|
|
Unexpected guests in the tumor microenvironment: microbiome in cancer |
Abigail Wong-Rolle1, Haohan Karen Wei2, Chen Zhao1( ), Chengcheng Jin2( ) |
1. Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, 4 Memorial Drive, Bethesda, MD 20892, USA 2. Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104, USA |
|
|
Abstract Although intestinal microbiome have been established as an important biomarker and regulator of cancer development and therapeutic response, less is known about the role of microbiome at other body sites in cancer. Emerging evidence has revealed that the local microbiota make up an important part of the tumor microenvironment across many types of cancer, especially in cancers arising from mucosal sites, including the lung, skin and gastrointestinal tract. The populations of bacteria that reside specifically within tumors have been found to be tumor-type specific, and mechanistic studies have demonstrated that tumor-associated microbiota may directly regulate cancer initiation, progression and responses to chemo- or immuno-therapies. This review aims to provide a comprehensive review of the important literature on the microbiota in the cancerous tissue, and their function and mechanism of action in cancer development and treatment.
|
Keywords
microbiome
tumor
lung cancer
immune system
tumor-associated microbiota
cancer immunotherapy
|
Corresponding Author(s):
Chen Zhao,Chengcheng Jin
|
Online First Date: 11 January 2021
Issue Date: 08 June 2021
|
|
1 |
MT Abreu, RM Jr Peek (2014) Gastrointestinal malignancy and the microbiome. Gastroenterology 146:1534–1546.e1533
https://doi.org/10.1053/j.gastro.2014.01.001
|
2 |
JC Arthur, E Perez-Chanona, M Muhlbauer, S Tomkovich, JM Uronis, TJ Fan, BJ Campbell, T Abujamel, B Dogan, AB Rogerset al. (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123
https://doi.org/10.1126/science.1224820
|
3 |
B Aykut, S Pushalkar, R Chen, Q Li, R Abengozar, JI Kim, SA Shadaloey, D Wu, P Preiss, N Vermaet al. (2019) The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574:264–267
https://doi.org/10.1038/s41586-019-1608-2
|
4 |
VP Balachandran, M Łuksza, JN Zhao, V, Makarov JA Moral, R Remark, B Herbst, G, Askan U Bhanot, Y Senbabaogluet al. (2017) Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551:512–516
https://doi.org/10.1038/nature24462
|
5 |
S Banerjee, T Tian, Z Wei, N Shih, MD Feldman, KN Peck, AM DeMichele, JC Alwine, ES Robertson (2018) Distinct microbial signatures associated with different breast cancer types. Front Microbiol 9:951
https://doi.org/10.3389/fmicb.2018.00951
|
6 |
RP Baughman, JE Thorpe, J, Staneck M Rashkin, PT Frame (1987) Use of the protected specimen brush in patients with endotracheal or tracheostomy tubes. Chest 91:233–236
https://doi.org/10.1378/chest.91.2.233
|
7 |
Y Belkaid, TW Hand (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141
https://doi.org/10.1016/j.cell.2014.03.011
|
8 |
Y, Belkaid S Naik (2013) Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol 14:646–653
https://doi.org/10.1038/ni.2604
|
9 |
S Bullman, CS Pedamallu, E Sicinska, TE Clancy, X Zhang, D Cai, D Neuberg, K Huang, F Guevara, T Nelsonet al. (2017) Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358:1443–1448
https://doi.org/10.1126/science.aal5240
|
10 |
SJS Cameron, KE Lewis, SA Huws, MJ Hegarty, PD Lewis, JA Pachebat, LAJ Mur (2017) A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS ONE 12:e0177062
https://doi.org/10.1371/journal.pone.0177062
|
11 |
M Castellarin, RL Warren, JD Freeman, L Dreolini, M Krzywinski, J Strauss, R, Barnes P Watson, E Allen-Vercoe, RA Mooreet al. (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306
https://doi.org/10.1101/gr.126516.111
|
12 |
ES Charlson, K Bittinger, AR Haas, AS Fitzgerald, I Frank, A Yadav, FD Bushman, RG Collman (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184:957–963
https://doi.org/10.1164/rccm.201104-0655OC
|
13 |
YE Chen, H Tsao (2013) The skin microbiome: current perspectives and future challenges. J Am Acad Dermatol 69:143–155
https://doi.org/10.1016/j.jaad.2013.01.016
|
14 |
EK Costello, CL Lauber, M Hamady, N Fierer, JI Gordon, R Knight (2009) Bacterial community variation in human body habitats across space and time. Science (New York NY) 326:1694–1697
https://doi.org/10.1126/science.1177486
|
15 |
C de Martel , J Ferlay, S Franceschi, J, Vignat F, Bray D Forman, M Plummer (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–615
https://doi.org/10.1016/S1470-2045(12)70137-7
|
16 |
CM Dejea, P Fathi, JM Craig, A Boleij, R Taddese, AL Geis, X Wu, CE DeStefano Shields, EM Hechenbleikner, DL Husoet al. (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359:592–597
https://doi.org/10.1126/science.aah3648
|
17 |
RP Dickson, JR Erb-Downward, CM Freeman, L McCloskey, JM Beck, GB Huffnagle, JL Curtis (2015) Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 12:821–830
https://doi.org/10.1513/AnnalsATS.201501-029OC
|
18 |
RP Dickson, JR Erb-Downward, GB Huffnagle (2013) The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 7:245–257
https://doi.org/10.1586/ers.13.24
|
19 |
RP Dickson, FJ Martinez, GB Huffnagle (2014) The role of the microbiome in exacerbations of chronic lung diseases. Lancet 384:691–702
https://doi.org/10.1016/S0140-6736(14)61136-3
|
20 |
JA DiDonato, F Mercurio, M Karin (2012) NF-kappaB and the link between inflammation and cancer. Immunol Rev 246:379–400
https://doi.org/10.1111/j.1600-065X.2012.01099.x
|
21 |
A Dzutsev, JH Badger, E Perez-Chanona, S Roy, R Salcedo, CK Smith, G Trinchieri (2017) Microbes and cancer. Annu Rev Immunol 35:199–228
https://doi.org/10.1146/annurev-immunol-051116-052133
|
22 |
E Elinav, R Nowarski, CA Thaiss, B Hu, C, Jin RA Flavell (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13:759–771
https://doi.org/10.1038/nrc3611
|
23 |
JR Erb-Downward, DL Thompson, MK Han, CM Freeman, L McCloskey, LA Schmidt, VB Young, GB Toews, JL Curtis, B Sundaramet al. (2011) Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE 6:e16384
https://doi.org/10.1371/journal.pone.0016384
|
24 |
WS Garrett (2015) Cancer and the microbiota. Science 348:80–86
https://doi.org/10.1126/science.aaa4972
|
25 |
WS Garrett (2019) The gut microbiota and colon cancer. Science 364:1133–1135
https://doi.org/10.1126/science.aaw2367
|
26 |
LT Geller, M Barzily-Rokni, T Danino, OH Jonas, N Shental, D Nejman, N Gavert, Y, Zwang ZA Cooper, K Sheeet al. (2017) Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357:1156–1160
https://doi.org/10.1126/science.aah5043
|
27 |
S Gomes, B Cavadas, JC Ferreira, PI Marques, C Monteiro, M Sucena, C, Sousa L Vaz Rodrigues, G Teixeira, P Pintoet al. (2019) Profiling of lung microbiota discloses differences in adenocarcinoma and squamous cell carcinoma. Sci Rep 9:12838
https://doi.org/10.1038/s41598-019-49195-w
|
28 |
V Gopalakrishnan, CN Spencer, L Nezi, A Reuben, MC Andrews, TV Karpinets, PA Prieto, D Vicente, K Hoffman, SC Weiet al. (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359:97–103
https://doi.org/10.1126/science.aan4236
|
29 |
KL Greathouse, JK Stone, CC Harris (2020) Cancer-type-specific bacteria: freeloaders or partners? Cancer Cell 38:158–160
https://doi.org/10.1016/j.ccell.2020.06.017
|
30 |
KL Greathouse, JR White, AJ Vargas, VV, Bliskovsky JA Beck, N von Muhlinen, EC Polley, ED Bowman, MA Khan, AI Robleset al. (2018) Interaction between the microbiome and TP53 in human lung cancer. Genome Biol 19:123
https://doi.org/10.1186/s13059-018-1501-6
|
31 |
L Guerra, R Guidi, T Frisan (2011) Do bacterial genotoxins contribute to chronic inflammation, genomic instability and tumor progression? FEBS J 278:4577–4588
https://doi.org/10.1111/j.1742-4658.2011.08125.x
|
32 |
C Gur, Y Ibrahim, B Isaacson, R Yamin, J Abed, M Gamliel, J, Enk Y Bar-On, N Stanietsky-Kaynan, S Coppenhagen-Glazeret al. (2015) Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:344–355
https://doi.org/10.1016/j.immuni.2015.01.010
|
33 |
AM Gustafson, R Soldi, C Anderlind, MB Scholand, J Qian, X Zhang, K Cooper, D Walker, A McWilliams, G Liuet al. (2010) Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci Transl Med 2:26ra25
https://doi.org/10.1126/scitranslmed.3000251
|
34 |
TJ Hieken, J Chen, TL Hoskin, M Walther-Antonio, S Johnson, S Ramaker, J Xiao, DC Radisky, KL Knutson, KR Kalariet al. (2016) The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep 6:30751
https://doi.org/10.1038/srep30751
|
35 |
M Hilty, C Burke, H Pedro, P Cardenas, A Bush, C Bossley, J Davies, A Ervine, L Poulter, L Pachteret al. (2010) Disordered microbial communities in asthmatic airways. PLoS ONE 5:e8578
https://doi.org/10.1371/journal.pone.0008578
|
36 |
E Hoste, EN Arwert, R Lal, AP South, JC Salas-Alanis, DF Murrell, G Donati, FM Watt (2015) Innate sensing of microbial products promotes wound-induced skin cancer. Nat Commun 6:5932
https://doi.org/10.1038/ncomms6932
|
37 |
GB Huffnagle, RP Dickson, NW Lukacs (2017) The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol 10:299–306
https://doi.org/10.1038/mi.2016.108
|
38 |
Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214
https://doi.org/10.1038/nature11234
|
39 |
N Iida, A Dzutsev, CA Stewart, L Smith, N Bouladoux, RA Weingarten, DA Molina, R Salcedo, T Back, S Crameret al. (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342:967–970
https://doi.org/10.1126/science.1240527
|
40 |
C Jin, GK Lagoudas, C Zhao, S Bullman, A Bhutkar, B Hu, S Ameh, D Sandel, XS Liang, S Mazzilliet al. (2019) Commensal microbiota promote lung cancer development via gammadelta T cells. Cell 176(998–1013):e1016
https://doi.org/10.1016/j.cell.2018.12.040
|
41 |
E Kadosh, I Snir-Alkalay, A, Venkatachalam S May, A Lasry, E, Elyada A, Zinger M Shaham, G, Vaalani M Mernbergeret al. (2020) The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586:133–138
https://doi.org/10.1038/s41586-020-2541-0
|
42 |
AD Kostic, E Chun, L Robertson, JN Glickman, CA Gallini, M Michaud, TE Clancy, DC Chung, P Lochhead, GL Holdet al. (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–215
https://doi.org/10.1016/j.chom.2013.07.007
|
43 |
AD Kostic, D Gevers, CS Pedamallu, M, Michaud F Duke, AM Earl, AI Ojesina, J Jung, AJ Bass, J Taberneroet al. (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298
https://doi.org/10.1101/gr.126573.111
|
44 |
V Le Noci, S Guglielmetti, S Arioli, C Camisaschi, F Bianchi, M Sommariva, C Storti, T Triulzi, C Castelli, A Balsariet al. (2018) Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Rep 24:3528–3538
https://doi.org/10.1016/j.celrep.2018.08.090
|
45 |
SH Lee, JY Sung, D Yong, J Chun, SY Kim, JH Song, KS Chung, EY Kim, JY Jung, YA Kanget al. (2016) Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer 102:89–95
https://doi.org/10.1016/j.lungcan.2016.10.016
|
46 |
RE Ley, DA Peterson, JI Gordon (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848
https://doi.org/10.1016/j.cell.2006.02.017
|
47 |
HX Liu, LL Tao, J Zhang, YG Zhu, Y Zheng, D, Liu M Zhou, H Ke, MM Shi, JM Qu (2018) Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int J Cancer 142:769–778
https://doi.org/10.1002/ijc.31098
|
48 |
CM Lloyd, BJ Marsland (2017) Lung homeostasis: influence of age, microbes, and the immune system. Immunity 46:549–561
https://doi.org/10.1016/j.immuni.2017.04.005
|
49 |
V Matson, J Fessler, R Bao, T Chongsuwat, Y Zha, M-L Alegre, JJ Luke, TF Gajewski (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359:104–108
https://doi.org/10.1126/science.aao3290
|
50 |
J, Mrázek C Mekadim, P Kučerová, R Švejstil, H Salmonová, J Vlasáková, R Tarasová, J, Čížková M Červinková(2019) Melanoma-related changes in skin microbiome. Folia Microbiol (Praha) 64:435–442
https://doi.org/10.1007/s12223-018-00670-3
|
51 |
T Nakatsuji, TH Chen, AM Butcher, LL Trzoss, SJ Nam, KT Shirakawa, W Zhou, J Oh, M Otto, W Fenicalet al. (2018) A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv 4:eaao4502
https://doi.org/10.1126/sciadv.aao4502
|
52 |
D Nejman, I, Livyatan G, Fuks N, Gavert Y Zwang, LT Geller, A Rotter-Maskowitz, R Weiser, G, Mallel E Gigiet al. (2020) The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368:973–980
https://doi.org/10.1126/science.aay9189
|
53 |
J Norenhag, J Du, M Olovsson, H Verstraelen, L Engstrand, N Brusselaers (2020) The vaginal microbiota, human papillomavirus and cervical dysplasia: a systematic review and network meta-analysis. BJOG 127:171–180
https://doi.org/10.1111/1471-0528.15854
|
54 |
JP Nougayrede, S Homburg, F Taieb, M, Boury E Brzuszkiewicz, G Gottschalk, C Buchrieser, J Hacker, U Dobrindt, E Oswald (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851
https://doi.org/10.1126/science.1127059
|
55 |
DN O’Dwyer, RP Dickson, BB Moore (2016) The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol 196:4839–4847
https://doi.org/10.4049/jimmunol.1600279
|
56 |
C Pilette, Y Ouadrhiri, V Godding, JP Vaerman, Y Sibille (2001) Lung mucosal immunity: immunoglobulin—a revisited. Eur Respir J 18:571–588
https://doi.org/10.1183/09031936.01.00228801
|
57 |
S Pushalkar, M Hundeyin, D Daley, CP Zambirinis, E Kurz, A Mishra, N Mohan, B Aykut, M Usyk, LE Torreset al. (2018) The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8:403–416
https://doi.org/10.1158/2159-8290.CD-17-1134
|
58 |
J Putze, C Hennequin, JP Nougayrede, W Zhang, S Homburg, H Karch, MA Bringer, C Fayolle, E Carniel, W Rabschet al. (2009) Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 77:4696–4703
https://doi.org/10.1128/IAI.00522-09
|
59 |
AG Ramirez-Labrada, D Isla, A Artal, M Arias, A Rezusta, J, Pardo EM Galvez (2020) The influence of lung microbiota on lung carcinogenesis, immunity, and immunotherapy. Trends Cancer 6:86–97
https://doi.org/10.1016/j.trecan.2019.12.007
|
60 |
E Riquelme, Y, Zhang L Zhang, M Montiel, M Zoltan, W Dong, P Quesada, I Sahin, V, Chandra A San Lucaset al. (2019) Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178:795–806.e712
https://doi.org/10.1016/j.cell.2019.07.008
|
61 |
B Routy, E Le Chatelier, L Derosa, CPM Duong, MT Alou, R, Daillere A, Fluckiger M Messaoudene, C Rauber, MP Robertiet al. (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97
https://doi.org/10.1126/science.aan3706
|
62 |
MR Rubinstein, X Wang, W Liu, Y Hao, G Cai, YW Han (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206
https://doi.org/10.1016/j.chom.2013.07.012
|
63 |
CL Sears (2009) Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 22:349–369 (Table of Contents)
https://doi.org/10.1128/CMR.00053-08
|
64 |
S Shalapour, M Karin (2020) Cruel to be kind: epithelial, microbial, and immune cell interactions in gastrointestinal cancers. Annu Rev Immunol 38:649–671
https://doi.org/10.1146/annurev-immunol-082019-081656
|
65 |
S Shang, F Hua, Z-W Hu (2017) The regulation of β-catenin activity and function in cancer: therapeutic opportunities. OncoTarget 8:33972–33989
https://doi.org/10.18632/oncotarget.15687
|
66 |
B Shannon, TJ Yi, S Perusini, P Gajer, B Ma, MS Humphrys, J Thomas-Pavanel, L Chieza, P Janakiram, M Saunderset al. (2017) Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal Immunol 10:1310–1319
https://doi.org/10.1038/mi.2016.129
|
67 |
Y Shi, W Zheng, K Yang, KG Harris, K Ni, L Xue, W Lin, EB Chang, RR Weichselbaum, YX Fu (2020) Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J Exp Med 217(5):e20192282
https://doi.org/10.1084/jem.20192282
|
68 |
RL Siegel, KD Miller, A Jemal (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30
https://doi.org/10.3322/caac.21442
|
69 |
RL Siegel, KD Miller, A Jemal (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34
https://doi.org/10.3322/caac.21551
|
70 |
A Sivan, L Corrales, N Hubert, JB Williams, K Aquino-Michaels, ZM Earley, FW Benyamin, YM Lei, B Jabri, ML Alegreet al. (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089
https://doi.org/10.1126/science.aac4255
|
71 |
M Sommariva, V Le Noci, F Bianchi, S Camelliti, A Balsari, E Tagliabue, L Sfondrini(2020) The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci 77:2739–2749
https://doi.org/10.1007/s00018-020-03452-8
|
72 |
JE Thorpe, RP Baughman, PT Frame, TA Wesseler, JL Staneck (1987) Bronchoalveolar lavage for diagnosing acute bacterial pneumonia. J Infect Dis 155:855–861
https://doi.org/10.1093/infdis/155.5.855
|
73 |
JJ Tsay, BG Wu, MH Badri, JC Clemente, N Shen , P Meyn, Y Li, TA Yie, T, Lhakhang E Olsenet al. (2018) Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med 198:1188–1198
https://doi.org/10.1164/rccm.201710-2118OC
|
74 |
C Urbaniak, GB Gloor, M Brackstone, L Scott, M, Tangney G Reid (2016) The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol 82:5039–5048
https://doi.org/10.1128/AEM.01235-16
|
75 |
M Vétizou, JM Pitt, R Daillère, P Lepage, N Waldschmitt, C Flament, S Rusakiewicz, B Routy, MP Roberti, CPM Duonget al. (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–1084
https://doi.org/10.1126/science.aad1329
|
76 |
S Viaud, F Saccheri, G Mignot, T, Yamazaki R Daillere, D Hannani, DP Enot, C Pfirschke, C Engblom, MJ Pittetet al. (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–976
https://doi.org/10.1126/science.1240537
|
77 |
GA Vitiello, DJ Cohen, G Miller (2019) Harnessing the microbiome for pancreatic cancer immunotherapy. Trends Cancer 5:670–676
https://doi.org/10.1016/j.trecan.2019.10.005
|
78 |
MR Wilson, Y Jiang, PW Villalta, A Stornetta, PD Boudreau, A Carrá, CA Brennan, E, Chun L Ngo, LD Samsonet al. (2019) The human gut bacterial genotoxin colibactin alkylates DNA. Science 363: eaar7785
https://doi.org/10.1126/science.aar7785
|
79 |
K Yamamura, Y Baba, S, Nakagawa K Mima, K Miyake, K Nakamura, H Sawayama, K Kinoshita, T Ishimoto, M Iwatsukiet al. (2016) Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res 22:5574–5581
https://doi.org/10.1158/1078-0432.CCR-16-1786
|
80 |
X Yan, M Yang, J Liu, R Gao, J Hu, J Li, L, Zhang Y, Shi H, Guo J Chenget al. (2015) Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res 5:3111–3122
|
81 |
G Yu, MH Gail, D Consonni, M Carugno, M Humphrys, AC Pesatori, NE Caporaso, JJ Goedert, J Ravel, MT Landi (2016) Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol 17:163
https://doi.org/10.1186/s13059-016-1021-1
|
82 |
T Yu, F Guo, Y Yu, T Sun, D Ma, J Han, Y Qian, I Kryczek, D Sun, N Nagarshethet al. (2017) Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170:548–563.e516
https://doi.org/10.1016/j.cell.2017.07.008
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|