Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2023, Vol. 11 Issue (3) : 260-274    https://doi.org/10.15302/J-QB-022-0320
RESEARCH ARTICLE
DeepDrug: A general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction
Qijin Yin1, Rui Fan2, Xusheng Cao2, Qiao Liu3(), Rui Jiang1(), Wanwen Zeng3()
1. Ministry of Education Key Laboratory of Bioinformatics, Research Department of Bioinformatics at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
2. College of Software, Nankai University, Tianjin 300350, China
3. Department of Statistics, Stanford University, Stanford, CA 94305, USA
 Download: PDF(5368 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Computational approaches for accurate prediction of drug interactions, such as drug-drug interactions (DDIs) and drug-target interactions (DTIs), are highly demanded for biochemical researchers. Despite the fact that many methods have been proposed and developed to predict DDIs and DTIs respectively, their success is still limited due to a lack of systematic evaluation of the intrinsic properties embedded in the corresponding chemical structure.

Methods: In this paper, we develop DeepDrug, a deep learning framework for overcoming the above limitation by using residual graph convolutional networks (Res-GCNs) and convolutional networks (CNNs) to learn the comprehensive structure- and sequence-based representations of drugs and proteins.

Results: DeepDrug outperforms state-of-the-art methods in a series of systematic experiments, including binary-class DDIs, multi-class/multi-label DDIs, binary-class DTIs classification and DTIs regression tasks. Furthermore, we visualize the structural features learned by DeepDrug Res-GCN module, which displays compatible and accordant patterns in chemical properties and drug categories, providing additional evidence to support the strong predictive power of DeepDrug. Ultimately, we apply DeepDrug to perform drug repositioning on the whole DrugBank database to discover the potential drug candidates against SARS-CoV-2, where 7 out of 10 top-ranked drugs are reported to be repurposed to potentially treat coronavirus disease 2019 (COVID-19).

Conclusions: To sum up, we believe that DeepDrug is an efficient tool in accurate prediction of DDIs and DTIs and provides a promising insight in understanding the underlying mechanism of these biochemical relations.

Keywords drug-drug interaction      drug-target interaction      graph neural network      deep learning     
Corresponding Author(s): Qiao Liu,Rui Jiang,Wanwen Zeng   
Just Accepted Date: 16 March 2023   Online First Date: 21 April 2023    Issue Date: 08 October 2023
 Cite this article:   
Qijin Yin,Rui Fan,Xusheng Cao, et al. DeepDrug: A general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction[J]. Quant. Biol., 2023, 11(3): 260-274.
 URL:  
https://academic.hep.com.cn/qb/EN/10.15302/J-QB-022-0320
https://academic.hep.com.cn/qb/EN/Y2023/V11/I3/260
Fig.1  Model diagram of DeepDrug.
Fig.2  Benchmark results for DeepDrug on the binary DDI tasks.
Fig.3  Benchmark results for DeepDrug on the DTIs classification and regression tasks.
Fig.4  Drug embeddings for DeepDrug.
Fig.5  Drug repositioning for SARS-CoV-2.
1 K. Bleakley, (2009). Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 25: 2397–2403
https://doi.org/10.1093/bioinformatics/btp433
2 M., Zitnik, F., Nguyen, B., Wang, J., Leskovec, A. Goldenberg, M. Hoffman, (2019). Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf. Fusion, 50: 71–91
https://doi.org/10.1016/j.inffus.2018.09.012
3 M., Boolell, M. J., Allen, S. A., Ballard, S., Gepi-Attee, G. J., Muirhead, A. M., Naylor, I. H. Osterloh, (1996). Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res., 8: 47–52
4 J., Jia, F., Zhu, X., Ma, Z., Cao, Z. W., Cao, Y., Li, Y. X. Li, Y. Chen, (2009). Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov., 8: 111–128
https://doi.org/10.1038/nrd2683
5 K., Han, E. E., Jeng, G. T., Hess, D. W., Morgens, A. Li, M. Bassik, (2017). Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol., 35: 463–474
https://doi.org/10.1038/nbt.3834
6 Y., Sun, Z., Sheng, C., Ma, K., Tang, R., Zhu, Z., Wu, R., Shen, J., Feng, D., Wu, D. Huang, et al.. (2015). Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat. Commun., 6: 8481
https://doi.org/10.1038/ncomms9481
7 J., Lazarou, B. H. Pomeranz, P. Corey, (1998). Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA, 279: 1200–1205
https://doi.org/10.1001/jama.279.15.1200
8 P. F., Gallagher, P. J., Barry, C., Ryan, I. Hartigan, (2008). Inappropriate prescribing in an acutely ill population of elderly patients as determined by Beers’ Criteria. Age Ageing, 37: 96–101
https://doi.org/10.1093/ageing/afm116
9 T. Meinertz, (2001). Mibefradil—a drug which may enhance the propensity for the development of abnormal QT prolongation. Eur. Heart J. Suppl., 3: K89–K92
https://doi.org/10.1016/S1520-765X(01)90011-2
10 J. A., Staffa, J. Chang, (2002). Cerivastatin and reports of fatal rhabdomyolysis. N. Engl. J. Med., 346: 539–540
https://doi.org/10.1056/NEJM200202143460721
11 D. S., Wishart, C., Knox, A. C., Guo, S., Shrivastava, M., Hassanali, P., Stothard, Z. Chang, (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 34: D668–D672
https://doi.org/10.1093/nar/gkj067
12 N. P., Tatonetti, P. P., Ye, R. Daneshjou, R. Altman, (2012). Data-driven prediction of drug effects and interactions. Sci. Transl. Med., 4: 125ra31
https://doi.org/10.1126/scitranslmed.3003377
13 S. K., Burley, H. M., Berman, C., Bhikadiya, C., Bi, L., Chen, L., Di Costanzo, C., Christie, K., Dalenberg, J. M., Duarte, S. Dutta, et al.. (2019). RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res., 47: D464–D474
https://doi.org/10.1093/nar/gky1004
14 S., Kim, J., Chen, T., Cheng, A., Gindulyte, J., He, S., He, Q., Li, B. A., Shoemaker, P. A., Thiessen, B. Yu, et al.. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Res., 47: D1102–D1109
https://doi.org/10.1093/nar/gky1033
15 N. Rohani, (2019). Drug-drug interaction predicting by neural network using integrated similarity. Sci. Rep., 9: 13645
https://doi.org/10.1038/s41598-019-50121-3
16 J. Y., Ryu, H. U. Kim, S. Lee, (2018). Deep learning improves prediction of drug-drug and drug-food interactions. Proc. Natl. Acad. Sci. USA, 115: E4304–E4311
https://doi.org/10.1073/pnas.1803294115
17 Q., Liu, Z., Hu, R. Jiang, (2020). DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. Bioinformatics, 36: i911–i918
https://doi.org/10.1093/bioinformatics/btaa822
18 T., Ma, Q., Liu, H., Li, M., Zhou, R. Jiang, (2022). DualGCN: a dual graph convolutional network model to predict cancer drug response. BMC Bioinformatics, 23: 129
https://doi.org/10.1186/s12859-022-04664-4
19 X., Yan, S., Zhang, S. Yiu, (2021). Interpretable prediction of drug-cell line response by triple matrix factorization. Quant. Biol., 9: 426–439
20 C. Wang, (2020). Survey of similarity-based prediction of drug-protein interactions. Curr. Med. Chem., 27: 5856–5886
https://doi.org/10.2174/0929867326666190808154841
21 Y., Yamanishi, M., Araki, A., Gutteridge, W. Honda, (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24: i232–i240
https://doi.org/10.1093/bioinformatics/btn162
22 M., Zitnik, M. Agrawal, (2018). Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics, 34: i457–i466
https://doi.org/10.1093/bioinformatics/bty294
23 T., Zhang, J. Leng, (2020). Deep learning for drug-drug interaction extraction from the literature: a review. Brief. Bioinform., 21: 1609–1627
https://doi.org/10.1093/bib/bbz087
24 M., Bagherian, E., Sabeti, K., Wang, M. A., Sartor, Z. Nikolovska-Coleska, (2021). Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief. Bioinform., 22: 247–269
https://doi.org/10.1093/bib/bbz157
25 K., Huang, T., Fu, L. M., Glass, M., Zitnik, C. Xiao, (2021). DeepPurpose: a deep learning library for drug-target interaction prediction. Bioinformatics, 36: 5545–5547
https://doi.org/10.1093/bioinformatics/btaa1005
26 H., rk, (2018). DeepDTA: deep drug-target binding affinity prediction. Bioinformatics, 34: i821–i829
https://doi.org/10.1093/bioinformatics/bty593
27 T., NguyenH., LeT. P., QuinnT., NguyenT. D. Le. (2020) Graphdta: predicting drug–target binding affinity with graph neural networks. bioRxiv. 684662
28 Y., Deng, X., Xu, Y., Qiu, J., Xia, W. Zhang, (2020). A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics, 36: 4316–4322
https://doi.org/10.1093/bioinformatics/btaa501
29 K., Huang, C., Xiao, L. M., Glass, M. Zitnik, (2020). SkipGNN: predicting molecular interactions with skip-graph networks. Sci. Rep., 10: 21092
https://doi.org/10.1038/s41598-020-77766-9
30 D., Bajusz, A. cz, (2015). Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J.. Cheminform, 7: 20
https://doi.org/10.1186/s13321-015-0069-3
31 Z. Mousavian, (2014). Drug-target interaction prediction via chemogenomic space: learning-based methods. Expert Opin. Drug Metab. Toxicol., 10: 1273–1287
https://doi.org/10.1517/17425255.2014.950222
32 Y., Luo, X., Zhao, J., Zhou, J., Yang, Y., Zhang, W., Kuang, J., Peng, L. Chen, (2017). A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun., 8: 573
https://doi.org/10.1038/s41467-017-00680-8
33 T. N. Kipf. (2016) Semi-supervised classification with graph convolutional networks. arXiv, 160902907
34 G., CucurullA., CasanovaA., RomeroP. Lio. (2017) Graph attention networks. arXiv, 171010903
35 Y., LiD., TarlowM. Brockschmidt. (2015) Gated graph sequence neural networks. arXiv,151105493
36 X. Bresson. (2017) Residual gated graph convnets. arXiv,171107553
37 C., Xu, Q., Liu, M. Huang, (2020). Reinforced molecular optimization with neighborhood-controlled grammars. Adv. Neural Inf. Process. Syst., 33: 8366–8377
38 K., DingM., ZhouZ., WangQ., LiuC. W., ArnoldS. ZhangD. Metaxas. (2022) Graph convolutional networks for multi-modality medical imaging: methods, architectures, and clinical applications. arXiv, 220208916
39 Q., Yin, Q., Liu, Z., Fu, W., Zeng, B., Zhang, X., Zhang, R. Jiang, (2022). scGraph: a graph neural network-based approach to automatically identify cell types. Bioinformatics, 38: 2996–3003
https://doi.org/10.1093/bioinformatics/btac199
40 D. K., DuvenaudD., MaclaurinJ., IparraguirreR., BombarellT., HirzelA. Aspuru-GuzikR. Adams. (2015) Convolutional networks on graphs for learning molecular fingerprints. In: Proceedings of the 28th International Conference on Neural Information Processing Systems Adv. Neural Inf. Process. Syst., pp. 2224–2232
41 A., FoutJ., ByrdB. Shariat. (2017) Protein interface prediction using graph convolutional networks. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6533–6542
42 Q., FengE., Dueva. and Ester, M. (2018) Padme: a deep learning-based framework for drug-target interaction prediction. arXiv,180709741
43 R. Zamora-Resendiz. (2019) Structural learning of proteins using graph convolutional neural networks. bioRxiv. 610444
44 K., Schwarz, A., Allam, N. A. Perez Gonzalez, (2021). AttentionDDI: Siamese attention-based deep learning method for drug-drug interaction predictions. BMC Bioinformatics, 22: 412
https://doi.org/10.1186/s12859-021-04325-y
45 G., Xiong, Z., Yang, J., Yi, N., Wang, L., Wang, H., Zhu, C., Wu, A., Lu, X., Chen, S. Liu, et al.. (2022). DDInter: an online drug-drug interaction database towards improving clinical decision-making and patient safety. Nucleic Acids Res., 50: D1200–D1207
https://doi.org/10.1093/nar/gkab880
46 M., Bansal, J., Yang, C., Karan, M. P., Menden, J. C., Costello, H., Tang, G., Xiao, Y., Li, J., Allen, R. Zhong, et al.. (2014). A community computational challenge to predict the activity of pairs of compounds. Nat. Biotechnol., 32: 1213–1222
https://doi.org/10.1038/nbt.3052
47 K., Huang, T., Fu, L. M., Glass, M., Zitnik, C. Xiao, (2021). DeepPurpose: a deep learning library for drug-target interaction prediction. Bioinformatics, 36: 5545–5547
https://doi.org/10.1093/bioinformatics/btaa1005
48 M., Tsubaki, K. Tomii, (2019). Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics, 35: 309–318
https://doi.org/10.1093/bioinformatics/bty535
49 K., Huang, C., Xiao, L. M. Glass, (2021). MolTrans: molecular interaction transformer for drug-target interaction prediction. Bioinformatics, 37: 830–836
https://doi.org/10.1093/bioinformatics/btaa880
50 L., Chen, X., Tan, D., Wang, F., Zhong, X., Liu, T., Yang, X., Luo, K., Chen, H. Jiang, (2020). TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics, 36: 4406–4414
https://doi.org/10.1093/bioinformatics/btaa524
51 M., Herrero-Zazo, I., Segura-Bedmar, P. nez, (2013). The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions. J. Biomed. Inform., 46: 914–920
https://doi.org/10.1016/j.jbi.2013.07.011
52 M. Surjit, S. Lal, (2008). The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infect. Genet. Evol., 8: 397–405
https://doi.org/10.1016/j.meegid.2007.07.004
53 D. E., Gordon, G. M., Jang, M., Bouhaddou, J., Xu, K., Obernier, K. M., White, M. J., Meara, V. V., Rezelj, J. Z., Guo, D. L. Swaney, et al.. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583: 459–468
https://doi.org/10.1038/s41586-020-2286-9
54 A., Stukalov, V., Girault, V., Grass, O., Karayel, V., Bergant, C., Urban, D. A., Haas, Y., Huang, L., Oubraham, A. Wang, et al.. (2021). Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, 594: 246–252
https://doi.org/10.1038/s41586-021-03493-4
55 K., Kang, H. H. Kim, (2020). Tiotropium is predicted to be a promising drug for COVID-19 through transcriptome-based comprehensive molecular pathway analysis. Viruses, 12: 776
https://doi.org/10.3390/v12070776
56 H., Chen, Z., Zhang, L., Wang, Z., Huang, F., Gong, X., Li, Y. Chen, J. Wu, (2020). First clinical study using HCV protease inhibitor danoprevir to treat COVID-19 patients. Medicine (Baltimore), 99: e23357
https://doi.org/10.1097/MD.0000000000023357
57 Z., Wang, M., Liu, Y., Luo, Z., Xu, Y., Xie, L., Wang, L., Cai, Q., Qi, Z., Yuan, T. Yang, et al.. (2022). Advanced graph and sequence neural networks for molecular property prediction and drug discovery. Bioinformatics, 38: 2579–2586
https://doi.org/10.1093/bioinformatics/btac112
58 X., Chen, S., Chen, S., Song, Z., Gao, L., Hou, X., Zhang, H. Lv, (2022). Cell type annotation of single-cell chromatin accessibility data via supervised bayesian embedding. Nat. Mach. Intell., 4: 116–126
https://doi.org/10.1038/s42256-021-00432-w
59 Q., Liu, S., Chen, R. Jiang, W. Wong, (2021). Simultaneous deep generative modeling and clustering of single cell genomic data. Nat. Mach. Intell., 3: 536–544
https://doi.org/10.1038/s42256-021-00333-y
60 Z., Duren, F., Chang, F., Naqing, J., Xin, Q. Liu, W. Wong, (2022). Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG. Genome Biol., 23: 114
https://doi.org/10.1186/s13059-022-02682-2
61 Q., Yin, M., Wu, Q., Liu, H. Lv, (2019). DeepHistone: a deep learning approach to predicting histone modifications. BMC Genomics, 20: 193
https://doi.org/10.1186/s12864-019-5489-4
62 C., LanceM. D., LueckenD. B., BurkhardtR., CannoodtP., RautenstrauchA., LaddachA., UbingazhibovZ. CaoK., DengS., Khan. (2022) Multimodal single cell data integration challenge: results and lessons learned. In: Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track, pp.162–176
63 Q., Liu, K., Hua, X., Zhang, W. H. Wong, (2022). Deepcage: incorporating transcription factors in genome-wide prediction of chromatin accessibility. Genomics Proteomics Bioinformatics, 20: 496–507
https://doi.org/10.1016/j.gpb.2021.08.015
64 Q., LiuZ. ChenW. Wong. (2022) Causalegm: a general causal inference framework by encoding generative modeling. arXiv, 221205925
65 W., Zeng, Q., Liu, Q., Yin, R. Jiang, W. Wong, (2023). HiChIPdb: a comprehensive database of HiChIP regulatory interactions. Nucleic Acids Res., 51: D159–D166
https://doi.org/10.1093/nar/gkac859
66 S., Chen, Q., Liu, X., Cui, Z., Feng, C., Li, X., Wang, X., Zhang, Y. Wang, (2021). OpenAnnotate: a web server to annotate the chromatin accessibility of genomic regions. Nucleic Acids Res., 49: W483–W490
https://doi.org/10.1093/nar/gkab337
67 A. P., Davis, T. C., Wiegers, R. J., Johnson, D., Sciaky, J. Wiegers, C. Mattingly, (2023). Comparative toxicogenomics database (ctd): Update 2023. Nucleic Acids Res., 51: D1257–D1262
https://doi.org/10.1093/nar/gkac833
68 B., RamsundarP., EastmanP. Walters. (2019) Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More. Sebastopol, CA: O’Reilly Media
69 F., Minhas, B. J. Geiss, (2014). PAIRpred: partner-specific prediction of interacting residues from sequence and structure. Proteins, 82: 1142–1155
https://doi.org/10.1002/prot.24479
70 G., LiC., XiongA. Thabet. (2020) Deepergcn: All you need to train deeper GCNs. arXiv, 2006.07739
71 J. L., BaJ. R. KirosG. Hinton. (2016) Layer normalization. arXiv, 160706450
72 M. K., Gilson, T., Liu, M., Baitaluk, G., Nicola, L. Hwang, (2016). BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 44: D1045–D1053
https://doi.org/10.1093/nar/gkv1072
73 A., PaszkeS., GrossF., MassaA., LererJ., BradburyG., ChananT., KilleenZ., LinN. Gimelshein. (2019) Pytorch: an imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 8026–8037
74 P., MoritzR., NishiharaS., WangA., TumanovR., LiawE., LiangM., ElibolZ., YangW. PaulM. Jordan. (2018) Ray: a distributed framework for emerging AI applications. In: 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pp. 561–577
[1] QB-22320-OF-JR_suppl_1 Download
[1] Mateusz Chiliński, Anup Kumar Halder, Dariusz Plewczynski. Prediction of chromatin looping using deep hybrid learning (DHL)[J]. Quant. Biol., 2023, 11(2): 155-162.
[2] Haiyan Gong, Zhengyuan Chen, Yuxin Tang, Minghong Li, Sichen Zhang, Xiaotong Zhang, Yang Chen. Computational methods for identifying enhancer-promoter interactions[J]. Quant. Biol., 2023, 11(2): 122-142.
[3] Huijie Sun, Junli Zhao, Chengyuan Wang, Yi Li, Niankai Zhang, Mingquan Zhou. Skull ethnic classification by combining skull auxiliary image with deep learning[J]. Quant. Biol., 2022, 10(4): 381-389.
[4] Xiaokang Chai, Yachao Di, Zhao Feng, Yue Guan, Guoqing Zhang, Anan Li, Qingming Luo. Deep learning-based large-scale named entity recognition for anatomical region of mammalian brain[J]. Quant. Biol., 2022, 10(3): 253-263.
[5] HyeongChan Jo, Juhyun Kim, Tzu-Chen Huang, Yu-Li Ni. condLSTM-Q: A novel deep learning model for predicting COVID-19 mortality in fine geographical scale[J]. Quant. Biol., 2022, 10(2): 125-138.
[6] Aishwarza Panday, Muhammad Ashad Kabir, Nihad Karim Chowdhury. A survey of machine learning techniques for detecting and diagnosing COVID-19 from imaging[J]. Quant. Biol., 2022, 10(2): 188-207.
[7] Md. Bahadur Badsha, Rui Li, Boxiang Liu, Yang I. Li, Min Xian, Nicholas E. Banovich, Audrey Qiuyan Fu. Imputation of single-cell gene expression with an autoencoder neural network[J]. Quant. Biol., 2020, 8(1): 78-94.
[8] Jie Ren, Kai Song, Chao Deng, Nathan A. Ahlgren, Jed A. Fuhrman, Yi Li, Xiaohui Xie, Ryan Poplin, Fengzhu Sun. Identifying viruses from metagenomic data using deep learning[J]. Quant. Biol., 2020, 8(1): 64-77.
[9] Jie Zheng, Ke Wang. Emerging deep learning methods for single-cell RNA-seq data analysis[J]. Quant. Biol., 2019, 7(4): 247-254.
[10] Tanlin Sun, Luhua Lai, Jianfeng Pei. Analysis of protein features and machine learning algorithms for prediction of druggable proteins[J]. Quant. Biol., 2018, 6(4): 334-343.
[11] Sheng Wang, Zhen Li, Yizhou Yu, Xin Gao. WaveNano: a signal-level nanopore base-caller via simultaneous prediction of nucleotide labels and move labels through bi-directional WaveNets[J]. Quant. Biol., 2018, 6(4): 359-368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed