1 |
QY Ang, M Alexander, JC Newman et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 2020;181:1263–1275.e16.
https://doi.org/10.1016/j.cell.2020.04.027
|
2 |
F Asnicar, SE Berry, AM Valdes et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 2021;12:13.
https://doi.org/10.1038/s41591-020-01183-8
|
3 |
N Bar, T Korem, O Weissbrod et al. A reference map of potential determinants for the human serum metabolome. Nature 2020;588:135–140.
https://doi.org/10.1038/s41586-020-2896-2
|
4 |
SMP Bennet, L Böhn, S Störsrud et al. Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut 2018;67:872–881.
https://doi.org/10.1136/gutjnl-2016-313128
|
5 |
O Ben-Yacov, A Godneva, M Rein et al. Personalized postprandial glucose response-targeting diet versus Mediterranean diet for glycemic control in prediabetes. Diabetes Care 2021;44:1980–1991.
https://doi.org/10.2337/dc21-0162
|
6 |
SE Berry, AM Valdes, DA Drew et al. Human postprandial responses to food and potential for precision nutrition. Nat Med 2020;26:964–973.
https://doi.org/10.1038/s41591-020-0934-0
|
7 |
LA Bolte, A Vich Vila, F Imhann et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 2021;70:1–12.
https://doi.org/10.1136/gutjnl-2020-322670
|
8 |
K Borodulin, H Tolonen, P Jousilahti et al. Cohort profile: the National FINRISK Study. Int J Epidemiol 2018;47:696–696i.
https://doi.org/10.1093/ije/dyx239
|
9 |
A Boronat, J Rodriguez-Morató, G Serreli et al. Contribution of biotransformations carried out by the microbiota, drug-metabolizing enzymes, and transport proteins to the biological activities of phytochemicals found in the diet. Adv Nutr 2021;12:2172–2189.
https://doi.org/10.1093/advances/nmab085
|
10 |
TA Breuninger, N Wawro, J Breuninger et al. Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation. Microbiome 2021;9:1–18.
https://doi.org/10.1186/s40168-020-00969-9
|
11 |
JM Brown, SL Hazen. Microbial modulation of cardiovascular disease. Nat Rev Microbiol 2018;16:171–181.
https://doi.org/10.1038/nrmicro.2017.149
|
12 |
B Chassaing, O Koren, JK Goodrich et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015;519:92–96.
https://doi.org/10.1038/nature14232
|
13 |
L Chen, DV Zhernakova, A Kurilshikov et al. Influence of the micro-biome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat Med 2022;28:2333–2343.
https://doi.org/10.1038/s41591-022-02014-8
|
14 |
L Costantini, R Molinari, B Farinon et al. Impact of Omega-3 fatty acids on the gut microbiota. Int J Mol Sci 2017;18:2645.
https://doi.org/10.3390/ijms18122645
|
15 |
A Cotillard, SP Kennedy, LC Kong et al. Dietary intervention impact on gut microbial gene richness. Nature 2013;500:585–588.
https://doi.org/10.1038/nature12480
|
16 |
A Cuevas-Sierra, FI Milagro, P Aranaz et al. Gut microbiota differences according to ultra-processed food consumption in a Spanish population. Nutrients 2021;13:2710.
https://doi.org/10.3390/nu13082710
|
17 |
M Dall’Asta, L Laghi, S Morselli et al. Pre-pregnancy diet and vaginal environment in caucasian pregnant women: an exploratory study. Front Mol Biosci 2021;8:702370.
https://doi.org/10.3389/fmolb.2021.702370
|
18 |
AT Dang, BJ Marsland. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol 2019;12:843–850.
https://doi.org/10.1038/s41385-019-0160-6
|
19 |
EC Deehan, C Yang, ME Perez-Muñoz et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe 2020;27:389–404.e6.
https://doi.org/10.1016/j.chom.2020.01.006
|
20 |
F De Filippis, N Pellegrini, L Vannini et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016;65:1812–1821.
https://doi.org/10.1136/gutjnl-2015-309957
|
21 |
P Dehghan, MA Farhangi, L Nikniaz et al. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: an exploratory systematic review and dose-response meta- analysis. Obes Rev 2020;21:e12993.
https://doi.org/10.1111/obr.12993
|
22 |
S Deleu, K Machiels, J Raes et al. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? EBioMedicine 2021;66:103293.
https://doi.org/10.1016/j.ebiom.2021.103293
|
23 |
J de la Cuesta-Zuluaga, NT Mueller, R Álvarez-Quintero et al. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 2018;11:1–16.
https://doi.org/10.3390/nu11010051
|
24 |
G Ecklu-Mensah, J Gilbert, S Devkota. Dietary selection pressures and their impact on the gut microbiome. Cell Mol Gastroenterol Hepatol 2022;13:7–18.
https://doi.org/10.1016/j.jcmgh.2021.07.009
|
25 |
A Esberg, L Eriksson, P Hasslöf et al. Using oral microbiota data to design a short sucrose intake index. Nutrients 2021;13:1400.
https://doi.org/10.3390/nu13051400
|
26 |
Y Fan, O Pedersen. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021;19:55–71.
https://doi.org/10.1038/s41579-020-0433-9
|
27 |
A Faria, I Fernandes, S Norberto et al. Interplay between anthocyanins and gut microbiota. J Agric Food Chem 2014;62:6898–6902.
https://doi.org/10.1021/jf501808a
|
28 |
M France, M Alizadeh, S Brown et al. Towards a deeper understanding of the vaginal microbiota. Nat Microbiol 2022;7:367–378.
https://doi.org/10.1038/s41564-022-01083-2
|
29 |
NB Gabler, N Duan, S Vohra et al. N-of-1 trials in the medical literature: a systematic review. Med Care 2011;49:761–768.
https://doi.org/10.1097/MLR.0b013e318215d90d
|
30 |
I Garcia-Mantrana, M Selma-Royo, C Alcantara et al. Shifts on gut microbiota associated to Mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol 2018;9:890.
https://doi.org/10.3389/fmicb.2018.00890
|
31 |
TS Ghosh, S Rampelli, B Jeffery et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 2020;69:1218–1228.
https://doi.org/10.1136/gutjnl-2019-319654
|
32 |
W Gou, C-W Ling, Y He et al. Interpretable machine learning framework reveals robust gut microbiome features associated with Type 2 diabetes. Diabetes Care 2021;44:358–366.
https://doi.org/10.2337/dc20-1536
|
33 |
W Gou, C-W Ling, Y He et al. Westlake gut project: a consortium of microbiome epidemiology for the gut microbiome and health research in China. Med Microecol 2022;14:100064.
https://doi.org/10.1016/j.medmic.2022.100064
|
34 |
J He, P Zhang, L Shen et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci 2020;21:6356.
https://doi.org/10.3390/ijms21176356
|
35 |
MF Hjorth, HM Roager, TM Larsen et al. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int J Obes (Lond) 2018;42:580–583.
https://doi.org/10.1038/ijo.2017.220
|
36 |
MF Hjorth, T Blædel, LQ Bendtsen et al. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int J Obes (Lond) 2019;43:149–157.
https://doi.org/10.1038/s41366-018-0093-2
|
37 |
Y Hu, Y Song, AA Franke et al. A prospective investigation of the association between urinary excretion of dietary lignan metabolites and weight change in US women. Am J Epidemiol 2015;182:503–511.
https://doi.org/10.1093/aje/kwv091
|
38 |
X Huang, Y Gao, W Chen et al. Dietary variety relates to gut microbiota diversity and abundance in humans. Eur J Nutr 2022;61:3915–3928.
https://doi.org/10.1007/s00394-022-02929-5
|
39 |
Z Jiang, T Sun, Y He et al. Dietary fruit and vegetable intake, gut microbiota, and type 2 diabetes: results from two large human cohort studies. BMC Med 2020;18:1–11.
https://doi.org/10.1186/s12916-020-01842-0
|
40 |
Z Jiang, L Zhuo, Y He et al. The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases. Nat Commun 2022;13:3002.
https://doi.org/10.1038/s41467-022-30712-x
|
41 |
AJ Johnson, P Vangay, GA Al-Ghalith et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 2019;25:789–802.e5.
https://doi.org/10.1016/j.chom.2019.05.005
|
42 |
JW Kang, X Tang, CJ Walton et al. Multi-omic analyses reveal bifidogenic effect and metabolomic shifts in healthy human cohort supplemented with a prebiotic dietary fiber blend. Front Nutr 2022;9:908534.
https://doi.org/10.3389/fnut.2022.908534
|
43 |
H Kim, LE Caulfield, V Garcia-Larsen et al. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J Am Heart Assoc 2019;8:e012865.
https://doi.org/10.1161/JAHA.119.012865
|
44 |
RA Koeth, Z Wang, BS Levison et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19:576–585.
https://doi.org/10.1038/nm.3145
|
45 |
AA Kolodziejczyk, D Zheng, E. Elinav Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol 2019;17:742–753.
https://doi.org/10.1038/s41579-019-0256-8
|
46 |
T Korem, D Zeevi, N Zmora et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab 2017;25:1243–1253.e5.
https://doi.org/10.1016/j.cmet.2017.05.002
|
47 |
KA Krautkramer, J Fan, F. Bäckhed Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol 2021;19:77–94.
https://doi.org/10.1038/s41579-020-0438-4
|
48 |
KC Lam, RE Araya, A Huang et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 2021;184:5338–5356.e21.
https://doi.org/10.1016/j.cell.2021.09.019
|
49 |
RJ Lamont, H Koo, G. Hajishengallis The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018;16:745–759.
https://doi.org/10.1038/s41579-018-0089-x
|
50 |
Y Lee, I Nemet, Z Wang et al. Longitudinal plasma measures of trimethylamine N-Oxide and risk of atherosclerotic cardiovascular disease events in community-based older adults. J Am Heart Assoc 2021;10:e020646.
https://doi.org/10.1161/JAHA.120.020646
|
51 |
L LeMay-Nedjelski, MR Asbury, J Butcher et al. Maternal diet and infant feeding practices are associated with variation in the human milk microbiota at 3 months postpartum in a cohort of women with high rates of gestational glucose intolerance. J Nutr 2021;151:320–329.
https://doi.org/10.1093/jn/nxaa248
|
52 |
XS Li, S Obeid, R Klingenberg et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 2017;38:814–824.
https://doi.org/10.1093/eurheartj/ehw582
|
53 |
J Li, Y Li, KL Ivey et al. Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: findings from a longitudinal cohort of US men. Gut 2022;71:724–733.
https://doi.org/10.1136/gutjnl-2020-322473
|
54 |
Y Liu, NJ Ajami, HB El-Serag et al. Dietary quality and the colonic mucosa–associated gut microbiome in humans. Am J Clin Nutr 2019;110:701.
https://doi.org/10.1093/ajcn/nqz139
|
55 |
B Liu, J Zhao, Y Liu et al. Diversity and temporal dynamics of breast milk microbiome and its influencing factors in Chinese women during the first 6 months postpartum. Front Microbiol 2022;13:1016759.
https://doi.org/10.3389/fmicb.2022.1016759
|
56 |
S Lommi, M Manzoor, E Engberg et al. The composition and functional capacities of saliva microbiota differ between children with low and high sweet treat consumption. Front Nutr 2022;9:864687.
https://doi.org/10.3389/fnut.2022.864687
|
57 |
C Losasso, EM Eckert, E Mastrorilli et al. Assessing the influence of vegan, vegetarian and omnivore oriented westernized dietary styles on human gut microbiota: a cross sectional study. Front Microbiol 2018;9:317.
https://doi.org/10.3389/fmicb.2018.00317
|
58 |
Y Ma, Y Fu, Y Tian et al. Individual postprandial glycemic responses to diet in n-of-1 trials: Westlake N-of-1 trials for macronutrient intake (WE-MACNUTR). J Nutr 2021;151:3158–3167.
https://doi.org/10.1093/jn/nxab227
|
59 |
A Mardinoglu, H Wu, E Bjornson et al. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab 2018;27:559–571.e5.
https://doi.org/10.1016/j.cmet.2018.01.005
|
60 |
D McDonald, E Hyde, JW Debelius et al. American gut: an open platform for citizen science microbiome research. MSystems 2018;3:e00031-18.
|
61 |
H Mendes-Soares, T Raveh-Sadka, S Azulay et al. Model of personalized postprandial glycemic response to food developed for an Israeli cohort predicts responses in Midwestern American individuals. Am J Clin Nutr 2019;110:63–75.
https://doi.org/10.1093/ajcn/nqz028
|
62 |
C Menni, J Zierer, T Pallister et al. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep 2017;7:11079.
https://doi.org/10.1038/s41598-017-10382-2
|
63 |
C Menni, P Louca, SE Berry et al. High intake of vegetables is linked to lower white blood cell profile and the effect is mediated by the gut microbiome. BMC Med 2021;19:1–10.
https://doi.org/10.1186/s12916-021-01913-w
|
64 |
J Merino, I Linenberg, KM Bermingham et al. Validity of continuous glucose monitoring for categorizing glycemic responses to diet: implications for use in personalized nutrition. Am J Clin Nutr 2022;115:1569–1576.
https://doi.org/10.1093/ajcn/nqac026
|
65 |
G Merra, A Noce, G Marrone et al. Influence of mediterranean diet on human gut microbiota. Nutrients 2021;13:1–12.
https://doi.org/10.3390/nu13010007
|
66 |
Z Miao, J-S Lin, Y Mao et al. Erythrocyte n-6 polyunsaturated fatty acids, gut microbiota, and incident Type 2 diabetes: a prospective cohort study. 2020;43:2435–2443.
https://doi.org/10.2337/dc20-0631
|
67 |
Z Miao, W Du, C Xiao et al. Gut microbiota signatures of long-term and short-term plant-based dietary pattern and cardiometabolic health: a prospective cohort study. BMC Med 2022;20:1–15.
https://doi.org/10.1186/s12916-022-02402-4
|
68 |
Z Miao, GD Chen, S Huo et.al. Interaction of n-3 polyunsaturated fatty acids with host CD36 genetic variant for gut microbiome and blood lipids in human cohorts. Clin Nutr 2022;41:1724–1734.
https://doi.org/10.1016/j.clnu.2022.05.021
|
69 |
AE Millen, R Dahhan, JL Freudenheim et al. Dietary carbohydrate intake is associated with the subgingival plaque oral microbiome abundance and diversity in a cohort of postmenopausal women. Sci Rep 2022;12:2643.
https://doi.org/10.1038/s41598-022-06421-2
|
70 |
EK Mitsou, A Kakali, S Antonopoulou et al. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr 2017;117:1645–1655.
https://doi.org/10.1017/S0007114517001593
|
71 |
E Molina-Montes, E Salamanca-Fernández, B Garcia-Villanova et al. The impact of plant-based dietary patterns on cancer-related outcomes: a rapid review and meta-analysis. Nutrients 2020;12:20101–20131.
https://doi.org/10.3390/nu12072010
|
72 |
A Molinaro, P Bel Lassen, M Henricsson et al. Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat Commun 2020;11:5881.
https://doi.org/10.1038/s41467-020-19589-w
|
73 |
I Moreno-Indias, L Sánchez-Alcoholado, P Pérez-Martínez et al. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct 2016;7:1775–1787.
https://doi.org/10.1039/C5FO00886G
|
74 |
WJ Murdoch, C Singh, K Kumbier et al. Definitions, methods, and applications in interpretable machine learning. Proc Natl Acad Sci USA 2019;116:22071–22080.
https://doi.org/10.1073/pnas.1900654116
|
75 |
S Naimi, E Viennois, AT Gewirtz et al. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 2021;9:66.
https://doi.org/10.1186/s40168-020-00996-6
|
76 |
J Neuffer, R González-Domínguez, S Lefèvre-Arbogast et al. Exploration of the gut-brain axis through metabolomics identifies serum propionic acid associated with higher cognitive decline in older persons. Nutrients 2022;14:4688.
https://doi.org/10.3390/nu14214688
|
77 |
Y Nishimoto, Y Mizuguchi, Y Mori et al. Resistant maltodextrin intake reduces virulent metabolites in the gut environment: a randomized control study in a Japanese cohort. Front Microbiol 2022;13:644146.
https://doi.org/10.3389/fmicb.2022.644146
|
78 |
E Nordlund, A-M Aura, I Mattila et al. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. J Agric Food Chem 2012;60:8134–8145.
https://doi.org/10.1021/jf3008037
|
79 |
LM Olsson, F Boulund, S Nilsson et al. Dynamics of the normal gut microbiota: a longitudinal one-year population study in Sweden. Cell Host Microbe 2022;30:726–739.e3.
https://doi.org/10.1016/j.chom.2022.03.002
|
80 |
BA Peters, ML McCullough, MP Purdue et al. Association of coffee and tea intake with the oral microbiome: results from a large cross-sectional study. Cancer Epidemiol Biomarkers Prev 2018;27:814–821.
https://doi.org/10.1158/1055-9965.EPI-18-0184
|
81 |
M Pignanelli, C Bogiatzi, G Gloor et al. Moderate renal impairment and toxic metabolites produced by the intestinal microbiome: dietary implications. J Ren Nutr 2019;29:55–64.
https://doi.org/10.1053/j.jrn.2018.05.007
|
82 |
T Potter, R Vieira, B. de Roos Perspective: application of N-of-1 methods in personalized nutrition research. Adv Nutr 2021;12:579–589.
https://doi.org/10.1093/advances/nmaa173
|
83 |
Q Qi, J Li, B Yu et al. Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut 2022;71:1095–1105.
https://doi.org/10.1136/gutjnl-2021-324053
|
84 |
F Qian, G Liu, FB Hu et al. Association between plant-based dietary patterns and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA Intern Med 2019;179:1335–1344.
https://doi.org/10.1001/jamainternmed.2019.2195
|
85 |
MI Queipo-Ortuño, M Boto-Ordóñez, M Murri et al. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 2012;95:1323–1334.
https://doi.org/10.3945/ajcn.111.027847
|
86 |
S Rath, K Rox, S Kleine Bardenhorst et al. Higher Trimethylamine-N-Oxide plasma levels with increasing age are mediated by diet and trimethylamine-forming bacteria. MSystems 2021;6:e0094521.
https://doi.org/10.1128/mSystems.00945-21
|
87 |
Z Ren, Y Shi, S Xu et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018;359:1151–1156.
https://doi.org/10.1126/science.aao5774
|
88 |
E Rinott, AY Meir, G Tsaban et al. The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. Genome Med 2022;14:29.
https://doi.org/10.1186/s13073-022-01015-z
|
89 |
HM Roager, TR. Licht Microbial tryptophan catabolites in health and disease. Nat Commun 2018;9:3294.
https://doi.org/10.1038/s41467-018-05470-4
|
90 |
GP Rodgers, FS. Collins Precision nutrition-the answer to “What to Eat to Stay Healthy”. JAMA 2020;324:735–736.
https://doi.org/10.1001/jama.2020.13601
|
91 |
EM Rosen, CL Martin, AM Siega-Riz et al. Is prenatal diet associated with the composition of the vaginal microbiome? Paediatr Perinat Epidemiol 2022;36:243–253.
https://doi.org/10.1111/ppe.12830
|
92 |
F Sánchez-Patán, C Cueva, M Monagas et al. In vitro fermentation of a red wine extract by human gut microbiota: changes in microbial groups and formation of phenolic metabolites. J Agric Food Chem 2012;60:2136–2147.
https://doi.org/10.1021/jf2040115
|
93 |
S Sanna, NR van Zuydam, A Mahajan et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 2019;51:600–605.
https://doi.org/10.1038/s41588-019-0350-x
|
94 |
JR Sempionatto, VR-V Montiel, E Vargas et al. Wearable and mobile sensors for personalized nutrition. ACS Sensors 2021;6:1745–1760.
https://doi.org/10.1021/acssensors.1c00553
|
95 |
R Sender, S Fuchs, R. Milo Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533.
https://doi.org/10.1371/journal.pbio.1002533
|
96 |
V Senthong, Z Wang, XS Li et al. Intestinal microbiota-generated metabolite Trimethylamine-N-Oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc 2016;5:e002816.
https://doi.org/10.1161/JAHA.115.002816
|
97 |
A Shaalan, S Lee, C Feart et al. Alterations in the oral microbiome associated with diabetes, overweight, and dietary components. Front Nutr 2022;9:914715.
https://doi.org/10.3389/fnut.2022.914715
|
98 |
T Shankar Ghosh, S Rampelli, B Jeffery et al. Gut microbiota Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 2020:1–11.
https://doi.org/10.1136/gutjnl-2019-319654
|
99 |
M Shuai, LSY Zuo, Z Miao et al. Multi-omics analyses reveal relationships among dairy consumption, gut microbiota and cardiometabolic health. EBioMedicine 2021;66:103284.
https://doi.org/10.1016/j.ebiom.2021.103284
|
100 |
RK Singh, HW Chang, D Yan et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med 2017;15:1–17.
https://doi.org/10.1186/s12967-017-1175-y
|
101 |
J Suez, Y Cohen, R Valdés-Mas et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022;185:3307–3328.e19.
https://doi.org/10.1016/j.cell.2022.07.016
|
102 |
F Szabo de Edelenyi, C Philippe, N Druesne-Pecollo et al. Depressive symptoms, fruit and vegetables consumption and urinary 3-indoxylsulfate concentration: a nested case-control study in the French Nutrinet-Sante cohort. Eur J Nutr 2021;60:1059–1069.
https://doi.org/10.1007/s00394-020-02306-0
|
103 |
EF Tigchelaar, A Zhernakova, JAM Dekens et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 2015;5:e006772.
https://doi.org/10.1136/bmjopen-2014-006772
|
104 |
I Trefflich, H-U Marschall, R Giuseppe et al. Associations between dietary patterns and bile acids-results from a cross-sectional study in vegans and omnivores. Nutrients 2019;12:47.
https://doi.org/10.3390/nu12010047
|
105 |
A Tripathi, J Debelius, DA Brenner et al. The gut–liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018;15:397–411.
https://doi.org/10.1038/s41575-018-0011-z
|
106 |
AM Valdes, J Walter, E Segal et al. Role of the gut microbiota in nutrition and health. BMJ 2018a;361:k2179.
https://doi.org/10.1136/bmj.k2179
|
107 |
AM Valdes, J Walter, E Segal et al. Role of the gut microbiota in nutrition and health. BMJ 2018b;361:36–44.
https://doi.org/10.1136/bmj.k2179
|
108 |
M Van de Wouw, H Schellekens, TG Dinan et al. Microbiota-gutbrain axis: modulator of host metabolism and appetite. J Nutr 2017;147:727–745.
https://doi.org/10.3945/jn.116.240481
|
109 |
SM Vanegas, M Meydani, JB Barnett et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr 2017;105:635–650.
https://doi.org/10.3945/ajcn.116.146928
|
110 |
S Vendrame, S Guglielmetti, P Riso et al. Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J Agric Food Chem 2011;59:12815–12820.
https://doi.org/10.1021/jf2028686
|
111 |
C Vetrani, G Costabile, D Luongo et al. Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome. Nutrition 2016;32:217–221.
https://doi.org/10.1016/j.nut.2015.08.006
|
112 |
Y Wan, F Wang, J Yuan et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 2019;68:1417–1429.
https://doi.org/10.1136/gutjnl-2018-317609
|
113 |
Z Wang, WH Tang, JA Buffa et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 2014;35:904–910.
https://doi.org/10.1093/eurheartj/ehu002
|
114 |
DD Wang, LH Nguyen, Y Li et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat Med 2021a;27:333–343.
https://doi.org/10.1038/s41591-020-01223-3
|
115 |
D Wang, M Doestzada, L Chen et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 2021b;29:1802–1814.e5.
https://doi.org/10.1016/j.chom.2021.11.003
|
116 |
H Wang, W Gou, C Su et al. Association of gut microbiota with glycaemic traits and incident type 2 diabetes, and modulation by habitual diet: a population-based longitudinal cohort study in Chinese adults. Diabetologia 2022a;65:1145–1156.
https://doi.org/10.1007/s00125-022-05687-5
|
117 |
M Wang, Z Wang, Y Lee et al. Dietary meat, Trimethylamine N-oxiderelated metabolites, and incident cardiovascular disease among older adults: the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol 2022b;42:e273–e288.
https://doi.org/10.1161/ATVBAHA.121.316533
|
118 |
Y Wang, Q Dong, S Hu et al. Decoding microbial genomes to understand their functional roles in human complex diseases. IMeta 2022c;1:e14.
https://doi.org/10.1002/imt2.14
|
119 |
H Watson, S Mitra, FC Croden et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 2018;67:1974–1983.
https://doi.org/10.1136/gutjnl-2017-314968
|
120 |
L Wedlake, N Slack, HJN Andreyev et al. Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm Bowel Dis 2014;20:576–586.
https://doi.org/10.1097/01.MIB.0000437984.92565.31
|
121 |
H Wei, M Zhao, M Huang et al. FMO3-TMAO axis modulates the clinical outcome in chronic heart-failure patients with reduced ejection fraction: evidence from an Asian population. Front Med 2022;16:295–305.
https://doi.org/10.1007/s11684-021-0857-2
|
122 |
GD Wu, C Compher, EZ Chen et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 2016;65:63–72.
https://doi.org/10.1136/gutjnl-2014-308209
|
123 |
TT Wu, J Xiao, S Manning et al. Multimodal data integration reveals mode of delivery and snack consumption outrank salivary microbiome in association with caries outcome in Thai children. Front Cell Infect Microbiol 2022a;12:881899.
https://doi.org/10.3389/fcimb.2022.881899
|
124 |
Y Wu, W Gou, Y Yan et al. Gut microbiota and acylcarnitine metabolites connect the beneficial association between equol and adiposity in adults: a prospective cohort study. Am J Clin Nutr 2022b;116:1831–1841.
https://doi.org/10.1093/ajcn/nqac252
|
125 |
C Xiao, JT Wang, C Su et al. Associations of dietary diversity with the gut microbiome, fecal metabolites, and host metabolism: results from 2 prospective Chinese cohorts. Am J Clin Nutr 2022;116:1049–1058.
https://doi.org/10.1093/ajcn/nqac178
|
126 |
D Yu, XO Shu, ES Rivera et al. Urinary levels of Trimethylamine-N-oxide and incident coronary heart disease: a prospective investigation among urban Chinese Adults. J Am Heart Assoc 2019;8:e010606.
https://doi.org/10.1161/JAHA.118.010606
|
127 |
D Yu, SM Nguyen, Y Yang et al. Long-term diet quality is associated with gut microbiome diversity and composition among urban Chinese adults. Am J Clin Nutr 2021;113:684–694.
https://doi.org/10.1093/ajcn/nqaa350
|
128 |
LS Zaramela, C Martino, F Alisson-Silva et al. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat Microbiol 2019;4:2082–2089.
https://doi.org/10.1038/s41564-019-0564-9
|
129 |
D Zeevi, T Korem, N Zmora et al. Personalized nutrition by prediction of glycemic responses. Cell 2015;163:1079–1095.
https://doi.org/10.1016/j.cell.2015.11.001
|
130 |
J-S Zheng, JM. Ordovás Precision nutrition for gut microbiome and diabetes research: application of nutritional n-of-1 clinical trials. J Diabetes 2021;13:1059–1061.
https://doi.org/10.1111/1753-0407.13220
|
131 |
A Zhernakova, A Kurilshikov, MJ Bonder et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016;352:565–569.
https://doi.org/10.1126/science.aad3369
|