Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2022, Vol. 10 Issue (2) : 188-207    https://doi.org/10.15302/J-QB-021-0274
RESEARCH ARTICLE
A survey of machine learning techniques for detecting and diagnosing COVID-19 from imaging
Aishwarza Panday1, Muhammad Ashad Kabir2(), Nihad Karim Chowdhury3
1. Department of Computer Science & Engineering, Stamford University, Dhaka 1217, Bangladesh
2. School of Computing and Mathematics, Charles Sturt University, NSW 2795, Australia
3. Department of Computer Science & Engineering, University of Chittagong, Chittagong 4349, Bangladesh
 Download: PDF(2075 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Due to the limited availability and high cost of the reverse transcription-polymerase chain reaction (RT- PCR) test, many studies have proposed machine learning techniques for detecting COVID-19 from medical imaging. The purpose of this study is to systematically review, assess and synthesize research articles that have used different machine learning techniques to detect and diagnose COVID-19 from chest X-ray and CT scan images.

Methods: A structured literature search was conducted in the relevant bibliographic databases to ensure that the survey solely centered on reproducible and high-quality research. We selected papers based on our inclusion criteria.

Results: In this survey, we reviewed 98 articles that fulfilled our inclusion criteria. We have surveyed a complete pipeline of chest imaging analysis techniques related to COVID-19, including data collection, pre-processing, feature extraction, classification, and visualization. We have considered CT scans and X-rays as both are widely used to describe the latest developments in medical imaging to detect COVID-19.

Conclusions: This survey provides researchers with valuable insights into different machine learning techniques and their performance in the detection and diagnosis of COVID-19 from chest imaging. At the end, the challenges and limitations in detecting COVID-19 using machine learning techniques and the future direction of research are discussed.

Keywords COVID-19      machine learning      deep learning      detection      classification      diagnosing      X-ray      CT scan     
Corresponding Author(s): Muhammad Ashad Kabir   
Just Accepted Date: 29 November 2021   Online First Date: 18 March 2022    Issue Date: 07 July 2022
 Cite this article:   
Aishwarza Panday,Muhammad Ashad Kabir,Nihad Karim Chowdhury. A survey of machine learning techniques for detecting and diagnosing COVID-19 from imaging[J]. Quant. Biol., 2022, 10(2): 188-207.
 URL:  
https://academic.hep.com.cn/qb/EN/10.15302/J-QB-021-0274
https://academic.hep.com.cn/qb/EN/Y2022/V10/I2/188
Fig.1  A semantic representation of the classification of lung diseases.
Title Data source Papers Category Total images
COVID-19 CT segmentation i [14,15] COVID-19: 373 829
COVID-19 database ii [16?18]
COVID-CT iii [18?20] COVID-19: 349; Non-COVID: 397 746
Lung segmentation and candidate points generation iv [21,22] COVID-19: 1,252; Non-COVID: 1,230 2,482
LIDC v [23] 1,018
CC-19 dataset vi [24] COVID-19: 28,395 34,006
Artificial intelligence in radiology vii [18] COVID-19: 1,000 1,000
Chest CT dataset viii [25] COVID-19: 412; Pneumonia: 412; Normal: 412 1,240
Tab.1  Publicly available COVID-19 CT scan datasets
Title Data source Papers Catagory Total
Covid-chestxray-dataset i [21, 30?65] COVID-19: 132 173
non-COVID-19: 41
COVID-19 database ii [30,44,50,56, 66?69]
COVID-19 radiography database iii [39,55,56,64,66,70,71] COVID-19: 219 2,905
Normal: 1,341
Pneuomonia: 1,345
COVIDx dataset iv [71] COVID-19: 589 15,493
Normal: 8,851
Pneumonia: 6,053
COVID-19 chest X-ray dataset initiative v [71] 48
ActualMed COVID-19 Chest X-ray dataset initiative vi [71] 238
Pneumonia classification vii [72] COVID-19: 90 1,144
Pneumonia: 54
Normal: 1,000
COVID-19 viii [73] COVID-19: 125 1,125
No finding: 500
Pneumonia: 500
COVIDGR-1.0 ix [74] COVID-19: 426 852
Normal: 426
Tubercolosis x [32] COVID-19: 435 2,186
Normal: 439
Pneumonia-bacterial: 439
Pneumonia-viral: 439
Tuberculosis: 434
Threadreader xi [56] COVID-19: 50 50
COVID-19-and-pneumonia-scans xii [75] COVID-19: 199 5,887
Normal: 1,965
Viral Pneumonia: 3,723
COVID-19-X-rays xiii [59] 95
Tab.2  Publicly available COVID-19 X-ray image datasets
Fig.2  Different types of pre-processing techniques
Preprocessing methods Papers
Resize [4, 14, 16,18,19, 25,30,33,35?38,41,43,45,47,49,55,56,58,60?62,65?68, 70, 73,79?88]
Flipping or rotating [14?16, 22, 25, 27, 28, 30,34, 37, 39, 43?47,51, 54,56,60,61,65?68,71,73,77, 83, 86?98 ]
Scaling or cropping [4, 14,15, 16,18,19,24,25,27,35,37,39,43,46,47,51,55,59,60,62,65,71,83?85,92,94,95,97]
Contrast adjustment [27,43,66,67,70,76,78,80,81,83,90,91,95,96,99,100]
Brightness or intensity adjustment [16,27,43,51,54,71,78,87,94,95]
GAN [19,74,88,96,97,101]
Tab.3  Different types of preprocessing methods used by the papers
Fig.3  Ratio of different pre-processing methods.
Fig.4  Basic deep learning architecture.
CNN Papers
ResNet [16,18, 20, 22?24, 26?28, 82,85,92,105,106]
VGG [107, 16, 22,24,26,83,85,92, 105,107]
DenseNet [20,22, 24,26, 27,105]
MobileNet [20,24,26,85]
SqueezeNet [17,28,85]
Inception [20,100]
CrNet [105]
EfficientNet [25,95,105]
GoogLeNet [16,85]
InceptionResNet [22,26]
NasNetMobile [26]
Alex-Net [24,85]
Xception [85]
Tab.4  Feature extraction methods for CT images used by the papers
CNN Papers
ResNet [26,32,33,35?37, 40?42,44, 47?49,51,53,54,56,57,59,60,62,65,68,74,76,77,80,87,89,91,93,94,96,98,101,111]
DenseNet [26,32,35,37,38,40,43,48,49,52,60,65, 76?78,80,81,84,87,94,97,98, 111]
VGG [4,26,32,33,42,44,48,49,51,55?57, 59,60,65,73,75,77,80,81,84,86,89,97,112]
Inception [21,35,48,49,59,60,62,63,66,72,76, 84,88, 96, 97, 111]
Xception [32?34,45, 47?49,59,65, 81, 84, 97]
InceptionResNet [26,32, 35,37,48,49,56,59,60,81,84]
NasNet [26,32,37,38,49,81,97]
AlexNet [32,48,59,80,89,101]
GoogLeNet [32,42,48,59,89,101]
SqueezeNet [56,64,76,78,87,93,98,101]
ShuffleNet [32,48,78]
MobileNet [26,32,48,56,59,60,64,65,67,69,81]
EfficientNet [51]
CheXNet [90]
CapsNet [46,61]
Tab.5  Feature extraction methods for X-ray images used by the papers
Custom CNN Interpretability method Dataset type Classification Accuracy (%)
PDCOVIDNet [30] Grad-CAM & Grad-CAM++ X-ray Multi-class 96.58
CovMUNET [31] X-ray Multi-class 99.41
COVID-SDNet [74] Grad-CAM X-ray Binary 97.37
COVID-Net [71] Grad-CAM X-ray Multi-class 93.30
CovXNet [79] Grad-CAM X-ray Multi-class 97.40
CoroNet [45] X-ray Binary 89.60
COVID-CAPS [46] X-ray Binary 95.90
DECAPS [19] CT scan Binary 87.60
DarkCovidNet [57] Grad-CAM X-ray Multi-class 98.08
Convolutional capsnet [61] X-ray Binary 97.24
Tab.6  Summary of custom CNN architectures for COVID-19 detection
Classification strategies Papers
Binary class [4,15?17,19,20,22,24?28,34,35,37?39,41,43,44?46,48,49,52,55,58,61,63,69,74,78,80,81,83,85,86,89,90,92,93,95,99?101,105,107,111,113-115]
Multi-class [14,18,21,23,30?33,36,40,42,47,48,50,51,53,54,56,57,59,60,62,64?68,70?73,75?77,79,82,84,87,88,91,94,96?98,106,112]
Tab.7  Classification strategies followed by different methods
Paper Total images Train,val,test ratio (%) Train Val Test Result (%) Model name
[14] 373 80,–,20 300 73 99.97 (Se) cGAN
[26] 400 80,–,20 329 80 95.20 (A) NasNetMobile
[24] 34,006 96.70 (Se) Inception
[107] 4,447 45,5,50 2,000 222 2,225 97 (Se) VGG
[23] 10,250 90.19 (Se) ResNet
[27] 812 42,18,40 341 146 325 79.50 (A) DenseNet
[20] 746 52,14,25 425 118 203 90.61 (A) DenseNet
[113] 2,522 97.79 (A) AFS-DF
[28] 746 55,23,22 410 172 164 99.40 (A) ResNet
[82] 1,865 Random split 1,725 270 320 99.40 (AUC) ResNet
[16] 6,000 75,–,25 4,500 1,500 98.27 (A) Feature fusion (VGG+ GoogLeNet+ResNet)
[21] 420 45,45,10 189 189 42 99.56 (A) IRRCNN
[83] 360 80,10,10 288 36 36 89.20 (A) VGG
[92] 3,855 95.00 (Se) ResNet
[105] 746 57,15,28 425 119 208 83.00 (A) DenseNet
[99] 470 60,–,40 282 188 93.65 (A) FFT-Gabor
[19] 746 85,–,15 634 112 87.60 (A) Decapse
[114] 1,044 80,10,10 835 104 105 86.00 (A) U-Net
[15] 100 60,–,40 60 40 83.62 (A) MiniSeg
[100] 453 89.50 (A) Inception
[17] 783 56,26,18 438 203 145 83.00 (A) SqueezeNet
[18] 2,200 91.00 (A) ResNet
[106] 4,352 90,–,10 3,916 436 98.00 (A) ResNet
[85] 1,020 80,10,10 816 102 102 99.4 (A) ResNet
[25] 828 80,10,10 662 83 83 96.2 (AUC) EfficientNet
[95] 132,583 70,10,20 92,808 13,258 26,517 96.00 (A) EfficientNet
[115] 538 97.00 (AUC) U-Net
[22] 2,492 68,17,15 1,694 424 374 97.00 (AUC) DenseNet
Tab.8  Summary of the classification results for CT images
Evaluation criteria Papers Total (%)
Detection only [16,20,22,25,27,45,85,113] 8 (29%)
Abnormality localization [14,15,21,24,28,83,92,107,114] 9 (32%)
Visual interpretation [17,18,26,82,105] 5 (18%)
Verify by radiologists [19,23,95, 100,106,115] 6 (21%)
Tab.9  Different evaluation criteria used in CT scan based COVID-19 detection research
Paper Total images Train, val, test (%) Train Val Test Result (%) Model name
[30] 2,905 80, 10, 10 2,324 291 291 96.58 (A) PDCOVIDNet
[31] 6,594 5-fold C-V 99.41 (A) CovMUNET
[26] 400 80,–,20 320 80 100 (A) NasNetMobile
[70] 9,521 10-fold C-V 95.00 (F1) COV-ELM
[32] 2,186 5-fold C-V 98.00 (A) ResNet
[33] 375 80, 10, 10 300 37 38 97.30 (A) VGG16
[74] 754 80, 20, – 603 150 97.37 (A) ResNet
[111] 5,824 80,–,20 4,659 1,165 99.49 (A) DenseNet
[34] 1,419 80,–,20 1,135 284 98.94 (A) Xception
[73] 6,523 30,40,30 2,000 2,523 2,000 98.00 (A) VGG
[35] 1,302 60,–,40 781 521 85.10 (Se) DenseNet
[36] 15,282 90,–,10 13,703 1,579 98.06 (A) ResNet
[37] 1,214 4-fold C-V 98.00 (A) NASNet-Large
[38] 3,309 80,–,20 2,647 662 100 (Se) NASNet-Large
[66] 35,500 88,8,4 31,340 2,360 1,800 98.00 (A) Inception
[39] 1,312 70,20,10 918 131 263 97.40 (A) CAD system
[79] 6,161 5-fold C-V 97.40 (A) CovXNet
[89] 1,864 97.54 (A) ResNet
[80] 2,271 70,–,30 1,590 681 98.90 (A) DenseNet
[81] 239 70,10,20 167 22 20 98.00 (A) Residual Att. Net
[40] 6,297 27,46,26 1,591 2,772 1,439 97.10 (A) DenseNet
[41] 502 70,10,20 399 3 100 88.90 (A) ResNet
[72] 1,144 70,–,30 801 343 89.60 (F1) Inception
[90] 6,286 80,–,20 5,029 1,257 87.07 (A) CSEN
[71] 13,975 93.30 (A) COVID-Net
[91] 1,764 70,–,30 1,235 530 95.12 (A) ResNet
[42] 2,239 97.01 (A) DCSL
[76] 701 80,–,20 561 140 98.22 (A) Inception
[67] 3,905 10-fold C-V 99.18(A) MobileNet
[101] 5,824 80,–,20 4,659 1,165 99.00 (A) Resnet
[77] 16,995 5-fold C-V 94.80 (A) DenseNet
[43] 414 70,15,15 290 62 62 98.00 (A) DenseNet
[21] 5,216 80,10,10 4,172 522 522 94.52 (A) IRRCNN and NABLA-3
[44] 455 10-fold C-V 91.24 (A) ResNet50+VGG16+CNN
[78] 537 70,10,20 376 54 107 93.50 (A) MobileNetv2
[45] 1,300 4-fold C-V 89.60 (A) Xception
[84] 16,700 90,–,10 15,030 1,670 99.01 (A) Inception
[46] 864 90,10,– 777 87 95.70 (A) COVID-CAPS
[47] 15,085 5-fold C-V 91.40 (A) Xception+ResNet50V2
[93] 5,071 40,–,60 2,028 30,426 97.50 (Se) ResNet
[48] 381 60,20,20 228 76 76 95.33 (A) ResNet
[49] 274 10-fold C-V 99.00 (A) DenseNet
[50] 1,277 5-fold C-V 90.13 (A) VGG
[51] 13,800 98,–,2 13,525 276 93.90 (A) EfficientNet
[55] 59,937 80,–,20 47,950 11,987 88.04(AUC) DenseNet
[56] 11,663 91,–,9 10,613 1,050 88.33 (Se) ResNet
[94] 15,111 80,10,10 12,088 1,511 1,511 89.40 (A) DenseNet
[54] 18,567 90,–,10 16,714 1,853 96.10 (A) ResNet
[55] 1,124 83,–,17 932 192 95.00 (A) VGG
[68] 1,122 92,4,4 1,052 35 35 72.38 (A) ResNet
[56] 3,487 72,8,20 2,510 279 698 72.38 (A) ResNet
[57] 3487 80,20,– 900 225 98.08 (A) DarkCovidNet
[58] 364 65,15,20 233 56 75 96.30 (A) VGG
[75] 396 80,–,20 316 80 100 (Se) VGG
[59] 1,651 10-fold C-V 98.75 (A) VGG
[60] 6,086 80,–,20 4,869 1,217 92.18 (A) Inception-ResNetV2
[69] 3,451 80,–,20 2,761 690 98.01 (A) FrMEMs
[61] 1,281 10-fold C-V 97.24 (A) Caps-Net
[86] 284 70,–,30 199 85 97.97 (A) VGG
[96] 337 89.00 (A) ResNet
[97] 15,199 80,–,20 12,160 3,039 93.00 (A) VGG
[62] 6,845 10-fold C-V 99.96 (A) Inception
[98] 1,725 80,–,20 1,390 335 98.00 (A) ResNet
[87] 5,949 90,–,10 5,310 639 98.30 (A) SquzeeNet
[63] 50 98.99 (A) Inception
[64] 458 70,–,30 321 137 99.27 (A) MobileNetV2 +SqueezeNet
[65] 678 60,20,20 406 136 136 98.15 (A) ResNet
[112] 1,500 5-fold C-V 94.93 (A) VGG
[88] 572 5-fold C-V 100 (AUC) Inception
[4] 8,474 90,–,10 7,626 847 98.60 (A) VGG
Tab.10  Summary of the classification results for X-rays
Evaluation criteria Papers Total (%)
Detection only [4,32,34,35,38,41?49, 54?56,58?70,72,75,78,80,81, 86,87,89?91,94,96,98,101,112] 45 (64%)
Abnormality localization [21,31,39,52,73,76,79] 7 (10%)
Visual interpretation [26,30,33,36,37,40,50?53,71,77,84,97] 13 (19%)
Verify by radiologists [57,74,88,93,111] 5 (7%)
Tab.11  Different evaluation criteria used in X-ray based COVID-19 detection research
Fig.5  Chest X-ray images of a patent in three points in the upper row and in a lower row their heat maps using Grad-CAM.
Interpretability method Papers
Grad-CAM [18,23,82,105,106]
CAM [17,83]
LIME [26]
Tab.12  Interpretability methods used in the CT images based works
Interpretabilitymethod Papers
Grad-CAM [31,34,37,38,44,45,53,55,56,63,68,73,76,77,79,84,97]
Grad-CAM++ [31,34,40]
CAM [30,37,54,55,60,87,88,94]
LIME [14,41,68]
LRP [31]
Tab.13  Interpretability methods used in the X-ray images based works
Fig.6  Visual explanation studies that used machine learning techniques in chest X-rays and CT scans.
Database Query string/keywords
Scopus (TITLE-ABS-KEY ((“COVID-19” OR “coronavirus” OR “corona virus” OR “coron- aviruses” OR “2019-nCoV” OR “SARS-CoV” OR “MERS-CoV” OR “severe acute respiratory syndrome” OR “middle east respiratory syndrome”) AND (“X-ray” OR “CT-scan”)) AND TITLE-ABS-KEY ((“deep learning” OR “machine learning” OR “artificial intelligence”)))
Web of science TS= (( COVID-19 OR coronavirus OR Corona virus OR coronaviruses OR 2019-nCoV OR SARS-CoV OR MERS-CoV OR Severe acute respiratory syndrome OR middle east respiratory syndrome) AND (X-ray OR CT-scan) AND (deep learning OR machine learning OR artificial intelligence))
Google scholar COVID-19, X-ray, CT-scan, machine learning, deep learning, artificial intelligence
Tab.14  Keywords used in database search
1 C., Wang, P. W., Horby, F. G. Hayden, G. Gao. (2020). A novel coronavirus outbreak of global health concern. Lancet, 395 : 470– 473
https://doi.org/10.1016/S0140-6736(20)30185-9
2 Health Organization World. (2020) Coronavirus disease (COVID-19) pandemic.
3 T., Ai, Z., Yang, H., Hou, C., Zhan, C., Chen, W., Lv, Q., Tao, Z. Sun. (2020). Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 296 : E32– E40
https://doi.org/10.1148/radiol.2020200642
4 M., Heidari, S., Mirniaharikandehei, A. Z., Khuzani, G., Danala, Y. Qiu. (2020). Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms. Int. J. Med. Inform., 144 : 104284–
https://doi.org/10.1016/j.ijmedinf.2020.104284
5 N. K., Chowdhury, M. A., Kabir, M. M. Rahman. (2021). ECOVNet: a highly effective ensemble based deep learning model for detecting COVID-19. PeerJ Comput. Sci., 7 : e551–
https://doi.org/10.7717/peerj-cs.551
6 M. Y., Ng, E. Y. P., Lee, J., Yang, F., Yang, X., Li, H., Wang, M. M. S., Lui, C. S. Y., Lo, B., Leung, P. L. Khong. et al.. (2020). Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiol. Cardiothorac. Imaging, 2 : e200034–
https://doi.org/10.1148/ryct.2020200034
7 O. S., Albahri, J. R., Al-Obaidi, A. A., Zaidan, A. S., Albahri, B. B., Zaidan, M. M., Salih, A., Qays, K. A., Dawood, R. T., Mohammed, K. H. Abdulkareem. et al.. (2020). Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods. Comput. Methods Programs Biomed., 196 : 105617–
https://doi.org/10.1016/j.cmpb.2020.105617
8 T. J., Mohammed, A. S., Albahri, A. A., Zaidan, O. S., Albahri, J. R., Al-Obaidi, B. B., Zaidan, M., Larbani, R. T. Mohammed, S. Hadi. (2021). Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component. Appl. Intell., 51 : 2956– 2987
https://doi.org/10.1007/s10489-020-02169-2
9 A. S., Albahri, R. A., Hamid, J. K., Alwan, Z. T., Al-Qays, A. A., Zaidan, B. B., Zaidan, A. O. S., Albahri, A. H., AlAmoodi, J. M., Khlaf, E. M. Almahdi. et al.. (2020). Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): a systematic review. J. Med. Syst., 44 : 122–
https://doi.org/10.1007/s10916-020-01582-x
10 O. S., Albahri, A. A., Zaidan, A. S., Albahri, B. B., Zaidan, K. H., Abdulkareem, Z. T., Al-Qaysi, A. H., Alamoodi, A. M., Aleesa, M. A., Chyad, R. M. Alesa. et al.. (2020). Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: taxonomy analysis, challenges, future solutions and methodological aspects. J. Infect. Public Health, 13 : 1381– 1396
https://doi.org/10.1016/j.jiph.2020.06.028
11 F., Shi, J., Wang, J., Shi, Z., Wu, Q., Wang, Z., Tang, K., He, Y. Shi. (2021). Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev. Biomed. Eng., 14 : 4– 15
https://doi.org/10.1109/RBME.2020.2987975
12 A., Shoeibi, M., Khodatars, R., Alizadehsani, N., Ghassemi, M., Jafari, P., Moridian, A., Khadem, D., Sadeghi, S., Hussain, A. Zare. et al.. (2020). Automated detection and forecasting of COVID-19 using deep learning techniques: a review. arXiv, 2007.10785v3–
13 D., Dong, Z., Tang, S., Wang, H., Hui, L., Gong, Y., Lu, Z., Xue, H., Liao, F., Chen, F. Yang. et al.. (2021). The role of imaging in the detection and management of COVID-19: a review. IEEE Rev. Biomed. Eng., 14 : 16– 29
https://doi.org/10.1109/RBME.2020.2990959
14 Y., Jiang, H., Chen, M. Loew. (2021). COVID-19 CT image synthesis with a conditional generative adversarial network. IEEE J. Biomed. Health Inform., 25 : 441– 452
https://doi.org/10.1109/JBHI.2020.3042523
15 Y., Qiu, Y. Liu. (2021). MiniSeg: an extremely minimum network for efficient COVID-19 segmentation. arXiv, 2004.09750v3–
16 U., zkaya. (2020). Coronavirus (COVID-19) classification using deep features fusion and ranking technique. In: Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach, ( eds.): Springer–
17 M., Polsinelli, L. Cinque. (2020). A light CNN for detecting COVID-19 from CT scans of the chest. Pattern Recognit. Lett., 140 : 95– 100
https://doi.org/10.1016/j.patrec.2020.10.001
18 S. Sharma. (2020). Drawing insights from COVID-19-infected patients using CT scan images and machine learning techniques: a study on 200 patients. Environ. Sci. Pollut. Res. Int., 27 : 37155– 37163
https://doi.org/10.1007/s11356-020-10133-3
19 A., Mobiny, P. A., Cicalese, S., Zare, P., Yuan, M., Abavisani, C. C., Wu, J., Ahuja, P. M. de Groot. (2020). Radiologist-level COVID-19 detection using CT scans with detail-oriented capsule networks. arXiv, 2004.07407–
20 A., Saeedi, M. Saeedi. (2020). A novel and reliable deep learning web-based tool to detect COVID-19 infection from chest CT-scan. arXiv, 2006.14419–
21 M. Z., Alom, M. M. S., Rahman, M. S., Nasrin, T. M. Taha, V. Asari. (2020). COVID_MTNet: COVID-19 detection with multi-task deep learning approaches. arXiv, 2004.03747–
22 A., Jaiswal, N., Gianchandani, D., Singh, V. Kumar. (2021) Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. J. Biomol. Struct. Dyn., 39, 5682−5689
23 C., Jin, W., Chen, Y., Cao, Z., Xu, Z., Tan, X., Zhang, L., Deng, C., Zheng, J., Zhou, H. Shi. et al.. (2020). Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat. Commun., 11 : 5088–
https://doi.org/10.1038/s41467-020-18685-1
24 R., Kumar, A. A., Khan, S., Zhang, J., Kumar, T., Yang, N. A., Golalirz, I., Ali, S. Shafiq. (2020). Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging. IEEE Sens. J. 21, 16301– 16314
https://doi.org/10.1109/JSEN.2021.3076767
25 T., Yan, P. K., Wong, H., Ren, H., Wang, J. Wang. (2020). Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans. Chaos Solitons Fractals, 140 : 110153–
https://doi.org/10.1016/j.chaos.2020.110153
26 M. M., Ahsan, K. D., Gupta, M. M., Islam, S., Sen, M. L. Rahman, M. Hossain. (2020). Study of different deep learning approach with explainable AI for screening patients with COVID-19 symptoms: using CT scan and chest X-ray image dataset. arXiv, 2007.12525–
27 X., Yang, X., He, J., Zhao, Y., Zhang, S. Zhang. (2020). COVID-CT-dataset: a CT scan dataset about COVID-19. arXiv, 2003.13865–
28 S., Ahuja, B. K., Panigrahi, N., Dey, V. Rajinikanth, T. Gandhi. (2021). Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices. Appl. Intell., 51 : 571– 585
https://doi.org/10.1007/s10489-020-01826-w
29 BBC. (2020) BBC business reports. . Accessed: March 23, 2020
30 N. K., Chowdhury, M. M. Rahman, M. Kabir. (2020). PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images. Health Inf. Sci. Syst., 8 : 27–
https://doi.org/10.1007/s13755-020-00119-3
31 A. Q. M. S., Sayyed, D. Saha, A. Hossain. (2020). CovMUNET: a multiple loss approach towards detection of COVID-19 from chest X-ray. arXiv, 2007.14318–
32 D., Wang, J., Mo, G., Zhou, L. Xu. (2020). An efficient mixture of deep and machine learning models for COVID-19 diagnosis in chest X-ray images. PLoS One, 15 : e0242535–
https://doi.org/10.1371/journal.pone.0242535
33 L. P. Soares, C. Soares. (2020). Automatic detection of COVID-19 cases on X-ray images using convolutional neural networks. arXiv, 2007.05494–
34 K. K., Singh, M. Siddhartha. (2020). Diagnosis of coronavirus disease (COVID-19) from chest X-ray images using modified XceptionNet. Rom. J. Inf. Sci. Technol., 23 : 91– 115
35 S., Chatterjee, F., Saad, C., Sarasaen, S., Ghosh, R., Khatun, P., Radeva, G., Rose, S., Stober, O. Speck. (2020). Exploration of interpretability techniques for deep COVID-19 classification using chest X-ray images. arXiv, 2006.02570–
36 B., Yan, J., Wang, J., Cheng, Y., Zhou, Y., Zhang, Y., Yang, L., Liu, B. Liu, H., Zhao, C., Wang. (2021) Experiments of federated learning for COVID-19 chest X-ray images. In: Advances in Artificial Intelligence and Security, Sun X., Zhang X., Xia Z., Bertino E. (eds.), Cham: Springer
37 N. S. Punn. (2021). Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray images using fine-tuned deep neural networks. Appl. Intell., 51 : 2689– 2702
https://doi.org/10.1007/s10489-020-01900-3
38 M. Boudrioua. (2020). COVID-19 detection from chest X-ray images using CNNs models: further evidence from deep transfer learning. Univ. Louisville J. Respir. Infect., 4 : 53–
39 M. A., Al-antari, C. H. Hua. (2020) Fast deep learning computer-aided diagnosis against the novel COVID-19 pandemic from digital chest X-ray images. Res. Square., 10.21203/rs.3.rs-36353/v1
40 D., Lv, W., Qi, Y., Li, L. Sun. (2020) A cascade network for Detecting COVID-19 using chest x-rays. arXiv, 2005.01468
41 Y., Oh, S. Park, J. Ye. (2020). Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans. Med. Imaging, 39 : 2688– 2700
https://doi.org/10.1109/TMI.2020.2993291
42 T., Li, Z., Han, B., Wei, Y., Zheng, Y. Hong. (2020). Robust screening of COVID-19 from chest X-ray via discriminative cost-sensitive learning. arXiv, 2004.12592–
43 D., Ezzat, A. E. Hassanien, H. Ella. (2020). GSA-DenseNet121-COVID-19: a hybrid deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization algorithm. arXiv, 2004.05084–
44 L. O., Hall, R., Paul, D. B. Goldgof, G. Goldgof. (2020). Finding COVID-19 from chest X-rays using deep learning on a small dataset. arXiv, 2004.02060–
45 A. I., Khan, J. L. Shah, M. Bhat. (2020). CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Programs Biomed., 196 : 105581–
https://doi.org/10.1016/j.cmpb.2020.105581
46 P., Afshar, S., Heidarian, F., Naderkhani, A., Oikonomou, K. N. Plataniotis. (2020). COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recognit. Lett., 138 : 638– 643
https://doi.org/10.1016/j.patrec.2020.09.010
47 M. Rahimzadeh. (2020). A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Inform. Med. Unlocked., 19 : 100360–
https://doi.org/10.1016/j.imu.2020.100360
48 P. K., Sethy, S. K., Behera, P. K. Ratha. (2020). Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. Int. J. Math. Eng. Manage. Sci., 5 : 643– 651
49 S. H., Kassani, P. H., Kassasni, M. J., Wesolowski, K. A. Schneider. (2020). Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: a machine learning-based approach. Biocybern Biomed. Eng., 41 : 867– 879
https://doi.org/10.1016/j.bbe.2021.05.013
50 S., Basu, S. Mitra. (2020) Deep learning for screening COVID-19 using chest X-ray images. In: Proc. 2020 IEEE Symp. Series on Computational Intelligence, pp. 2521–2527
51 E., Luz, P. L., Silva, R., Silva, L., Silva, G. Moreira. (2021) Towards an effective and efficient deep learning model for COVID-19 patterns detection in X-ray images. Res. Biomed. Eng.
52 C. F., Yeh, H. T., Cheng, A., Wei, H. M., Chen, P. C., Kuo, K. C., Liu, M. C., Ko, R. J., Chen, P. C., Lee, J. H. Chuang. et al.. (2020). A cascaded learning strategy for robust COVID-19 pneumonia chest X-ray screening. arXiv, 2004.12786–
53 Y., Zhang, S., Niu, Z., Qiu, Y., Wei, P., Zhao, J., Yao, J., Huang, Q. Wu. (2020). COVID-DA: deep domain adaptation from typical pneumonia to COVID-19. arXiv, 2005.01577–
54 N., Wang, H. Liu. (2020). Deep learning for the detection of COVID-19 using transfer learning and model integration. In: Proc. IEEE 10th Int. Conf. Electronics Information and Emergency Communication, pp. 281– 284
55 A., Waheed, M., Goyal, D., Gupta, A., Khanna, F. Al-Turjman, P. Pinheiro. (2020). CovidGAN: data augmentation using auxiliary classifier GAN for improved Covid-19 detection. IEEE Access, 8 : 91916– 91923
https://doi.org/10.1109/ACCESS.2020.2994762
56 M. E. H., Chowdhury, T., Rahman, A., Khandakar, R., Mazhar, M. A., Kadir, Z. B., Mahbub, K. R., Islam, M. S., Khan, A., Iqbal, N. A., Emadi. (2020) Can AI help in screening viral and COVID-19 pneumonia? IEEE Access, 8, 132665–132676
57 T., Ozturk, M., Talo, E. A., Yildirim, U. B., Baloglu, O. Yildirim. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med., 121 : 103792–
https://doi.org/10.1016/j.compbiomed.2020.103792
58 S., Vaid, R. Kalantar. (2020). Deep learning COVID-19 detection bias: accuracy through artificial intelligence. Int. Orthop., 44 : 1539– 1542
https://doi.org/10.1007/s00264-020-04609-7
59 I. D. Apostolopoulos, T. Mpesiana. (2020). Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med., 43 : 635– 640
https://doi.org/10.1007/s13246-020-00865-4
60 K. El Asnaoui. (2021). Using X-ray images and deep learning for automated detection of coronavirus disease. J. Biomol. Struct. Dyn., 39 : 3615– 3626
https://doi.org/10.1080/07391102.2020.1767212
61 S., Toraman, T. B. Alakus. (2020). Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks. Chaos Solitons Fractals, 140 : 110122–
https://doi.org/10.1016/j.chaos.2020.110122
62 D., Das, K. C. Santosh. (2020). Truncated inception net: COVID-19 outbreak screening using chest X-rays. Phys. Eng. Sci. Med., 43 : 915– 925
https://doi.org/10.1007/s13246-020-00888-x
63 M. A., Mohammed, K. H., Abdulkareem, A. S., Al-Waisy, S. A., Mostafa, S., Al-Fahdawi, A. M., Dinar, W., Alhakami, A., Baz, M. N., Al-Mhiqani, H. Alhakami. et al.. (2020). Benchmarking methodology for selection of optimal COVID-19 diagnostic model based on entropy and TOPSIS methods. IEEE Access, 8 : 99115– 99131
https://doi.org/10.1109/ACCESS.2020.2995597
64 M., ar, B. Ergen. (2020). COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med., 121 : 103805–
https://doi.org/10.1016/j.compbiomed.2020.103805
65 M. Shorfuzzaman. (2020). On the detection of COVID-19 from chest X-ray images using CNN-based transfer learning. Comput. Mater. Constr., 64 : 1359– 1381
66 S., Asif, W., Yi, J., Hou, T. Yi. (2020). Classification of COVID-19 from Chest X-ray images using deep convolutional neural network. In: 2020 IEEE 6th Int. Conf. on Computer and Communications (ICCC), pp. 426– 433
https://doi.org/10.1109/ICCC51575.2020.9344870
67 I. D., Apostolopoulos, S. I. Aznaouridis, M. Tzani. (2020). Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases. J. Med. Biol. Eng., 40 : 1– 8
https://doi.org/10.1007/s40846-020-00529-4
68 R., Punia, L., Kumar, M. Mujahid. (2020). Computer vision and radiology for COVID-19 detection. In: Proc. 2020 Int. Conf. Emerging Technology, 1– 5
69 M. A., Elaziz, K. M., Hosny, A., Salah, M. M., Darwish, S. Lu, A. Sahlol. (2020). New machine learning method for image-based diagnosis of COVID-19. PLoS One, 15 : e0235187–
https://doi.org/10.1371/journal.pone.0235187
70 S., Rajpal, M., Agarwal, A., Rajpal, N., Lakhyani, A. Saggar. (2021). COV-ELM classifier: an extreme learning machine based identification of COVID-19 using. arXiv, 2007.08637–
71 L., Wang, Z. Q. Lin. (2020). COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep., 10 : 19549–
https://doi.org/10.1038/s41598-020-76550-z
72 R. M., Pereira, D., Bertolini, L. O., Teixeira, C. N. Silla, Y. M. Costa. (2020). COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Comput. Methods Programs Biomed., 194 : 105532–
https://doi.org/10.1016/j.cmpb.2020.105532
73 L., Brunese, F., Mercaldo, A. Reginelli. (2020). Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput. Methods Programs Biomed., 196 : 105608–
https://doi.org/10.1016/j.cmpb.2020.105608
74 S., Tabik, A., os, J. L., guez, M., Rey-Area, D., Charte, E., Guirado, J. L., rez, J., Luengo, M. A. lez. et al.. (2020). COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images. IEEE J. Biomed. Health Inform., 24 : 3595– 3605
https://doi.org/10.1109/JBHI.2020.3037127
75 J., Civit-Masot, M. D. Morales. (2020). Deep learning system for COVID-19 diagnosis aid using X-ray pulmonary images. Appl. Sci. (Basel), 10 : 4640–
https://doi.org/10.3390/app10134640
76 A., Tahir, Y., Qiblawey, A., Khandakar, T., Rahman, U., Khurshid, F., Musharavati, S. Kiranyaz, M. E. Chowdhury. (2021). Coronavirus: comparing COVID-19, SARS and MERS in the eyes of AI. arXiv, 2005.11524–
77 M. R., Karim, T., hmen, M., Cochez, O., Beyan, D. Rebholz-Schuhmann. (2020). DeepCOVIDExplainer: explainable COVID-19 diagnosis from chest X-ray images. In: Proc. 2020 IEEE Int. Conf. Bioinformatics and Biomedicine, pp. 1034– 1037
78 X., Li, C. Li. (2020). COVID-MobileXpert: on-device COVID-19 patient triage and follow-up using chest X-rays. In: Proc. 2020 IEEE Int. Conf. Bioinformatics and Biomedicine, pp. 1063– 1067
79 T., Mahmud, M. A. Rahman, S. Fattah. (2020). CovXNet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. Comput. Biol. Med., 122 : 103869–
https://doi.org/10.1016/j.compbiomed.2020.103869
80 A., Shelke, M., Inamdar, V., Shah, A., Tiwari, A., Hussain, T. Chafekar. (2021). Chest X-ray classification using deep learning for automated COVID-19 screening. SN Comput. Sci. 2, 300–
https://doi.org/10.1007/s42979-021-00695-5
81 V. Sharma. (2020). COVID-19 screening using residual attention network an artificial intelligence approach. In: Proc. 19th IEEE Int. Conf. Machine Learning and Applications, pp. 1354– 1361
82 O., Gozes, M., Frid-Adar, N., Sagie, H., Zhang, W. Ji. (2020) Coronavirus detection and analysis on chest CT with deep learning. arXiv: 2004.02640
83 S., Hu, Y., Gao, Z., Niu, Y., Jiang, L., Li, X., Xiao, M., Wang, E. F., Fang, W., Menpes-Smith, J. Xia. et al.. (2020). Weakly supervised deep learning for COVID-19 infection detection and classification from CT images. IEEE Access, 8 : 118869– 118883
https://doi.org/10.1109/ACCESS.2020.3005510
84 S., Rajaraman, J., Siegelman, P. O., Alderson, L. S., Folio, L. R. Folio, S. Antani. (2020). Iteratively pruned deep learning ensembles for COVID-19 detection in chest X-rays. IEEE Access, 8 : 115041– 115050
https://doi.org/10.1109/ACCESS.2020.3003810
85 A. A., Ardakani, A. R., Kanafi, U. R., Acharya, N. Khadem. (2020). Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Comput. Biol. Med., 121 : 103795–
https://doi.org/10.1016/j.compbiomed.2020.103795
86 H., Panwar, P. K., Gupta, M. K., Siddiqui, R. Morales-Menendez. (2020). Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet. Chaos Solitons Fractals, 138 : 109944–
https://doi.org/10.1016/j.chaos.2020.109944
87 F. Ucar. (2020). COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Med. Hypotheses, 140 : 109761–
https://doi.org/10.1016/j.mehy.2020.109761
88 N., Tsiknakis, E., Trivizakis, E. E., Vassalou, G. Z., Papadakis, D. A., Spandidos, A., Tsatsakis, R., lez, N., Papanikolaou, A. H. Karantanas. et al.. (2020). Interpretable artificial intelligence framework for COVID-19 screening on chest X-rays. Exp. Ther. Med., 20 : 727– 735
https://doi.org/10.3892/etm.2020.8797
89 A., Abbas, M. M. Abdelsamea. (2020). 4S-DT: Self Supervised Super Sample Decomposition for Transfer learning with application to COVID-19 detection. IEEE Trans. Neur. Networks Lear. Syst., 32 : 2798– 2808
https://doi.org/10.1109/TNNLS.2021.3082015
90 M., Yamac, M., Ahishali, A., Degerli, S., Kiranyaz, M. E. H. Chowdhury. (2020). Convolutional sparse support estimator based covid-19 recognition from X-ray images. IEEE Trans. Neur. Networks Lear. Syst., 32 : 1810– 1820
https://doi.org/10.1109/TNNLS.2021.3070467
91 A., Abbas, M. M. Abdelsamea, M. Gaber. (2021). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl. Intell., 51 : 854– 864
https://doi.org/10.1007/s10489-020-01829-7
92 Y. Wu, S. Gao, J., Mei, J., Xu, D. Fan, R. Zhang, M. Cheng. (2020) JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation. IEEE Trans. Imag. Process. 30:3113–3126
93 S., Minaee, R., Kafieh, M., Sonka, S. Yazdani. (2020). Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning. Med. Image Anal., 65 : 101794–
https://doi.org/10.1016/j.media.2020.101794
94 B. D., Goodwin, C., Jaskolski, C. Zhong. (2020). Intra-model variability in COVID-19 classification using chest X-ray images. arXiv, 2005.02167–
95 H. X., Bai, R., Wang, Z., Xiong, B., Hsieh, K., Chang, K., Halsey, T. M. L., Tran, J. W., Choi, D. Wang, L. Shi. et al.. (2020). Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT. Radiology, 296 : E156– E165
https://doi.org/10.1148/radiol.2020201491
96 S. Albahli. (2020). Efficient GAN-based Chest Radiographs (CXR) augmentation to diagnose coronavirus disease pneumonia. Int. J. Med. Sci., 17 : 1439– 1448
https://doi.org/10.7150/ijms.46684
97 S. Rajaraman. (2020). Weakly labeled data augmentation for deep learning: a study on COVID-19 detection in chest X-rays. Diagnostics (Basel), 10 : 358–
https://doi.org/10.3390/diagnostics10060358
98 S. H., Yoo, H., Geng, T. L., Chiu, S. K., Yu, D. C., Cho, J., Heo, M. S., Choi, I. H., Choi, C., Cung Van, N. V. Nhung. et al.. (2020). Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging. Front. Med. (Lausanne), 7 : 427–
https://doi.org/10.3389/fmed.2020.00427
99 D., Al-karawi, S., Al-Zaidi, N. Polus, S. Jassim (2020) Machine learning analysis of chest CT scan images as a complementary digital test of coronavirus (COVID-19) patients. medRxiv
100 S., Wang, B., Kang, J., Ma, X., Zeng, M., Xiao, J., Guo, M., Cai, J., Yang, Y., Li, X. Meng. et al.. (2021). A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19). Eur. Radiol., 31 : 6096– 6104
https://doi.org/10.1007/s00330-021-07715-1
101 N. E. M., Khalifa, M. H. N., Taha, A. E. Hassanien. (2020). Detection of coronavirus (COVID-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest X-ray dataset. arXiv, 2004.01184–
102 K., He, X., Zhang, S. Ren. (2016). Deep residual learning for image recognition. In: Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition, 770– 778
103 K. Simonyan. (2015). Very deep convolutional networks for large-scale image recognition. arXiv, 1409.1556–
104 G., Huang, Z., Liu, L. Van Der Maaten, K. Weinberger. (2017). Densely connected convolutional networks. In: Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition, pp. 4700– 4708
105 X., He, X., Yang, S., Zhang, J., Zhao, Y., Zhang, E. Xing. (2020) Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. medRxiv, doi:
https://doi.org/10.1101/2020.04.13.20063941
106 L., Li, L., Qin, Z., Xu, Y., Yin, X., Wang, B., Kong, J., Bai, Y., Lu, Z., Fang, Q. Song. et al.. (2020). Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology, 296 : E65– E71
https://doi.org/10.1148/radiol.2020200905
107 I., Laradji, P., Rodriguez, F., Branchaud-Charron, K., Lensink, P., Atighehchian, W., Parker, D. Vazquez. (2020). A weakly supervised region-based active learning method for COVID-19 segmentation in CT images. arXiv, 2007.07012–
108 C., Szegedy, V., Vanhoucke, S., Ioffe, J. Shlens. (2016). Rethinking the inception architecture for computer vision. In: Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition, pp. 2818– 2826
109 B., Zoph, V., Vasudevan, J. Shlens, Q. Le. (2018). Learning transferable architectures for scalable image recognition. In: Proc. 2018 IEEE/CVF Conf. Computer Vision and Pattern Recognition, pp. 8697– 8710
110 A. G., Howard, M., Zhu, B., Chen, D., Kalenichenko, W., Wang, T., Weyand, M. Andreetto. (2017). MobileNets: efficient convolutional neural networks for mobile vision applications. ArXiv, 1704.04861–
111 M., Ahishali, A., Degerli, M., Yamac, S., Kiranyaz, M. E. H., Chowdhury, K., Hameed, T., Hamid, R. Mazhar. (2021). Advance warning methodologies for COVID-19 using chest X-ray images. IEEE Access, 9 : 41052– 41065
https://doi.org/10.1109/ACCESS.2021.3064927
112 F. A. Saiz. (2020) COVID-19 detection in chest X-ray images using a deep learning approach. Int. J. Interact. Multimed. Artif. Intell., doi: 10.9781/ijimai.2020.04.003
113 L., Sun, Z., Mo, F., Yan, L., Xia, F., Shan, Z., Ding, W., Shao, F., Shi, H., Yuan, H. Jiang. et al.. (2020). Adaptive feature selection guided deep forest for COVID-19 classification with chest CT. IEEE J. Biomed. Health Inform. 24, 2798– 2805
https://doi.org/10.1109/JBHI.2020.3019505
114 A., Amyar, R., Modzelewski, H. Li. (2020). Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Comput. Biol. Med., 126 : 104037–
https://doi.org/10.1016/j.compbiomed.2020.104037
115 Z., Li, Z., Zhong, Y., Li, T., Zhang, L., Gao, D., Jin, Y., Sun, X., Ye, L., Yu, Z. Hu. et al.. (2020). From community-acquired pneumonia to COVID-19: a deep learning-based method for quantitative analysis of COVID-19 on thick-section CT scans. Eur. Radiol., 30 : 6828– 6837
https://doi.org/10.1007/s00330-020-07042-x
116 B., Zhou, A., Khosla, A., Lapedriza, A. Oliva. (2016). Learning deep features for discriminative localization. In: Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition, pp. 2921– 2929
117 A., Chattopadhay, A., Sarkar, P. Howlader, V. Balasubramanian. (2018). Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: Proc. 2018 IEEE Winter Conf. Applications of Computer Vision, pp. 839– 847
118 S., Bach, A., Binder, G., Montavon, F., Klauschen, K. R. ller. (2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One, 10 : e0130140–
https://doi.org/10.1371/journal.pone.0130140
119 M. T., Ribeiro, S. Singh. (2016). “Why should I trust you?” Explaining the predictions of any classifier. In: Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pp. 1135– 1144
[1] Xiaokang Chai, Yachao Di, Zhao Feng, Yue Guan, Guoqing Zhang, Anan Li, Qingming Luo. Deep learning-based large-scale named entity recognition for anatomical region of mammalian brain[J]. Quant. Biol., 2022, 10(3): 253-263.
[2] Ran Yi, Rui Zeng, Yang Weng, Minjing Yu, Yu-Kun Lai, Yong-Jin Liu. Lesion region segmentation via weakly supervised learning[J]. Quant. Biol., 2022, 10(3): 239-252.
[3] HyeongChan Jo, Juhyun Kim, Tzu-Chen Huang, Yu-Li Ni. condLSTM-Q: A novel deep learning model for predicting COVID-19 mortality in fine geographical scale[J]. Quant. Biol., 2022, 10(2): 125-138.
[4] Chen Tang, Tiandong Wang, Panpan Zhang. Functional data analysis: An application to COVID-19 data in the United States in 2020[J]. Quant. Biol., 2022, 10(2): 172-187.
[5] Ayman Mourad, Fatima Mroue. Discrete spread model for COVID-19: the case of Lebanon[J]. Quant. Biol., 2022, 10(2): 157-171.
[6] Pavel Grinchuk, Sergey Fisenko. Power-law multi-wave model for COVID-19 propagation in countries with nonuniform population density[J]. Quant. Biol., 2022, 10(2): 150-156.
[7] Georgios D. Barmparis, Giorgos P. Tsironis. Physics-informed machine learning for the COVID-19 pandemic: Adherence to social distancing and short-term predictions for eight countries[J]. Quant. Biol., 2022, 10(2): 139-149.
[8] Shicai Fan, Likun Wang, Liang Liang, Xiaohong Cao, Jianxiong Tang, Qi Tian. The progress on the estimation of DNA methylation level and the detection of abnormal methylation[J]. Quant. Biol., 2022, 10(1): 55-66.
[9] Rudra Banerjee, Srijit Bhattacharjee, Pritish Kumar Varadwaj. A study of the COVID-19 epidemic in India using the SEIRD model[J]. Quant. Biol., 2021, 9(3): 317-328.
[10] Yuehui Zhang, Lin Chen, Qili Shi, Zhongguang Luo, Libing Shen. Forecasting the development of the COVID-19 epidemic by nowcasting: when did things start to get better?[J]. Quant. Biol., 2021, 9(1): 93-99.
[11] Saroj K Biswas, Nasir U Ahmed. Mathematical modeling and optimal intervention of COVID-19 outbreak[J]. Quant. Biol., 2021, 9(1): 84-92.
[12] Cecylia S. Lupala, Xuanxuan Li, Jian Lei, Hong Chen, Jianxun Qi, Haiguang Liu, Xiao-Dong Su. Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein[J]. Quant. Biol., 2021, 9(1): 61-72.
[13] Hanshuang Pan, Nian Shao, Yue Yan, Xinyue Luo, Shufen Wang, Ling Ye, Jin Cheng, Wenbin Chen. Multi-chain Fudan-CCDC model for COVID-19 -- a revisit to Singapore’s case[J]. Quant. Biol., 2020, 8(4): 325-335.
[14] Yawei Li, Yuan Luo. Performance-weighted-voting model: An ensemble machine learning method for cancer type classification using whole-exome sequencing mutation[J]. Quant. Biol., 2020, 8(4): 347-358.
[15] Xiaofei Yang, Tun Xu, Peng Jia, Han Xia, Li Guo, Lei Zhang, Kai Ye. Transportation, germs, culture: a dynamic graph model of COVID-19 outbreak[J]. Quant. Biol., 2020, 8(3): 238-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed