|
|
|
Discrete spread model for COVID-19: the case of Lebanon |
Ayman Mourad1, Fatima Mroue2( ) |
1. Department of Mathematics, Faculty of Sciences, Lebanese University, Hadat 1500, Lebanon 2. Department of Mathematics, American University of Beirut, Beirut 1107 2020, Lebanon |
|
|
|
|
Abstract Background: Mathematical models are essential to predict the likely outcome of an epidemic. Various models have been proposed in the literature for disease spreads. Some are individual based models and others are compartmental models. In this study, discrete mathematical models are developed for the spread of the coronavirus disease 2019 (COVID-19). Methods: The proposed models take into account the known special characteristics of this disease such as the latency and incubation periods, and the different social and infectiousness conditions of infected people. In particular, they include a novel approach that considers the social structure, the fraction of detected cases over the real total infected cases, the influx of undetected infected people from outside the borders, as well as contact-tracing and quarantine period for travelers. The first model is a simplified model and the second is a complete model. Results: From a numerical point of view, the particular case of Lebanon has been studied and its reported data have been used to estimate the complete discrete model parameters using optimization techniques. Moreover, a parameter analysis and several prediction scenarios are presented in order to better understand the role of the parameters. Conclusions: Understanding the role of the parameters involved in the models help policy makers in deciding the appropriate mitigation measures. Also, the proposed approach paves the way for models that take into account societal factors and complex human behavior without an extensive process of data collection.
|
| Keywords
discrete stochastic modeling
COVID-19
numerical simulation
|
|
Corresponding Author(s):
Fatima Mroue
|
|
Online First Date: 17 May 2022
Issue Date: 07 July 2022
|
|
| 1 |
Health Organization. Statement on the second meeting of the international health regulations World. Emergency committee regarding the outbreak of novel coronavirus (2019-ncov). . Accessed: December 1, 2020
|
| 2 |
Health Organization World. Director-general’s opening remarks at the media briefing on covid-19—11 march 2020. . Accessed: December 1, 2020
|
| 3 |
E. Bonabeau. ( 2002) Agent-based modeling: Methods and techniques for simulating human systems. In: Proceedings of the National Academy of Sciences, 99(suppl 3), 7280‒ 7287
|
| 4 |
M., Ajelli, B., alves, D., Balcan, V., Colizza, H., Hu, J. J., Ramasco, S. Merler, ( 2010). Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect. Dis., 10 : 190
https://doi.org/10.1186/1471-2334-10-190
|
| 5 |
H. Hethcote, ( 2000). The mathematics of infectious diseases. SIAM Review, 42 : 599– 653
|
| 6 |
O., Diekmann H. Heesterbeek. ( 2012) Mathematical Tools for Understanding Infectious Disease Dynamics, volume 7. Princeton University Press
|
| 7 |
F. Brauer. ( 2012) Mathematical Models in Population Biology and Epidemiology, volume 2. Springer
|
| 8 |
W. O. Kermack A. McKendrick. ( 1927) A contribution to the mathematical theory of epidemics. In: Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115, 700‒ 721
|
| 9 |
I. sell, ( 1996) The quasi-stationary distribution of the closed endemic sis model. Adv. Appl. Probab., 895‒ 932
|
| 10 |
M., Hurley, G. Jacobs, ( 2006). The basic SI model. In: New Directions for Teaching and Learning, 2006 : 11– 22
|
| 11 |
Y. Jin W. Wang. ( 2007) An sirs model with a nonlinear incidence rate. Chaos, Solitons, Fract., 34, 1482‒ 1497
|
| 12 |
J. Epstein, ( 2009). Modelling to contain pandemics. Nature, 460 : 687– 687
|
| 13 |
E., Hunter, B. M. Namee, ( 2017). A taxonomy for agent-based models in human infectious disease epidemiology. J. Artif. Soc. Social Simul., 20 : 2
|
| 14 |
E., Hunter, B. Mac Namee, ( 2018). An open-data-driven agent-based model to simulate infectious disease outbreaks. PLoS One, 13 : e0208775
https://doi.org/10.1371/journal.pone.0208775
|
| 15 |
M., Tracy, M. Cerda, K. Keyes, ( 2018). Agent-based modeling in public health: current applications and future directions. Annu. Rev. Publ. Health, 39 : 77– 94
|
| 16 |
G. De Kai A., Morgunov V. Nangalia. ( 2020) Universal masking is urgent in the COVID-19 pandemic: Seir and agent based models, empirical validation, policy recommendations. arXiv, 2004.13553
|
| 17 |
J. M., Epstein, D. M., Goedecke, F., Yu, R. J., Morris, D. K. Wagener, G. Bobashev, ( 2007). Controlling pandemic flu: the value of international air travel restrictions. PLoS One, 2 : e401
|
| 18 |
C., Anastassopoulou, L., Russo, A. Tsakris, ( 2020). Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS One, 15 : e0230405
https://doi.org/10.1371/journal.pone.0230405
|
| 19 |
F. Casella. ( 2020) Can the COVID-19 epidemic be managed on the basis of daily data? arXiv, 2003.06967
|
| 20 |
J. T., Wu, K., Leung, M., Bushman, N., Kishore, R., Niehus, P. M., de Salazar, B. J., Cowling, M. Lipsitch, G. Leung, ( 2020). Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med, 26 : 506– 510
https://doi.org/10.1038/s41591-020-0822-7
|
| 21 |
G., Giordano, F., Blanchini, R., Bruno, P., Colaneri, A., Di Filippo, A. Di Matteo, ( 2020). Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med, 26 : 855– 860
https://doi.org/10.1038/s41591-020-0883-7
|
| 22 |
R. Sameni. ( 2020) Mathematical modeling of epidemic diseases; a case study of the COVID-19 coronavirus. arXiv, 2003.11371
|
| 23 |
R. Goel, ( 2020). Mobility based SIR model for pandemics−with case study of COVID-19. In: 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 110– 117
|
| 24 |
J., Hellewell, S., Abbott, A., Gimma, N. I., Bosse, C. I., Jarvis, T. W., Russell, J. D., Munday, A. J., Kucharski, W. J., Edmunds, S. Funk, et al.. ( 2020). Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health, 8 : e488– e496
https://doi.org/10.1016/S2214-109X(20)30074-7
|
| 25 |
A. J., Kucharski, T. W., Russell, C., Diamond, Y., Liu, J., Edmunds, S., Funk, R. M., Eggo, F., Sun, M., Jit, J. D. Munday, et al.. ( 2020). Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect. Dis., 20 : 553– 558
https://doi.org/10.1016/S1473-3099(20)30144-4
|
| 26 |
S. Chang, N., Harding, C., Zachreson, O. Cliff, ( 2020). Modelling transmission and control of the COVID-19 pandemic in Australia. Nat. Commun., 11 : 5710
https://doi.org/10.1038/s41467-020-19393-6
|
| 27 |
C. Varotsos, V. Krapivin, ( 2020). A new model for the spread of COVID-19 and the improvement of safety. Saf. Sci., 132 : 104962
https://doi.org/10.1016/j.ssci.2020.104962
|
| 28 |
A., Comunian, R. Gaburro, ( 2020). Inversion of a SIR-based model: A critical analysis about the application to COVID-19 epidemic. Physica D, 413 : 132674
https://doi.org/10.1016/j.physd.2020.132674
|
| 29 |
G. C., Calafiore, C. Novara, ( 2020). A modified SIR model for the COVID-19 contagion in Italy. In: 2020 59th IEEE Conference on Decision and Control (CDC), pp. 3889– 3894
|
| 30 |
D., Calvetti, A., Hoover, J. Rose, ( 2020). Bayesian dynamical estimation of the parameters of an SE(A)IR COVID-19 spread model. arXiv, 2005.04365
|
| 31 |
M. T., Rouabah, A. Tounsi, N. Belaloui, ( 2020). Early dynamics of COVID-19 in Algeria: a model-based study. ArXiv, 2005.13516
|
| 32 |
R. Pastor-Satorras, ( 2001). Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86 : 3200– 3203
https://doi.org/10.1103/PhysRevLett.86.3200
|
| 33 |
T. Boulmezaoud, ( 2020). A discrete epidemic model and a zigzag strategy for curbing the COVID-19 outbreak and for lifting the lockdown. Math. Model. Nat. Phenom., 15 : 75
|
| 34 |
S., He, S. Tang, ( 2020). A discrete stochastic model of the COVID-19 outbreak: Forecast and control. Math. Biosci. Eng, 17 : 2792– 2804
|
| 35 |
D., Klinkenberg, C. Fraser, ( 2006). The effectiveness of contact tracing in emerging epidemics. PLoS One, 1 : e12
https://doi.org/10.1371/journal.pone.0000012
|
| 36 |
Q., Li, X., Guan, P., Wu, X., Wang, L., Zhou, Y., Tong, R., Ren, K. S. M., Leung, E. H. Y., Lau, J. Y. Wong, et al.. ( 2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 382 : 1199– 1207
https://doi.org/10.1056/NEJMoa2001316
|
| 37 |
N. M., Linton, T., Kobayashi, Y., Yang, K., Hayashi, A. R., Akhmetzhanov, S. M., Jung, B., Yuan, R. Kinoshita, ( 2020). Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: A statistical analysis of publicly available case data. J. Clin. Med., 9 : 538
https://doi.org/10.3390/jcm9020538
|
| 38 |
E., Lavezzo, E., Franchin, C., Ciavarella, G., Cuomo-Dannenburg, L., Barzon, C., Del Vecchio, L., Rossi, R., Manganelli, A., Loregian, N. Navarin, et al.. ( 2020). Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature, 584 : 425– 429
|
| 39 |
H., Nishiura, M. Natalie, A. Akhmetzhanov, ( 2020). Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis. 93, 284– 286
|
| 40 |
Z., Du, X., Xu, Y., Wu, L., Wang, B. J. Cowling, L. Meyers, ( 2020). Serial interval of COVID-19 among publicly reported confirmed cases. Emerg. Infect. Dis., 26 : 1341– 1343
https://doi.org/10.3201/eid2606.200357
|
| 41 |
D. Long S., Gombar C. Hogan A. Greninger S. V., OReilly C., Bryson-Cahn B., Stevens A., Rustagi K. Jerome C. Kong. ( 2020) Occurrence and timing of subsequent SARS-CoV-2 RT-PCR positivity among initially negative patients. medRxiv, 20089151
|
| 42 |
I., Arevalo-Rodriguez, D., Buitrago-Garcia, D., Simancas-Racines, P., Zambrano-Achig, R., Del Campo, A., Ciapponi, O., Sued, A. W., Rutjes, N. Low, et al.. ( 2020). False-negative results of initial RT-PCR assays for COVID-19: A systematic review. PLoS One, 15 : e0242958
https://doi.org/10.1371/journal.pone.0242958
|
| 43 |
L. Kucirka, S. Lauer, O., Laeyendecker, D., Boon, ( 2020). Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann. Intern. Med, 173 : 262– 267
|
| 44 |
Y., Yang, M., Yang, C., Shen, F., Wang, J., Yuan, J., Li, M., Zhang, Z., Wang, L., Xing, J. Wei, et al.. ( 2020). Laboratory diagnosis and monitoring the viral shedding of 2019-ncov infections. Innovation (N Y), 1 : 100061
https://doi.org/10.1016/j.xinn.2020.100061
|
| 45 |
Y., Pan, L., Long, D., Zhang, T., Yuan, S., Cui, P., Yang, Q. Wang, ( 2020). Potential false-negative nucleic acid testing results for severe acute respiratory syndrome coronavirus 2 from thermal inactivation of samples with low viral loads. Clin. Chem., 66 : 794– 801
https://doi.org/10.1093/clinchem/hvaa091
|
| 46 |
X., He, E. Lau, P., Wu, X., Deng, J., Wang, X., Hao, Y. Lau, J. Wong, Y., Guan, X. Tan, et al.. ( 2020). Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med., 26 : 672– 675
|
| 47 |
C. Dugdale, M. Anahtar, J. Chiosi, J. Lazarus, S. McCluskey, A. Ciaranello, T., Gogakos, B. Little, J. Branda, E. Shenoy, et al.. ( 2020). Clinical, laboratory, and radiologic characteristics of patients with initial false-negative severe acute respiratory syndrome coronavirus 2 nucleic acid amplification test results. Open Forum Infect Dis, 8 : ofaa559
|
| 48 |
N. Kinloch, G., Ritchie, C. Brumme, W., Dong, W., Dong, T., Lawson, R. Jones, J. Montaner, V., Leung, M. Romney, et al.. ( 2020). Suboptimal biological sampling as a probable cause of false-negative COVID-19 diagnostic test results. J. Infect. Dis., 222 : 899– 902
|
| 49 |
H., Zhu, Y., Li, X., Jin, J., Huang, X., Liu, Y. Qian, ( 2021). Transmission dynamics and control methodology of COVID-19: a modeling study. Appl. Math. Model, 89 : 1983– 1998
|
| 50 |
Z., Liu, P., Magal, O. Seydi, ( 2020). A COVID-19 epidemic model with latency period. Infect. Dis. Model, 5 : 323– 337
|
| 51 |
of Public Health Ministry. . Accessed: December 1, 2020
|
| 52 |
HOUSSARI Najia. Lebanon reinstates lockdown measures after virus rebound. Accessed: December 1, 2020
|
| 53 |
Madi Masri Nayla. The development and state of the art of adult learning and education (ale): National report of Lebanon. National Committee for Illiteracy and Adult Education, Ministry of Social Affairs, 2008. Accessed: December 1, 2020
|
| 54 |
Yaacoub Najwa Badre Lara. Population & housing in Lebanon, 2012. Accessed: December 1, 2020
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|