Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2021, Vol. 9 Issue (4) : 440-450    https://doi.org/10.15302/J-QB-021-0263
RESEARCH ARTICLE
Molecular docking of cyanine and squarylium dyes with SARS-CoV-2 proteases NSP3, NSP5 and NSP12
Pavel Pronkin(), Alexander Tatikolov
N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
 Download: PDF(5625 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: The outbreak and continued spread of coronavirus infection (COVID-19) sets the goal of finding new tools and methods to develop analytical procedures and tests to detect, study infection and prevent morbidity.

Methods: The noncovalent binding of cyanine and squarylium dyes of different classes (60 compounds in total) with the proteases NSP3, NSP5, and NSP12 of SARS-CoV-2 was studied by the method of molecular docking.

Results: The interaction energies and spatial configurations of dye molecules in complexes with NSP3, NSP5, and NSP12 have been determined.

Conclusion: A number of anionic dyes showing lower values of the total energy Etot could be recommended for practical research in the development of agents for the detection and inactivation of the coronavirus.

Keywords SARS-CoV-2      proteases      polymethine dyes      squarylium dyes      noncovalent interaction      molecular docking     
Corresponding Author(s): Pavel Pronkin   
Just Accepted Date: 09 August 2021   Online First Date: 15 September 2021    Issue Date: 01 December 2021
 Cite this article:   
Pavel Pronkin,Alexander Tatikolov. Molecular docking of cyanine and squarylium dyes with SARS-CoV-2 proteases NSP3, NSP5 and NSP12[J]. Quant. Biol., 2021, 9(4): 440-450.
 URL:  
https://academic.hep.com.cn/qb/EN/10.15302/J-QB-021-0263
https://academic.hep.com.cn/qb/EN/Y2021/V9/I4/440
Dye Run Aff. (kcal mol–1) Etot (kcal mol–1) EVdW (kcal mol–1) Eel (kcal mol–1)
NSP3 SQ1.1 18 –7.71 19.35 ± 1.82 –10.35 ± 5.89 –35.90 ± 5.74
SQ1.2 5 –7.79 23.20 ± 3.09 –9.35 ± 9.15 –43.81 ± 11.07
SQ1.3 5 –8.14 –57.7 ± 2.7 0.57 ± 9.9 –53.5 ± 11.2
SQ1.4 15 –7.04 43.56 ± 1.98 –1.30 ± 6.33 –53.09 ± 7.49
SQ1.5 23 –7.18 44.59 ± 0.86 –6.63 ± 5.65 –46.71 ± 5.94
SQ1.6 22 –7.25 4.80 ± 2.87 –5.73 ± 7.23 –49.20 ± 9.28
SQ1.7 3 –7.12 –59.85 ± 1.38 –7.76 ± 7.70 –43.93 ± 8.65
NSP5 SQ1.1 24 –9.01 26.10 ± 2.59 –21.67 ± 5.84 –19.69 ± 6.38
SQ1.2 7 –7.45 20.70 ± 2.28 –15.02 ± 2.17 –44.92 ± 4.10
SQ1.3 12 –7.83 –68.4 ± 1.24 –12.25 ± 5.3 –54.8 ± 5.3
SQ1.4 15 –8.41 38.06 ± 3.88 –22.83 ± 8.02 –46.24 ± 7.23
SQ1.5 8 –8.59 38.46 ± 5.75 –29.72 ± 5.28 –41.73 ± 13.48
SQ1.6 7 –8.632 –0.15 ± 6.69 –21.84 ± 6.86 –43.52 ± 12.02
SQ1.7 14 –8.06 –65.97 ± 1.98 –25.65 ± 6.53 –33.01 ± 5.89
NSP12 SQ1.1 3 –7.74 –36.66 ± 3.16 –13.27 ± 3.18 –50.59 ± 5.29
SQ1.2 24 –7.23 11.14 ± 1.19 –11.51 ± 5.34 –58.86 ± 5.96
SQ1.3 7 –7.08 –76.9 ± 1.2 –14.02 ± 3.8 –62.5 ± 4.2
SQ1.4 9 –6.67 23.36 ± 4.22 –15.68 ± 7.31 –62.55 ± 9.23
SQ1.5 22 –6.70 29.99 ± 1.62 –15.99 ± 8.13 –57.97 ± 8.13
SQ1.6 24 –7.05 –14.41 ± 1.84 –10.79 ± 5.42 –64.79 ± 5.22
SQ1.7 22 –8.08 –77.65 ± 4.53 –12.84 ± 5.77 –58.70 ± 2.47
Tab.1  Results of molecular docking of anionic squarylium dyes SQ1.1–SQ1.7 with proteases NSP3, NSP5, NSP12
Dye X NSP3 NSP5 NSP12
Run Aff. (kcal mol–1) Etot (kcal mol–1) Run Aff. (kcal mol–1) Etot (kcal mol–1) Run Aff. (kcal mol–1) Etot (kcal mol–1)
SQ1.1 S 16 –6.55 –45.4 ± 2.1 5 –7.71 –43.8 ± 1.13 20 –7.14 –47.6 ± 2.6
SQ1.2 22 –6.21 –15.8 ± 1.51 16 –7.98 –21.6±1.96 2 –7.42 –22.4 ±3.2
SQ1.3 22 –6.95 –33.9 ± 0.51 12 –8.06 –29.3 ± 0.71 22 –7.58 –41.1 ± 3.7
SQ1.4 1 –6.56 33.4± 1.14 14 –8.01 23.0± 1.03 3 –7.34 32.1± 0.69
SQ1.5 O 15 –6.82 –62.1 ± 2.3 11 –7.40 –69.2 ± 4.2 22 –7.21 –63.2 ± 2.7
SQ1.6 21 –6.71 –54.3 ± 3.3 18 –8.18 –60.3 ± 1.64 10 –7.55 –55.9 ± 2.9
SQ1.7 C(CH3)2 15 –7.26 –35.2 ± 1.76 12 –8.19 –35.2 ±1.76 4 –6.96 –39.9 ±0.97
SQ2.1 S 22 –7.02 –19.8 ±2.8 11 –8.46 –19.23 ± 2.7 18 –7.22 –24.2 ± 1.71
SQ2.2 6 –6.97 –24.5 ± 1.96
SQ2.3 20 –8.06 17.25 ± 1.28 11 –9.50 –1.78±2.5 4 –8.50 15.5 ± 1.82
SQ2.4 19 –6.96 –5.16± 1.35 3 –9.31 –3.14±4.7 22 –7.58 –6.38± 2.4
SQ2.5 O 19 –6.76 –42.7 ±1.1 15 –7.60 –51.2 ± 3.2 24 –4.02 –41.9 ± 1.11
SQ2.6 16 –7.75 –39.1 ±1.5 21 –7.87 –47.9 ± 3.5 1 –7.58 –39.3 ± 0.98
SQ2.7 3 –6.49 58.4 ± 1.19 10 –7.99 46.48 ±1.82 10 –7.53 56.1 ± 0.87
SQ2.8 15 –6.84 –7.97±0.70 8 –9.82 –26.6 ± 2.5 20 –8.42 –7.48 ± 0.66
SQ2.9 13 –6.58 –59.2 ± 2.1 9 –9.12 –72.8 ± 2.0 21 –7.70 –59.3 ± 1.38
SQ2.10 C(CH3)2 8 –6.97 –26.7 ± 1.12 1 –8.22 –27.7 ± 3.0 23 –7.37 –32.0 ± 3.4
SQ2.11 S 11 –6.56 –22.8 ± 1.86 7 –7.41 –28.3 ± 1.45 21 –7.93 –31.3 ± 2.9
SQ2.12 O 8 –6.71 –109.0 ±0.85 19 –7.64 –124.2 ±3.6 1 –7.74 –120.1 ±0.82
SQ2.13 C(CH3)2 18 –6.96 –81.6 ± 1.4 22 –8.04 –83.3 ± 2.7 17 –7.60 –91.1 ±2.03
SQ3.1 S 21 –7.62 –35.5 ± 1.16 10 –7.24 –43.8 ± 2.4 2 –7.63 –38.2 ± 0.96
SQ3.2 8 –6.63 –39.3 ± 1.3 4 –8.08 –43.7 ± 2.9 1 –7.79 –43.8 ± 2.1
SQ3.3 O 1 –7.48 –46.2 ± 2.6 11 –9.16 –50.7 ± 1.43 19 –8.18 –42.6 ± 1.51
SQ3.4 17 –6.24 –57.2 ± 2.1 6 –8.64 –66.5 ± 2.6 6 –7.44 –59.1 ± 1.05
SQ3.5 7 –7.31 –60.8 ± 1.44 3 –7.60 –73.2 ± 1.04 22 –7.72 –66.6 ± 1.15
SQ3.6 C(CH3)2 15 –7.10 –19.01± 2.7 1 –8.21 –17.67±2.8 8 –7.31 –16.47±1.48
SQ4.1 S 23 –7.89 –4.64 ± 0.67 2 –8.68 –47.1 ± 2.4 13 –7.80 –39.1 ± 0.87
SQ4.2 9 –7.43 –25.9 ± 2.2 16 –8.76 –35.1 ± 2.7 15 –6.70 –29.4 ± 1.17
SQ4.3 24 –7.37 –18.8 ±1.09 5 –9.11 –28.7 ± 2.1 9 –7.76 –28.1 ± 3.4
SQ4.4 O 2 –6.53 –14.0 ± 1.76 7 –8.86 –14.64±0.98 4 –8.67 –18.41 ±1.47
SQ4.5 9 –7.24 –38.1 ±5.2 8 –8.12 –45.1 ± 2.2 19 –8.11 –37.6 ± 1.36
SQ4.7 4 –8.34 –39.8 ± 2.3 16 –8.31 –47.5 ± 2.0 1 –7.76 –46.2 ± 1.46
SQ4.6 15 –7.33 –46.9 ± 1.81 7 –8.03 –51.4 ± 1.38 22 –7.64 –45.5 ± 0.62
SQ4.8 C(CH3)2 18 –7.89 21.5 ± 2.5 6 –10.5 25.0 ± 2.64 9 –7.97 17.01 ±3.2
Tab.2  Results of molecular docking of anionic cyanine dyes with proteases NSP3, NSP5, NSP12
Fig.1  Structural formulas of cationic carbocyanines, as well as neutral and anionic squarylium dyes.
Fig.2  Result of docking of dyes SQ1.3 with NSP5 (A) and SQ1.7 with NSP12 (B), initial configurations of dyes: SQ1.3 (C), SQ1.7 (D).
Fig.3  Structural formulas of the studied anionic cyanine dyes.
Fig.4  Results of docking of anionic dyes with SARS-CoV-2 proteases.
1 A. Mosier-Boss, H. P., M. Lieberman, L. S., E. Andrews. Use of fluorescently labeled phage in the detection and identification of bacterial species. Appl. Spectrosc., 2003, 57 : 1138– 1144
https://doi.org/10.1366/00037020360696008
2 M., Härdelin, M., Larsson, A., Bergenholtz, J. , Akerman, B. Eriksson. Binding of intercalating and groove-binding cyanine dyes to bacteriophage t5. J. Phys. Chem. B, 2007, 111 : 1139– 1148
https://doi.org/10.1021/jp064322m
3 M. Soto, S. C., J. Blum, E. A., P. Vora, E. G., R Lebedev. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J. Am. Chem. Soc., 2006, 128 : 5184– 5189
https://doi.org/10.1021/ja058574x
4 K. L., Soto, C. M., Archer, M. J., Odoemene, O. , Liu, J. L. Robertson. Engineered T4 viral nanoparticles for cellular imaging and flow cytometry. Bioconjug. Chem., 2011, 22 : 595– 604
https://doi.org/10.1021/bc100365j
5 O. Vus. Association of novel monomethine cyanine dyes with bacteriophage MS2: A fluorescence study. J. Mol. Liq., 2020, 302 : 112569–
https://doi.org/10.1016/j.molliq.2020.112569
6 H. A. Shindy. Fundamentals in the chemistry of cyanine dyes: A review. Dyes Pigments, 2017, 145 : 505– 513
https://doi.org/10.1016/j.dyepig.2017.06.029
7 A. S. Tatikolov. Polymethine dyes as spectral-fluorescent probes for biomacromolecules. J. Photochem. Photobiol. C., 2012, 13 : 55– 90
8 A. S., Pronkin, P. G., Shvedova, L. A. , Panova, I. G. Tatikolov. Meso-substituted carbocyanines as effective spectral-fluorescent and photochemical probes for structurally organized systems based on macromolecules. Russ. J. Phys. Chem. B., 2019, 13 : 900– 906
https://doi.org/10.1134/S1990793119060290
9 F. , Beg, M. A. Athar. Anti-HIV and Anti-HCV drugs are the putative inhibitors of RNA-dependent-RNA polymerase activity of NSP12 of the SARS-CoV-2 (COVID-19). Pharm. Pharmacol. Int. J., 2020, 8 : 163– 172
https://doi.org/10.15406/ppij.2020.08.00292
10 A. M. Tazikeh-Lemeski. Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study. J. Biomol. Struct. Dyn., 2020, 39 : 4633– 4646
11 A. Al-Masoudi, S. N.. Molecular docking studies of some antiviral and antimalarial drugs via bindings to 3CL-protease and polymerase enzymes of the novel coronavirus (SARS-CoV-2). Biointerface Res. Appl., 2020, 10 : 6444– 6459
https://doi.org/10.33263/BRIAC105.64446459
12 I. A., de Magalhães, C. S. , Dardenne, L. E. Guedes. Receptor-ligand molecular docking. Biophys. Rev., 2014, 6 : 75– 87
https://doi.org/10.1007/s12551-013-0130-2
13 Guedes, I. A., Costa, L. S. C., dos Santos, K. B., Karl, A. L. M., Rocha, G. K., Teixeira, I. M., Galheigo, M. M., Medeiros, V., Krempser, E., Custódio, F. L., et al. (2020) Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci. Rep., 11, 5543
14 A. Guedes, M. S. I., A. Barreto, E. A., A Marinho. New machine learning and physics-based scoring functions for drug discovery. Sci. Rep., 2021, 11 : 3198–
https://doi.org/10.1038/s41598-021-82410-1
15 H., Sze, K. -H., Lu, G. , Ballester, P. J. Li. Machine-learning scoring functions for structure-based drug lead optimization. WIREs Comput. Mol. Sci., 2020, 10 : e1465–
16 J., Fu, A. , Zhang, L. Li. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip. Sci., 2019, 11 : 320– 328
https://doi.org/10.1007/s12539-019-00327-w
17 T. , Poso, A. Pantsar. Binding affinity via docking: fact and fiction. Molecules, 2018, 23 : 1899– 1910
https://doi.org/10.3390/molecules23081899
18 M. Devgan. Homology modeling and molecular docking studies of DNA replication licensing factor minichromosome maintenance protein 5 (MCM5). Asian J. Pharm. Tech., 2015, 5 : 17– 22
https://doi.org/10.5958/2231-5713.2015.00004.5
19 G., Kaliamurthi, S., Çakmak, Z. E. , Çakmak, T. Selvaraj. In silico validation of microalgal metabolites against Diabetes mellitus. Diabetes Mellitus, 2017, 20 : 301– 307
https://doi.org/10.14341/DM8212
20 Tutorial 1. Redocking study of HIV-1 protease in complex with amprenavir PDB code 1HPV. Laboratório Nacional de Computação Científica – LNCC/MCTI. April 2020. . Accessed: 12 February, 2021
21 V., Chibisov, A. K. , Görner, H. Khimenko. Effects of alkyl substituents in the polymethine chain on the photoprocesses in thiacarbocyanine dyes. J. Phys. Chem. A, 1997, 101 : 7304– 7310
https://doi.org/10.1021/jp971472b
22 Chimera, U. C. S. F. Visualization System for Research and Analysis. Version 1.13. 1. . Accessed: 12 July, 2020
23 A. S., Akimkin, T. M., Kashin, A. S. , Panova, I. G. Tatikolov. Meso-substituted polymethine dyes as efficient spectral and fluorescent probes for biomacromolecules. High Energy Chem., 2010, 44 : 224– 227
https://doi.org/10.1134/S0018143910030124
24 P. G., Shvedova, L. A. , Tatikolov, A. S. Pronkin. Comparative study of the interaction of some meso-substituted anionic cyanine dyes with human serum albumin. Biophys. Chem., 2020, 261 : 106378–
https://doi.org/10.1016/j.bpc.2020.106378
25 P. G., Tatikolov, A. S., Sklyarenko, V. I. , Kuz’min, V. A. Pronkin. Photochemical properties of meso-substituted thiacarbocyanine dyes in solutions and in complexes with DNA. High Energy Chem., 2006, 40 : 252– 258
https://doi.org/10.1134/S0018143906040096
26 P. G., Tatikolov, A. S., Sklyarenko, V. I. , Kuz’min, V. A. Pronkin. Quenching of the triplet state of meso-substituted thiacarbocyanine dyes by nitroxyl radicals, iodide ions, and oxygen in solutions and in complexes with DNA. High Energy Chem., 2006, 40 : 403– 409
https://doi.org/10.1134/S0018143906060087
27 S. D., Bowen, R. , Marschner, S. Keil. Inactivation of middle east respiratory syndrome coronavirus (MERS-CoV) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment. Transfusion, 2016, 56 : 2948– 2952
https://doi.org/10.1111/trf.13860
28 S. D., Ragan, I., Yonemura, S., Hartson, L., Dart, N. K. , Bowen, R. Keil. Inactivation of severe acute respiratory syndrome coronavirus 2 in plasma and platelet products using a riboflavin and ultraviolet light-based photochemical treatment. Vox Sang., 2020, 115 : 495– 501
https://doi.org/10.1111/vox.12937
29 de Magalhães, C. S., Barbosa, H. J. C. and Dardenne, L. E. (2004) Genetic and Evolutionary Computation – GECCO 2004. Lecture Notes in Computer Science. Heidelberg: Springer
30 Magalhães de, S. C., M. Almeida, J. C. D., E Barbosa. A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf. Sci., 2014, 289 : 206– 224
https://doi.org/10.1016/j.ins.2014.08.002
31 Osipiuk, J., Jedrzejczak, R., Tesar, C., Endres, M., Stols, L., Babnigg, G., Kim, Y., Michalska, K., Joachimiak, A. (2020) Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun., 12, 743−752
32 Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C. Jin. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582 : 289– 293
https://doi.org/10.1038/s41586-020-2223-y
33 W., Mao, C., Luan, X., Shen, D. -D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M. Yin. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368 : 1499– 1504
https://doi.org/10.1126/science.abc1560
34 M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. , Hutchison, G. R. Hanwell. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4 : 17–
https://doi.org/10.1186/1758-2946-4-17
35 Avogadro: open source molecule building and visualization tool. Version 1.2. 0. . Accessed: 12 July, 2020
36 C. Yang, F. Z., D. Lasker, C. K., E Schneidman-Duhovny. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J. Struct. Biol., 2012, 179 : 269– 278
https://doi.org/10.1016/j.jsb.2011.09.006
[1] QB-21263-of-PP_suppl_1 Download
[1] Rudra Banerjee, Srijit Bhattacharjee, Pritish Kumar Varadwaj. A study of the COVID-19 epidemic in India using the SEIRD model[J]. Quant. Biol., 2021, 9(3): 317-328.
[2] Lei Zhang, Ji Lv, Ming Xiao, Li Yang, Le Zhang. Exploring the underlying mechanism of action of a traditional Chinese medicine formula, Youdujing ointment, for cervical cancer treatment[J]. Quant. Biol., 2021, 9(3): 292-303.
[3] Cecylia S. Lupala, Xuanxuan Li, Jian Lei, Hong Chen, Jianxun Qi, Haiguang Liu, Xiao-Dong Su. Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein[J]. Quant. Biol., 2021, 9(1): 61-72.
[4] Xiaofei Yang, Tun Xu, Peng Jia, Han Xia, Li Guo, Lei Zhang, Kai Ye. Transportation, germs, culture: a dynamic graph model of COVID-19 outbreak[J]. Quant. Biol., 2020, 8(3): 238-244.
[5] Shilei Zhao, Hua Chen. Modeling the epidemic dynamics and control of COVID-19 outbreak in China[J]. Quant. Biol., 2020, 8(1): 11-19.
[6] Vijayakumar Subramaniyan, Reetha Sekar, Arulmozhi Praveenkumar, Rajalakshmi Selvam. Molecular modeling studies of repandusinic acid as potent small molecule for hepatitis B virus through molecular docking and ADME analysis[J]. Quant. Biol., 2019, 7(4): 302-312.
[7] Jiyu Fan, Ailing Fu, Le Zhang. Progress in molecular docking[J]. Quant. Biol., 2019, 7(2): 83-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed