection fraction: evidence from an Asian population. Front Med 2022;16:295–305.
https://doi.org/10.1007/s11684-021-0857-2
122 GD Wu, C Compher, EZ Chen et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 2016;65:63–72.
https://doi.org/10.1136/gutjnl-2014-308209
123 TT Wu, J Xiao, S Manning et al. Multimodal data integration reveals mode of delivery and snack consumption outrank salivary microbiome in association with caries outcome in Thai children. Front Cell Infect Microbiol 2022a;12:881899.
https://doi.org/10.3389/fcimb.2022.881899
124 Y Wu, W Gou, Y Yan et al. Gut microbiota and acylcarnitine metabolites connect the beneficial association between equol and adiposity in adults: a prospective cohort study. Am J Clin Nutr 2022b;116:1831–1841.
https://doi.org/10.1093/ajcn/nqac252
125 C Xiao, JT Wang, C Su et al. Associations of dietary diversity with the gut microbiome, fecal metabolites, and host metabolism: results from 2 prospective Chinese cohorts. Am J Clin Nutr 2022;116:1049–1058.
https://doi.org/10.1093/ajcn/nqac178
126 D Yu, XO Shu, ES Rivera et al. Urinary levels of Trimethylamine-N-oxide and incident coronary heart disease: a prospective investigation among urban Chinese Adults. J Am Heart Assoc 2019;8:e010606.
https://doi.org/10.1161/JAHA.118.010606
127 D Yu, SM Nguyen, Y Yang et al. Long-term diet quality is associated with gut microbiome diversity and composition among urban Chinese adults. Am J Clin Nutr 2021;113:684–694.
https://doi.org/10.1093/ajcn/nqaa350
128 LS Zaramela, C Martino, F Alisson-Silva et al. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat Microbiol 2019;4:2082–2089.
https://doi.org/10.1038/s41564-019-0564-9
129 D Zeevi, T Korem, N Zmora et al. Personalized nutrition by prediction of glycemic responses. Cell 2015;163:1079–1095.
https://doi.org/10.1016/j.cell.2015.11.001
130 J-S Zheng, JM. Ordovás Precision nutrition for gut microbiome and diabetes research: application of nutritional n-of-1 clinical trials. J Diabetes 2021;13:1059–1061.
https://doi.org/10.1111/1753-0407.13220
131 A Zhernakova, A Kurilshikov, MJ Bonder et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016;352:565–569.
https://doi.org/10.1126/science.aad3369
[1] Qinwen Wang, Qianyue Yang, Xingyin Liu. The microbiota–gut–brain axis and neurodevelopmental disorders[J]. Protein Cell, 2023, 14(10): 762-775.
[2] Huicheng Shi, Xi Yu, Gong Cheng. Impact of the microbiome on mosquito-borne diseases[J]. Protein Cell, 2023, 14(10): 743-761.
[3] Tao Wen, Guoqing Niu, Tong Chen, Qirong Shen, Jun Yuan, Yong-Xin Liu. The best practice for microbiome analysis using R[J]. Protein Cell, 2023, 14(10): 713-725.
[4] Sheng Liu, Wenjing Zhao, Ping Lan, Xiangyu Mou. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy[J]. Protein Cell, 2021, 12(5): 331-345.
[5] Jiayu Wu, Kai Wang, Xuemei Wang, Yanli Pang, Changtao Jiang. The role of the gut microbiome and its metabolites in metabolic diseases[J]. Protein Cell, 2021, 12(5): 360-373.
[6] Abigail Wong-Rolle, Haohan Karen Wei, Chen Zhao, Chengcheng Jin. Unexpected guests in the tumor microenvironment: microbiome in cancer[J]. Protein Cell, 2021, 12(5): 426-435.
[7] Faming Zhang, Bota Cui, Xingxiang He, Yuqiang Nie, Kaichun Wu, Daiming Fan, FMT-standardization Study Group. Microbiota transplantation: concept, methodology and strategy for its modernization[J]. Protein Cell, 2018, 9(5): 462-473.
[8] Lu Gao, Tiansong Xu, Gang Huang, Song Jiang, Yan Gu, Feng Chen. Oral microbiomes: more and more importance in oral cavity and whole body[J]. Protein Cell, 2018, 9(5): 488-500.
[9] Jun Wang, Liang Chen, Na Zhao, Xizhan Xu, Yakun Xu, Baoli Zhu. Of genes and microbes: solving the intricacies in host genomes[J]. Protein Cell, 2018, 9(5): 446-461.
[10] Marwah Doestzada, Arnau Vich Vila, Alexandra Zhernakova, Debby P. Y. Koonen, Rinse K. Weersma, Daan J. Touw, Folkert Kuipers, Cisca Wijmenga, Jingyuan Fu. Pharmacomicrobiomics: a novel route towards personalized medicine?[J]. Protein Cell, 2018, 9(5): 432-445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed