| 
					
						|  |  
    					|  |  
    					| DeepDrug: A general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction |  
						| Qijin Yin1, Rui Fan2, Xusheng Cao2, Qiao Liu3(  ), Rui Jiang1(  ), Wanwen Zeng3(  ) |  
						| 1. Ministry of Education Key Laboratory of Bioinformatics, Research Department of Bioinformatics at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China 2. College of Software, Nankai University, Tianjin 300350, China
 3. Department of Statistics, Stanford University, Stanford, CA 94305, USA
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract Background: Computational approaches for accurate prediction of drug interactions, such as drug-drug interactions (DDIs) and drug-target interactions (DTIs), are highly demanded for biochemical researchers. Despite the fact that many methods have been proposed and developed to predict DDIs and DTIs respectively, their success is still limited due to a lack of systematic evaluation of the intrinsic properties embedded in the corresponding chemical structure.  Methods: In this paper, we develop DeepDrug, a deep learning framework for overcoming the above limitation by using residual graph convolutional networks (Res-GCNs) and convolutional networks (CNNs) to learn the comprehensive structure- and sequence-based representations of drugs and proteins.  Results: DeepDrug outperforms state-of-the-art methods in a series of systematic experiments, including binary-class DDIs, multi-class/multi-label DDIs, binary-class DTIs classification and DTIs regression tasks. Furthermore, we visualize the structural features learned by DeepDrug Res-GCN module, which displays compatible and accordant patterns in chemical properties and drug categories, providing additional evidence to support the strong predictive power of DeepDrug. Ultimately, we apply DeepDrug to perform drug repositioning on the whole DrugBank database to discover the potential drug candidates against SARS-CoV-2, where 7 out of 10 top-ranked drugs are reported to be repurposed to potentially treat coronavirus disease 2019 (COVID-19).  Conclusions: To sum up, we believe that DeepDrug is an efficient tool in accurate prediction of DDIs and DTIs and provides a promising insight in understanding the underlying mechanism of these biochemical relations. |  
															| Keywords 
																																																				drug-drug interaction  
																		  																																				drug-target interaction  
																		  																																				graph neural network  
																		  																																				deep learning |  
															| Corresponding Author(s):
																Qiao Liu,Rui Jiang,Wanwen Zeng |  
															| Just Accepted Date: 16 March 2023  
																																														Online First Date: 21 April 2023   
																																														Issue Date: 08 October 2023 |  |  
								            
								                
																																												
															| 1 | K. Bleakley, (2009). Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 25: 2397–2403 https://doi.org/10.1093/bioinformatics/btp433
 |  
															| 2 | M., Zitnik, F., Nguyen, B., Wang, J., Leskovec, A. Goldenberg, M. Hoffman, (2019). Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf. Fusion, 50: 71–91 https://doi.org/10.1016/j.inffus.2018.09.012
 |  
															| 3 | M., Boolell, M. J., Allen, S. A., Ballard, S., Gepi-Attee, G. J., Muirhead, A. M., Naylor, I. H. Osterloh, (1996). Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res., 8: 47–52 |  
															| 4 | J., Jia, F., Zhu, X., Ma, Z., Cao, Z. W., Cao, Y., Li, Y. X. Li, Y. Chen, (2009). Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov., 8: 111–128 https://doi.org/10.1038/nrd2683
 |  
															| 5 | K., Han, E. E., Jeng, G. T., Hess, D. W., Morgens, A. Li, M. Bassik, (2017). Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol., 35: 463–474 https://doi.org/10.1038/nbt.3834
 |  
															| 6 | Y., Sun, Z., Sheng, C., Ma, K., Tang, R., Zhu, Z., Wu, R., Shen, J., Feng, D., Wu, D. Huang, et al.. (2015). Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat. Commun., 6: 8481 https://doi.org/10.1038/ncomms9481
 |  
															| 7 | J., Lazarou, B. H. Pomeranz, P. Corey, (1998). Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA, 279: 1200–1205 https://doi.org/10.1001/jama.279.15.1200
 |  
															| 8 | P. F., Gallagher, P. J., Barry, C., Ryan, I. Hartigan, (2008). Inappropriate prescribing in an acutely ill population of elderly patients as determined by Beers’ Criteria. Age Ageing, 37: 96–101 https://doi.org/10.1093/ageing/afm116
 |  
															| 9 | T. Meinertz, (2001). Mibefradil—a drug which may enhance the propensity for the development of abnormal QT prolongation. Eur. Heart J. Suppl., 3: K89–K92 https://doi.org/10.1016/S1520-765X(01)90011-2
 |  
															| 10 | J. A., Staffa, J. Chang, (2002). Cerivastatin and reports of fatal rhabdomyolysis. N. Engl. J. Med., 346: 539–540 https://doi.org/10.1056/NEJM200202143460721
 |  
															| 11 | D. S., Wishart, C., Knox, A. C., Guo, S., Shrivastava, M., Hassanali, P., Stothard, Z. Chang, (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 34: D668–D672 https://doi.org/10.1093/nar/gkj067
 |  
															| 12 | N. P., Tatonetti, P. P., Ye, R. Daneshjou, R. Altman, (2012). Data-driven prediction of drug effects and interactions. Sci. Transl. Med., 4: 125ra31 https://doi.org/10.1126/scitranslmed.3003377
 |  
															| 13 | S. K., Burley, H. M., Berman, C., Bhikadiya, C., Bi, L., Chen, L., Di Costanzo, C., Christie, K., Dalenberg, J. M., Duarte, S. Dutta, et al.. (2019). RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res., 47: D464–D474 https://doi.org/10.1093/nar/gky1004
 |  
															| 14 | S., Kim, J., Chen, T., Cheng, A., Gindulyte, J., He, S., He, Q., Li, B. A., Shoemaker, P. A., Thiessen, B. Yu, et al.. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Res., 47: D1102–D1109 https://doi.org/10.1093/nar/gky1033
 |  
															| 15 | N. Rohani, (2019). Drug-drug interaction predicting by neural network using integrated similarity. Sci. Rep., 9: 13645 https://doi.org/10.1038/s41598-019-50121-3
 |  
															| 16 | J. Y., Ryu, H. U. Kim, S. Lee, (2018). Deep learning improves prediction of drug-drug and drug-food interactions. Proc. Natl. Acad. Sci. USA, 115: E4304–E4311 https://doi.org/10.1073/pnas.1803294115
 |  
															| 17 | Q., Liu, Z., Hu, R. Jiang, (2020). DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. Bioinformatics, 36: i911–i918 https://doi.org/10.1093/bioinformatics/btaa822
 |  
															| 18 | T., Ma, Q., Liu, H., Li, M., Zhou, R. Jiang, (2022). DualGCN: a dual graph convolutional network model to predict cancer drug response. BMC Bioinformatics, 23: 129 https://doi.org/10.1186/s12859-022-04664-4
 |  
															| 19 | X., Yan, S., Zhang, S. Yiu, (2021). Interpretable prediction of drug-cell line response by triple matrix factorization. Quant. Biol., 9: 426–439 |  
															| 20 | C. Wang, (2020). Survey of similarity-based prediction of drug-protein interactions. Curr. Med. Chem., 27: 5856–5886 https://doi.org/10.2174/0929867326666190808154841
 |  
															| 21 | Y., Yamanishi, M., Araki, A., Gutteridge, W. Honda, (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24: i232–i240 https://doi.org/10.1093/bioinformatics/btn162
 |  
															| 22 | M., Zitnik, M. Agrawal, (2018). Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics, 34: i457–i466 https://doi.org/10.1093/bioinformatics/bty294
 |  
															| 23 | T., Zhang, J. Leng, (2020). Deep learning for drug-drug interaction extraction from the literature: a review. Brief. Bioinform., 21: 1609–1627 https://doi.org/10.1093/bib/bbz087
 |  
															| 24 | M., Bagherian, E., Sabeti, K., Wang, M. A., Sartor, Z. Nikolovska-Coleska, (2021). Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief. Bioinform., 22: 247–269 https://doi.org/10.1093/bib/bbz157
 |  
															| 25 | K., Huang, T., Fu, L. M., Glass, M., Zitnik, C. Xiao, (2021). DeepPurpose: a deep learning library for drug-target interaction prediction. Bioinformatics, 36: 5545–5547 https://doi.org/10.1093/bioinformatics/btaa1005
 |  
															| 26 | H., rk, (2018). DeepDTA: deep drug-target binding affinity prediction. Bioinformatics, 34: i821–i829 https://doi.org/10.1093/bioinformatics/bty593
 |  
															| 27 | T., NguyenH., LeT. P., QuinnT., NguyenT. D. Le. (2020) Graphdta: predicting drug–target binding affinity with graph neural networks. bioRxiv. 684662 |  
															| 28 | Y., Deng, X., Xu, Y., Qiu, J., Xia, W. Zhang, (2020). A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics, 36: 4316–4322 https://doi.org/10.1093/bioinformatics/btaa501
 |  
															| 29 | K., Huang, C., Xiao, L. M., Glass, M. Zitnik, (2020). SkipGNN: predicting molecular interactions with skip-graph networks. Sci. Rep., 10: 21092 https://doi.org/10.1038/s41598-020-77766-9
 |  
															| 30 | D., Bajusz, A. cz, (2015). Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J.. Cheminform, 7: 20 https://doi.org/10.1186/s13321-015-0069-3
 |  
															| 31 | Z. Mousavian, (2014). Drug-target interaction prediction via chemogenomic space: learning-based methods. Expert Opin. Drug Metab. Toxicol., 10: 1273–1287 https://doi.org/10.1517/17425255.2014.950222
 |  
															| 32 | Y., Luo, X., Zhao, J., Zhou, J., Yang, Y., Zhang, W., Kuang, J., Peng, L. Chen, (2017). A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun., 8: 573 https://doi.org/10.1038/s41467-017-00680-8
 |  
															| 33 | T. N. Kipf. (2016) Semi-supervised classification with graph convolutional networks. arXiv, 160902907 |  
															| 34 | G., CucurullA., CasanovaA., RomeroP. Lio. (2017) Graph attention networks. arXiv, 171010903 |  
															| 35 | Y., LiD., TarlowM. Brockschmidt. (2015) Gated graph sequence neural networks. arXiv,151105493 |  
															| 36 | X. Bresson. (2017) Residual gated graph convnets. arXiv,171107553 |  
															| 37 | C., Xu, Q., Liu, M. Huang, (2020). Reinforced molecular optimization with neighborhood-controlled grammars. Adv. Neural Inf. Process. Syst., 33: 8366–8377 |  
															| 38 | K., DingM., ZhouZ., WangQ., LiuC. W., ArnoldS. ZhangD. Metaxas. (2022) Graph convolutional networks for multi-modality medical imaging: methods, architectures, and clinical applications. arXiv, 220208916 |  
															| 39 | Q., Yin, Q., Liu, Z., Fu, W., Zeng, B., Zhang, X., Zhang, R. Jiang, (2022). scGraph: a graph neural network-based approach to automatically identify cell types. Bioinformatics, 38: 2996–3003 https://doi.org/10.1093/bioinformatics/btac199
 |  
															| 40 | D. K., DuvenaudD., MaclaurinJ., IparraguirreR., BombarellT., HirzelA. Aspuru-GuzikR. Adams. (2015) Convolutional networks on graphs for learning molecular fingerprints. In: Proceedings of the 28th International Conference on Neural Information Processing Systems Adv. Neural Inf. Process. Syst., pp. 2224–2232 |  
															| 41 | A., FoutJ., ByrdB. Shariat. (2017) Protein interface prediction using graph convolutional networks. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6533–6542 |  
															| 42 | Q., FengE., Dueva. and Ester, M. (2018) Padme: a deep learning-based framework for drug-target interaction prediction. arXiv,180709741 |  
															| 43 | R. Zamora-Resendiz. (2019) Structural learning of proteins using graph convolutional neural networks. bioRxiv. 610444 |  
															| 44 | K., Schwarz, A., Allam, N. A. Perez Gonzalez, (2021). AttentionDDI: Siamese attention-based deep learning method for drug-drug interaction predictions. BMC Bioinformatics, 22: 412 https://doi.org/10.1186/s12859-021-04325-y
 |  
															| 45 | G., Xiong, Z., Yang, J., Yi, N., Wang, L., Wang, H., Zhu, C., Wu, A., Lu, X., Chen, S. Liu, et al.. (2022). DDInter: an online drug-drug interaction database towards improving clinical decision-making and patient safety. Nucleic Acids Res., 50: D1200–D1207 https://doi.org/10.1093/nar/gkab880
 |  
															| 46 | M., Bansal, J., Yang, C., Karan, M. P., Menden, J. C., Costello, H., Tang, G., Xiao, Y., Li, J., Allen, R. Zhong, et al.. (2014). A community computational challenge to predict the activity of pairs of compounds. Nat. Biotechnol., 32: 1213–1222 https://doi.org/10.1038/nbt.3052
 |  
															| 47 | K., Huang, T., Fu, L. M., Glass, M., Zitnik, C. Xiao, (2021). DeepPurpose: a deep learning library for drug-target interaction prediction. Bioinformatics, 36: 5545–5547 https://doi.org/10.1093/bioinformatics/btaa1005
 |  
															| 48 | M., Tsubaki, K. Tomii, (2019). Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics, 35: 309–318 https://doi.org/10.1093/bioinformatics/bty535
 |  
															| 49 | K., Huang, C., Xiao, L. M. Glass, (2021). MolTrans: molecular interaction transformer for drug-target interaction prediction. Bioinformatics, 37: 830–836 https://doi.org/10.1093/bioinformatics/btaa880
 |  
															| 50 | L., Chen, X., Tan, D., Wang, F., Zhong, X., Liu, T., Yang, X., Luo, K., Chen, H. Jiang, (2020). TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics, 36: 4406–4414 https://doi.org/10.1093/bioinformatics/btaa524
 |  
															| 51 | M., Herrero-Zazo, I., Segura-Bedmar, P. nez, (2013). The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions. J. Biomed. Inform., 46: 914–920 https://doi.org/10.1016/j.jbi.2013.07.011
 |  
															| 52 | M. Surjit, S. Lal, (2008). The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infect. Genet. Evol., 8: 397–405 https://doi.org/10.1016/j.meegid.2007.07.004
 |  
															| 53 | D. E., Gordon, G. M., Jang, M., Bouhaddou, J., Xu, K., Obernier, K. M., White, M. J., Meara, V. V., Rezelj, J. Z., Guo, D. L. Swaney, et al.. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583: 459–468 https://doi.org/10.1038/s41586-020-2286-9
 |  
															| 54 | A., Stukalov, V., Girault, V., Grass, O., Karayel, V., Bergant, C., Urban, D. A., Haas, Y., Huang, L., Oubraham, A. Wang, et al.. (2021). Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, 594: 246–252 https://doi.org/10.1038/s41586-021-03493-4
 |  
															| 55 | K., Kang, H. H. Kim, (2020). Tiotropium is predicted to be a promising drug for COVID-19 through transcriptome-based comprehensive molecular pathway analysis. Viruses, 12: 776 https://doi.org/10.3390/v12070776
 |  
															| 56 | H., Chen, Z., Zhang, L., Wang, Z., Huang, F., Gong, X., Li, Y. Chen, J. Wu, (2020). First clinical study using HCV protease inhibitor danoprevir to treat COVID-19 patients. Medicine (Baltimore), 99: e23357 https://doi.org/10.1097/MD.0000000000023357
 |  
															| 57 | Z., Wang, M., Liu, Y., Luo, Z., Xu, Y., Xie, L., Wang, L., Cai, Q., Qi, Z., Yuan, T. Yang, et al.. (2022). Advanced graph and sequence neural networks for molecular property prediction and drug discovery. Bioinformatics, 38: 2579–2586 https://doi.org/10.1093/bioinformatics/btac112
 |  
															| 58 | X., Chen, S., Chen, S., Song, Z., Gao, L., Hou, X., Zhang, H. Lv, (2022). Cell type annotation of single-cell chromatin accessibility data via supervised bayesian embedding. Nat. Mach. Intell., 4: 116–126 https://doi.org/10.1038/s42256-021-00432-w
 |  
															| 59 | Q., Liu, S., Chen, R. Jiang, W. Wong, (2021). Simultaneous deep generative modeling and clustering of single cell genomic data. Nat. Mach. Intell., 3: 536–544 https://doi.org/10.1038/s42256-021-00333-y
 |  
															| 60 | Z., Duren, F., Chang, F., Naqing, J., Xin, Q. Liu, W. Wong, (2022). Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG. Genome Biol., 23: 114 https://doi.org/10.1186/s13059-022-02682-2
 |  
															| 61 | Q., Yin, M., Wu, Q., Liu, H. Lv, (2019). DeepHistone: a deep learning approach to predicting histone modifications. BMC Genomics, 20: 193 https://doi.org/10.1186/s12864-019-5489-4
 |  
															| 62 | C., LanceM. D., LueckenD. B., BurkhardtR., CannoodtP., RautenstrauchA., LaddachA., UbingazhibovZ. CaoK., DengS., Khan. (2022) Multimodal single cell data integration challenge: results and lessons learned. In: Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track, pp.162–176 |  
															| 63 | Q., Liu, K., Hua, X., Zhang, W. H. Wong, (2022). Deepcage: incorporating transcription factors in genome-wide prediction of chromatin accessibility. Genomics Proteomics Bioinformatics, 20: 496–507 https://doi.org/10.1016/j.gpb.2021.08.015
 |  
															| 64 | Q., LiuZ. ChenW. Wong. (2022) Causalegm: a general causal inference framework by encoding generative modeling. arXiv, 221205925 |  
															| 65 | W., Zeng, Q., Liu, Q., Yin, R. Jiang, W. Wong, (2023). HiChIPdb: a comprehensive database of HiChIP regulatory interactions. Nucleic Acids Res., 51: D159–D166 https://doi.org/10.1093/nar/gkac859
 |  
															| 66 | S., Chen, Q., Liu, X., Cui, Z., Feng, C., Li, X., Wang, X., Zhang, Y. Wang, (2021). OpenAnnotate: a web server to annotate the chromatin accessibility of genomic regions. Nucleic Acids Res., 49: W483–W490 https://doi.org/10.1093/nar/gkab337
 |  
															| 67 | A. P., Davis, T. C., Wiegers, R. J., Johnson, D., Sciaky, J. Wiegers, C. Mattingly, (2023). Comparative toxicogenomics database (ctd): Update 2023. Nucleic Acids Res., 51: D1257–D1262 https://doi.org/10.1093/nar/gkac833
 |  
															| 68 | B., RamsundarP., EastmanP. Walters. (2019) Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More. Sebastopol, CA: O’Reilly Media |  
															| 69 | F., Minhas, B. J. Geiss, (2014). PAIRpred: partner-specific prediction of interacting residues from sequence and structure. Proteins, 82: 1142–1155 https://doi.org/10.1002/prot.24479
 |  
															| 70 | G., LiC., XiongA. Thabet. (2020) Deepergcn: All you need to train deeper GCNs. arXiv, 2006.07739 |  
															| 71 | J. L., BaJ. R. KirosG. Hinton. (2016) Layer normalization. arXiv, 160706450 |  
															| 72 | M. K., Gilson, T., Liu, M., Baitaluk, G., Nicola, L. Hwang, (2016). BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 44: D1045–D1053 https://doi.org/10.1093/nar/gkv1072
 |  
															| 73 | A., PaszkeS., GrossF., MassaA., LererJ., BradburyG., ChananT., KilleenZ., LinN. Gimelshein. (2019) Pytorch: an imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 8026–8037 |  
															| 74 | P., MoritzR., NishiharaS., WangA., TumanovR., LiawE., LiangM., ElibolZ., YangW. PaulM. Jordan. (2018) Ray: a distributed framework for emerging AI applications. In: 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pp. 561–577 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |