Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2023, Vol. 11 Issue (2) : 122-142    https://doi.org/10.15302/J-QB-022-0322
REVIEW
Computational methods for identifying enhancer-promoter interactions
Haiyan Gong1, Zhengyuan Chen1, Yuxin Tang1, Minghong Li1, Sichen Zhang1, Xiaotong Zhang1,3(), Yang Chen2()
1. School of Computer and Communication Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing100083, China
2. State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
3. Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
 Download: PDF(4491 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: As parts of the cis-regulatory mechanism of the human genome, interactions between distal enhancers and proximal promoters play a crucial role. Enhancers, promoters, and enhancer-promoter interactions (EPIs) can be detected using many sequencing technologies and computation models. However, a systematic review that summarizes these EPI identification methods and that can help researchers apply and optimize them is still needed.

Results: In this review, we first emphasize the role of EPIs in regulating gene expression and describe a generic framework for predicting enhancer-promoter interaction. Next, we review prediction methods for enhancers, promoters, loops, and enhancer-promoter interactions using different data features that have emerged since 2010, and we summarize the websites available for obtaining enhancers, promoters, and enhancer-promoter interaction datasets. Finally, we review the application of the methods for identifying EPIs in diseases such as cancer.

Conclusions: The advance of computer technology has allowed traditional machine learning, and deep learning methods to be used to predict enhancer, promoter, and EPIs from genetic, genomic, and epigenomic features. In the past decade, models based on deep learning, especially transfer learning, have been proposed for directly predicting enhancer-promoter interactions from DNA sequences, and these models can reduce the parameter training time required of bioinformatics researchers. We believe this review can provide detailed research frameworks for researchers who are beginning to study enhancers, promoters, and their interactions.

Keywords enhancer      promoter      enhancer-promoter interaction      machine learning      deep learning     
Corresponding Author(s): Xiaotong Zhang,Yang Chen   
About author:

* These authors contributed equally to this work.

Just Accepted Date: 01 March 2023   Online First Date: 12 April 2023    Issue Date: 21 June 2023
 Cite this article:   
Haiyan Gong,Zhengyuan Chen,Yuxin Tang, et al. Computational methods for identifying enhancer-promoter interactions[J]. Quant. Biol., 2023, 11(2): 122-142.
 URL:  
https://academic.hep.com.cn/qb/EN/10.15302/J-QB-022-0322
https://academic.hep.com.cn/qb/EN/Y2023/V11/I2/122
Fig.1  Mechanisms of transcriptional activation over EPIs.
Fig.2  An overview of the EPI prediction methods using different data sources.
Category Refs. Time Source data Method Software name Citation number
Traditional machine  learning- based [44] 2011 DNA sequence SVM (support vector machine) classifier k-mer-svm 162
[45] 2012 TF motifs LASSO regression CLARE 9
[46] 2012 ChIP-seq histone methylation and acetylation maps Genetic algorithm-optimized support vector machine ChromaGenSVM 77
[47] 2013 Histone modification ChIP-seq Random-forest- based RFECS 144
[48] 2014 Gapped k-mer features SVM gkm-svm 239
[49] 2014 Histone modifications (ChIP-Seq), TFBSs, chromatin accessibility (DNase-Seq), transcription (RNA-Seq), evolutionary conservation, sequence signatures Linear SVM and multiple kernel learning EnhancerFinder 162
[50] 2015 ChIP-seq AdaBoost-based DELTA 31
[51] 2015 Histone ChIP-seq and DNA sequence SVM DEEP 73
[52] 2016 DNA sequence Machine learning iEnhancer-PsedeKNC 15
[53] 2016 DNA sequence, pseudo k-tuple nucleotide composition SVM iEnhancer-2L 334
[54] 2016 Chromatin state, DNA sequence A two-step wrapper- based feature selection method EnhancerPred 52
[55] 2016 WGBS DNA methylation profiles Weighted support vector machine learning framework LMethyR-SVM 9
Traditional machine  learning- based [56] 2017 Short dinucleotide repeat motifs (DRMs), DNA sequence, enhancer-associated histone modification data Machine learning 22
[57] 2017 Chromatin state, DNA sequence A two-step wrapper-based feature selection method EnhancerPred2.0 29
[58] 2017 Histone ChIP-seq and methylation, DNA sequence Random forest REPTILE 43
[59] 2018 DNA sequence SVM iEnhancer-EL 106
[60] 2018 FANTOM5 atlas of TrEns Feature matrix generation, feature ranking using Gini-index, logistic regression TELS 2
[61] 2018 DNA sequence k-mer and machine learning based method enhancer_prediction 13
[62] 2020 STARR-seq Supervised machine-learning MatchedFilter 21
[20] 2021 DNA sequence Feature extraction technique and SVM piEnPred 6
[63] 2021 Chromatin state and DNA sequence Enhanced feature representation using random forest iEnhancer-RF 8
[64] 2021 Nucleotide Composition Two-Layer Predictor, Kullback-Leibler divergence, LASSO, SVM iEnhancer-KL 1
[65] 2021 DNA sequence 7-mer and random forest Computational CRISPR Strategy (CCS) 38
[66] 2021 DNA sequence Random forest, extremely randomized tree, multilayer perceptron, SVM and extreme gradient boosting Enhancer-IF 12
Deep  learning- based [67] 2010 Histone modification ChIP-seq Time delay neural network (TDNN) CSI-ANN 160
[68] 2016 ChIP-Seq, DNase-Seq, RNA-Seq, DNA meth- ylation, and other features Deep learning-based PEDLA 91
[69] 2017 DNA sequence CNN (convolution neural network) DeepEnhancer 76
[70] 2017 DNA sequence Deep-learning-based BiRen 91
[71] 2018 ATAC-Seq Neural network-based model PEAS 22
[72] 2019 DNA sequence Word embeddings and SVM iEnhancer-5Step 96
[73] 2020 DNA sequence Word Embedding and CNN iEnhancer-CNN 26
[74] 2021 DNA sequence and DNase-seq Deep-learning-based DeepCAPE 8
[75] 2021 STARR-seq Deep-learning-based DECODE 2
[76] 2021 DNA sequence Augmented data and Residual CNN ES-ARCNN 4
[77] 2021 Pseudo - K-tuple nucleotide composition and DNA sequence DNN iEnhancer-DHF 8
[78] 2021 DNA sequence Word embedding, generative adversarial net, CNN iEnhancer-GAN 8
[79] 2022 DNA sequence Neural network RicENN 1
[80] 2022 DNA sequence Enhanced feature extraction strategy, deep learning 0
[81] 2022 DNA sequence One-hot encoding, convolutional neural network iEnhancer-Deep 2
[82] 2022 DNA sequence DBSCAN, random forest, word2vec and attention-based Bi-LSTM 0
Tab.1  Prediction methods of enhancer
Category Refs. Time Source data Method Software name Citation number
Deep learning- based [83] 2012 DNA sequence DNA sequence features 63
[84] 2016 DNA sequence Deep feature selection, DFS 200
[85] 2017 DNA sequence CNN CNNProm 169
[86] 2018 DNA sequence SVM BacSVM+ 9
[87] 2018 DNA sequence DNA sequence features iPromoter-2L 256
[88] 2019 DNA sequence CNN and LSTM DeePromoter 80
[89] 2019 DNA sequence Deep learning and combination of continuous FastText N-Grams deepPromoter 46
[90] 2019 DNA sequence Deep learning PromID 68
[91] 2019 DNA sequence Minimum redundancy maximum relevance (mRMR) algorithm and increment feature selection strategy, SVM iProEP 99
[92] 2019 DNA sequence Combinee smoothing cutting window algorithm, k-mer, SVM iPromoter-2L2.0 57
[93] 2019 Bacterial σ70 promoter sequences Feature subspace based ensemble classifier iPromoter-FSEn 30
[94] 2019 Bacterial σ70 promoter sequences Multiple windowing and minimal features iPro70-FMWin 20
[95] 2019 The physicochemical properties of nucleotides and their nucleotide density into pseudo K-tuple nucleotide composition A two-layer predictor iPSW(2L)-PseKNC 55
[96] 2019 DNA sequence F-score feature selection method MULTiPly 87
[97] 2020 DNA sequence of Escherichia coli K-12 Statistical physics model PhysMPrePro 1
[98] 2020 DNA sequence of Escherichia coli K-12 CNN iPromoter-BnCNN 23
[99] 2020 DNA sequence of Escherichia coli K-12 CNN, pseudo-di-nucleotide composition PseDNC-DL 32
[100] 2020 DNA sequence of Escherichia coli K-12 One-hot encoding and CNN pcPromoter-CNN 17
[101] 2021 The k-mer nucleotide composition, binary encoding and dinucleotide property matrix-based distance Extremely randomized trees iPromoter-ET 5
[102] 2021 Rice-specific DNA sequence CNN Cr-Prom 9
[103] 2021 DNA sequence of Escherichia coli K-12 A two-layer predictor iPro2L-PSTKNC 5
[104] 2021 DNA sequence CNN iPTT(2 L)-CNN 2
[105] 2021 DNA sequence Cascaded deep capsule neural networks Depicter 23
[106] 2022 DNA sequence k-mers and deep learning network PPred-PCKSM 1
[107] 2022 DNA sequence k-mer word vector, multiple descriptors and feature selection using XGBoost dPromoter-XGBoost 1
[108] 2022 DNA sequence k-mers and LSTM network 1
[109] 2022 DNA sequence Moran-based spatial auto-cross correlation method and deep convolution generative adversarial network iPro-GAN 2
[110] 2022 Promoter data sets from both plants and humans Synthetic sampling, transfer learning and label smoothing regularization HMPI 0
[111] 2022 Promoter sequences from six nannochloropsis strains Densely connected convolutional neural networks DenseNet-PredictPromoter 0
Peak  calling [112] 2015 Capture Hi-C 861
[113] 2016 Promoter capture Hi-C 769
Tab.2  Prediction methods of promoter
Fig.3  An overview of the enhancer and promoter identification process.
Database type Data repository name
Enhancer Sedb [117]
PReMod [119]
Human Transcribed Enhancer Atlas [120]
VISTA [121]
dbSUPER [122]
ENdb [123] (human enhancer)
SEA [124]
RAEdb [125]
SELER (human cancers) [126]
EnDisease [127]
dbInDel [128]
CancerEnD (cancer associated enhancers) [129]
CPE-DB [130]
Animal-eRNAdb [131]
Promoter EPD [118]
PlantProm (plant promoter) [132]
TransGene Promoters, TGP [133]
Osteo-Promoter Database (OPD) skeletal cells [134]
Osiris [135]
TiProD [136]
PromoterCAD (mammalian promoter/enhancer) [137]
EPDNew [138]
PPD [139]
Tab.3  Available public data repository for enhancer and promoter
EPI dataset EPIs methods that used the dataset
EPI Dataset provided by Whalen et al. [143] PEP [144], EP2vec [145], SPEID [146], random forest based method [147], Zhuang et al. [148], EPIVAN [149], Singh et al. [150], EPI-DLMH [151], EPIsHilbert [152], EPI-Mind [153]
Dataset provided by Talukder et al. [154] EPIP [154]
Dataset provided by Jing et al. [155] SEPT [155]
Tab.4  The benchmarking enhancer-promoter interaction dataset used in EPIs identification methods
Publication Time Sequencing technology Method Software name Citation number
[157] 2014 Hi-C [15] Identify “enriched pixels” where the interaction frequency is higher than expected HiCCUPS 753
[158] 2015 Hi-C, HiChIP Toolkit HiC-Pro 1125
[159] 2018 Hi-C HiGlass 402
[160] 2020 Hi-C, ChIA-PET DBSCAN-based cLoops 35
[161] 2020 Hi-C Identify loops from high-resolution Hi-C FitHiC2 72
[162] 2020 Hi-C, Micro-C [163] Scale-space representation Mustache 42
[164] 2021 Hi-C Aggregated Cauchy test HiC-ACT 10
[165] 2021 Hi-C Identify loops from high-resolution Hi-C HiCORE 1
[166] 2018 HiChIP [19] DNA loop calling hichipper 86
[167] 2019 HiChIP/PLAC-seq [168] Jointly models the non-uniform coverage and genomic distance scaling of contact counts FitHiChIP 76
[169] 2019 HiChIP/PLAC-seq Zero-truncated Poisson regression framework MAPS 65
[170] 2020 HiChIP Differential peak analysis HiChIP-Peaks 6
[171] 2010 ChIA-PET Automatic processing of ChIA-PET data ChIA-PET Tool 308
[172] 2014 ChIA-PET A statistical model chiasig 44
[173] 2015 ChIA-PET R package to detect chromatin interactions from ChIA-PET MICC 30
[174] 2015 ChIA-PET Hierarchical Dirichlet process 3CPET 21
[175] 2017 ChIA-PET Analysis pipeline ChIA-PET2 71
[176] 2019 ChIA-PET Analysis pipeline ChIAPoP 5
[177] 2020 ChIA-PET Analysis pipeline ChIA-PIPE 8
[178] 2020 ChIA-PET Consider different noise levels in different genomic regions MACPET 0
Tab.5  Methods of calling loops from 3C-based data
Fig.4  Dynamic EPI affects gene transcription.
Category Refs. Time Source data Method Software name Citation number
Traditional machine  learning-based +  call loops from Hi-C data [42] 2014 DNA, histone marks, TFBSs, RNA-seq, ChIA-PET Random forest IM-PET 242
[143] 2016 ChIP-seq, Hi-C Machine learning-based TargetFinder 349
[154] 2019 Hi-C, enhancer, and promoter DNA sequences, ChIP-seq Data screen, balanced and unbalanced models EPIP 22
[188] 2020 ChIP-seq, RNA-seq, Hi-C Machine-learning-based 3DPredictor 32
Traditional machine learning-based [203] 2017 ChIP-Seq Bayesian classifier EP_Bayes 8
[187] 2017 DHS, distance, eRNA, histone marks, ChIA-PET/Hi-C/eQTL Linear regression JEME 166
[183] 2017 5C, FAIRE-seq, ChIP-seq, Cap-analysis gene expression (CAGE), DNA methylation, nucleosome occupancy, eRNAs, chromatin state Random forest classifier 11
[144] 2017 DNA sequence Gradient boosting PEP 67
[204] 2018 DNA structure properties and transcription factor binding motifs Machine-learning-based 3
[145] 2018 DNA sequences of arbitrary lengths Natural language processing and unsupervised deep learning (extract sequence embedding feature), GBDT EP2vec 56
[147] 2019 ChIP-seq Random forest 2
[179] 2020 DNA sequence, ChIP-seq, annotation file XGBoost-based XGBoost 11
[205] 2022 CT-FOCS Linear mixed effect models ct-focs 2
Deep-learning-based [148] 2019 DNA sequence CNN and a recurrent neural network EPIsCNN 38
[146] 2019 DNA sequence CNN, LSTM SPEID 94
[149] 2020 DNA sequence Dna2vec, deep-learning-based EPIVAN 100
[155] 2020 Hi-C, ChromHMM of Roadmap Epigenomics CNN, transfer learning SEPT 14
[151] 2021 DNA sequence CNN, bidirectional gated recurrent unit network and matching heuristic mechanism EPI-DLMH 18
[152] 2021 Hi-C, DNA sequence, Hilbert curve encoding, transfer learning EPIsHilbert 2
[184] 2022 Hi-C, ChIA-PET Transformer-based model TransEPI 1
[153] 2022 DNA sequence Dna2vec, transfer learning EPI-Mind 0
[185] 2022 A web server for prediction EPI EPIXplorer 0
Tab.6  Prediction methods of enhancer-promoter interaction (EPI)
CREs cis-acting regulatory elements
EPI(s) Enhancer-promoter interaction(s)
TSS Transcription start sites
ChIP-seq Chromatin immunoprecipitation
CUT& RUN Cleavage under targets and release using nuclease
Hi-C High-throughput chromosome conformation capture
ChIA-PET Chromatin interaction analysis with paired-end-tag sequencing
TFs Transcription factors
TFBS Transcription factor binding sites
CKSNAP Composition of k-spaced nucleic acid pair
DCC Dinucleotide-based cross covariance
PseDNC Pseudo dinucleotide composition
PseKNC Pseudo k-tuple nucleotide composition
SVM Support vector machine
CNN Convolution neural network
GBDT Gradient boosting decision tree
LSTM Long short-term memory
DE Downstream element
  
1 V. A., Bondarenko, Y. V., Liu, Y. I. Jiang, V. Studitsky, (2003). Communication over a large distance: enhancers and insulators. Biochem. Cell Biol., 81: 241–251
https://doi.org/10.1139/o03-051
2 J. L. Plank, (2014). Enhancer function: mechanistic and genome-wide insights come together. Mol. Cell, 55: 5–14
https://doi.org/10.1016/j.molcel.2014.06.015
3 V. Haberle, (2016). Promoter architectures and developmental gene regulation. Semin. Cell Dev. Biol., 57: 11–23
https://doi.org/10.1016/j.semcdb.2016.01.014
4 O., Harismendy, D., Notani, X., Song, N. G., Rahim, B., Tanasa, N., Heintzman, B., Ren, X. D., Fu, E. J., Topol, M. G. Rosenfeld, et al.. (2011). 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature, 470: 264–268
https://doi.org/10.1038/nature09753
5 X., Luo, Y., Liu, D., Dang, T., Hu, Y., Hou, X., Meng, F., Zhang, T., Li, C., Wang, M. Li, et al.. (2021). 3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell, 184: 723–740.e21
https://doi.org/10.1016/j.cell.2021.01.001
6 A. D., Schmitt, M., Hu, I., Jung, Z., Xu, Y., Qiu, C. L., Tan, Y., Li, S., Lin, Y., Lin, C. L. Barr, et al.. (2016). A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep., 17: 2042–2059
https://doi.org/10.1016/j.celrep.2016.10.061
7 C., Policarpi, L., Crepaldi, E., Brookes, J., Nitarska, S. M., French, A. Coatti, (2017). Enhancer sines link pol III to pol II transcription in neurons. Cell Rep., 21: 2879–2894
https://doi.org/10.1016/j.celrep.2017.11.019
8 M. R., Mumbach, A. T., Satpathy, E. A., Boyle, C., Dai, B. G., Gowen, S. W., Cho, M. L., Nguyen, A. J., Rubin, J. M., Granja, K. R. Kazane, et al.. (2017). Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet., 49: 1602–1612
https://doi.org/10.1038/ng.3963
9 D., May, M. J., Blow, T., Kaplan, D. J., McCulley, B. C., Jensen, J. A., Akiyama, A., Holt, I., Plajzer-Frick, M., Shoukry, C. Wright, et al.. (2011). Large-scale discovery of enhancers from human heart tissue. Nat. Genet., 44: 89–93
https://doi.org/10.1038/ng.1006
10 L. J., Davison, C., Wallace, J. D., Cooper, N. F., Cope, N. K., Wilson, D. J., Smyth, J. M., Howson, N., Saleh, A., Al-Jeffery, K. L. Angus, et al.. (2012). Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum. Mol. Genet., 21: 322–333
https://doi.org/10.1093/hmg/ddr468
11 S., Smemo, J. J., Tena, K. Kim, E. R., Gamazon, N. J., Sakabe, I., Aneas, F. L., Credidio, D. R., Sobreira, N. F. Wasserman, et al.. (2014). Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature, 507: 371–375
https://doi.org/10.1038/nature13138
12 C., Schmidl, A. F., Rendeiro, N. C. Sheffield, (2015). ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat. Methods, 12: 963–965
https://doi.org/10.1038/nmeth.3542
13 M. F., Carey, C. L. Peterson, S. Smale, (2009). Chromatin immunoprecipitation (ChIP). Cold Spring Harb. Protoc., 2009: pdb.prot5279
14 P. J. Skene, (2017). An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife, 6: e21856
https://doi.org/10.7554/eLife.21856
15 J. M., Belton, R. P., McCord, J. H., Gibcus, N., Naumova, Y. Zhan, (2012). Hi-C: a comprehensive technique to capture the conformation of genomes. Methods, 58: 268–276
https://doi.org/10.1016/j.ymeth.2012.05.001
16 Z., Liang, G., Li, Z., Wang, M. N., Djekidel, Y., Li, M. Qian, M. Q. Zhang, (2017). BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions. Nat. Commun., 8: 1622
https://doi.org/10.1038/s41467-017-01754-3
17 S., Schoenfelder, B. M., Javierre, M., Furlan-Magaril, S. W. Wingett, (2018). Promoter capture Hi-C: high-resolution, genome-wide profiling of promoter interactions. J. Vis. Exp., (136): e57320
18 G., Li, X., Ruan, R. K., Auerbach, K. S., Sandhu, M., Zheng, P., Wang, H. M., Poh, Y., Goh, J., Lim, J. Zhang, et al.. (2012). Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148: 84–98
https://doi.org/10.1016/j.cell.2011.12.014
19 M. R., Mumbach, A. J., Rubin, R. A., Flynn, C., Dai, P. A., Khavari, W. J. Greenleaf, H. Chang, (2016). HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods, 13: 919–922
https://doi.org/10.1038/nmeth.3999
20 Z. U., Khan, D. C., Pi, S. L., Yao, A., Nawaz, F. Ali, (2021). Pienpred: a bi-layered discriminative model for enhancers and their subtypes via novel cascade multi-level subset feature selection algorithm. Front. Comput. Sci., 15: 1–11
https://doi.org/10.1007/s11704-020-9504-3
21 A., Visel, E. M. Rubin, L. Pennacchio, (2009). Genomic views of distant-acting enhancers. Nature, 461: 199–205
https://doi.org/10.1038/nature08451
22 M. Levine, (2010). Transcriptional enhancers in animal development and evolution. Curr. Biol., 20: R754–R763
https://doi.org/10.1016/j.cub.2010.06.070
23 M. Bulger, (2011). Functional and mechanistic diversity of distal transcription enhancers. Cell, 144: 327–339
https://doi.org/10.1016/j.cell.2011.01.024
24 T. K. Kim, (2015). Architectural and functional commonalities between enhancers and promoters. Cell, 162: 948–959
https://doi.org/10.1016/j.cell.2015.08.008
25 C. T. Ong, V. Corces, (2011). Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet., 12: 283–293
https://doi.org/10.1038/nrg2957
26 E. Calo, (2013). Modification of enhancer chromatin: what, how, and why? Mol. Cell, 49: 825–837
https://doi.org/10.1016/j.molcel.2013.01.038
27 L., Yao, B. P. Berman, P. Farnham, (2015). Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Crit. Rev. Biochem. Mol. Biol., 50: 550–573
https://doi.org/10.3109/10409238.2015.1087961
28 D., Kleftogiannis, P. Kalnis, V. Bajic, (2016). Progress and challenges in bioinformatics approaches for enhancer identification. Brief. Bioinform., 17: 967–979
https://doi.org/10.1093/bib/bbv101
29 L. W. K., Lim, H. H., Chung, Y. L. Chong, N. Lee, (2018). A survey of recently emerged genome-wide computational enhancer predictor tools. Comput. Biol. Chem., 74: 132–141
https://doi.org/10.1016/j.compbiolchem.2018.03.019
30 A., Kaur, A. P. S., Chauhan, A. K. Aggarwal, (2019). Machine learning based comparative analysis of methods for enhancer prediction in genomic data. In: 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), 142–145
31 O. Kyrchanova, (2021). Mechanisms of enhancer-promoter interactions in higher eukaryotes. Int. J. Mol. Sci., 22: 671
https://doi.org/10.3390/ijms22020671
32 A., Mora, G. K., Sandve, O. S. Gabrielsen, (2016). In the loop: promoter-enhancer interactions and bioinformatics. Brief. Bioinform., 17: 980–995
33 T., Vanhaeren, F., Divina, M., a-Torres, F., mez-Vela, W. Vanhoof, (2020). A comparative study of supervised machine learning algorithms for the prediction of long-range chromatin interactions. Genes (Basel), 11: 985
https://doi.org/10.3390/genes11090985
34 H., Tao, H., Li, K., Xu, H., Hong, S., Jiang, G., Du, J., Wang, Y., Sun, X., Huang, Y. Ding, et al.. (2021). Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles. Brief. Bioinform., 22: bbaa405
https://doi.org/10.1093/bib/bbaa405
35 H., Xu, S., Zhang, X., Yi, D. Plewczynski, M. Li, (2020). Exploring 3D chromatin contacts in gene regulation: the evolution of approaches for the identification of functional enhancer-promoter interaction. Comput. Struct. Biotechnol. J., 18: 558–570
https://doi.org/10.1016/j.csbj.2020.02.013
36 C., He, G., Li, D. M., Nadhir, Y., Chen, X. Wang, M. Zhang, (2016). Advances in computational CHiA-PET data analysis. Quant. Biol., 4: 217–225
https://doi.org/10.1007/s40484-016-0080-3
37 X., Min, F. Lu, (2021). Sequence-based deep learning frameworks on enhancer-promoter interactions prediction. Curr. Pharm. Des., 27: 1847–1855
https://doi.org/10.2174/1381612826666201124112710
38 S. Schoenfelder, (2019). Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet., 20: 437–455
https://doi.org/10.1038/s41576-019-0128-0
39 O. I., Kulaeva, E. V., Nizovtseva, Y. S., Polikanov, S. V. Ulianov, V. Studitsky, (2012). Distant activation of transcription: mechanisms of enhancer action. Mol. Cell. Biol., 32: 4892–4897
https://doi.org/10.1128/MCB.01127-12
40 A., Williams, C. G. Spilianakis, R. Flavell, (2010). Interchromosomal association and gene regulation in trans. Trends Genet., 26: 188–197
https://doi.org/10.1016/j.tig.2010.01.007
41 P. G., Maass, A. R. Barutcu, J. Rinn, (2019). Interchromosomal interactions: a genomic love story of kissing chromosomes. J. Cell Biol., 218: 27–38
https://doi.org/10.1083/jcb.201806052
42 B., He, C., Chen, L. Teng, (2014). Global view of enhancer-promoter interactome in human cells. Proc. Natl. Acad. Sci. USA, 111: E2191–E2199
https://doi.org/10.1073/pnas.1320308111
43 B., Patel, Y., Kang, K., Cui, M., Litt, M. S., Riberio, C., Deng, T., Salz, S., Casada, X., Fu, Y. Qiu, et al.. (2014). Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia, 28: 349–361
https://doi.org/10.1038/leu.2013.158
44 D., Lee, R. Karchin, M. Beer, (2011). Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res., 21: 2167–2180
https://doi.org/10.1101/gr.121905.111
45 L., Taher, L. Narlikar, (2012). Clare: cracking the language of regulatory elements. Bioinformatics, 28: 581–583
https://doi.org/10.1093/bioinformatics/btr704
46 M. ndez, (2012). Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines. Nucleic Acids Res., 40: e77–e77
https://doi.org/10.1093/nar/gks149
47 N., Rajagopal, W., Xie, Y., Li, U., Wagner, W., Wang, J., Stamatoyannopoulos, J., Ernst, M. Kellis, (2013). RFECS: a random-forest based algorithm for enhancer identification from chromatin state. PLOS Comput. Biol., 9: e1002968
https://doi.org/10.1371/journal.pcbi.1002968
48 M., Ghandi, D., Lee, M. Mohammad-Noori, M. Beer, (2014). Enhanced regulatory sequence prediction using gapped k-mer features. PLOS Comput. Biol., 10: e1003711
https://doi.org/10.1371/journal.pcbi.1003711
49 G. D., Erwin, N., Oksenberg, R. M., Truty, D., Kostka, K. K., Murphy, N., Ahituv, K. S. Pollard, J. Capra, (2014). Integrating diverse datasets improves developmental enhancer prediction. PLOS Comput. Biol., 10: e1003677
https://doi.org/10.1371/journal.pcbi.1003677
50 Y., Lu, W., Qu, G. Shan, (2015). Delta: a distal enhancer locating tool based on AdaBoost algorithm and shape features of chromatin modifications. PLoS One, 10: e0130622
https://doi.org/10.1371/journal.pone.0130622
51 D., Kleftogiannis, P. Kalnis, V. Bajic, (2015). DEEP: a general computational framework for predicting enhancers. Nucleic Acids Res., 43: e6
https://doi.org/10.1093/nar/gku1058
52 B. Liu, (2016). Ienhancer-psedeknc: identification of enhancers and their subgroups based on pseudo degenerate kmer nucleotide composition. Neurocomputing, 217: 46–52
https://doi.org/10.1016/j.neucom.2015.12.138
53 B., Liu, L., Fang, R., Long, X. Lan, K. Chou, (2016). iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 32: 362–369
https://doi.org/10.1093/bioinformatics/btv604
54 C. Jia, (2016). EnhancerPred: a predictor for discovering enhancers based on the combination and selection of multiple features. Sci. Rep., 6: 38741
https://doi.org/10.1038/srep38741
55 J., Xu, H. Hu, (2016). Lmethyr-svm: predict human enhancers using low methylated regions based on weighted support vector machines. PLoS One, 11: e0163491
https://doi.org/10.1371/journal.pone.0163491
56 L. L., Colbran, L. Chen, J. Capra, (2017). Short DNA sequence patterns accurately identify broadly active human enhancers. BMC Genomics, 18: 536
https://doi.org/10.1186/s12864-017-3934-9
57 W. He, (2017). EnhancerPred2.0: predicting enhancers and their strength based on position-specific trinucleotide propensity and electron-ion interaction potential feature selection. Mol. Biosyst., 13: 767–774
https://doi.org/10.1039/C7MB00054E
58 Y., He, D. U., Gorkin, D. E., Dickel, J. R., Nery, R. G., Castanon, A. Y., Lee, Y., Shen, A., Visel, L. A., Pennacchio, B. Ren, et al.. (2017). Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proc. Natl. Acad. Sci. USA, 114: E1633–E1640
https://doi.org/10.1073/pnas.1618353114
59 B., Liu, K., Li, D. S. Huang, K. Chou, (2018). iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics, 34: 3835–3842
https://doi.org/10.1093/bioinformatics/bty458
60 D., Kleftogiannis, H. Ashoor, V. Bajic, (2018). Tels: a novel computational framework for identifying motif signatures of transcribed enhancers. Genom. Proteom. Bioinf., 16: 332–341
https://doi.org/10.1016/j.gpb.2018.05.003
61 A. P., Singh, S. Mishra, (2018). Sequence based prediction of enhancer regions from DNA random walk. Sci. Rep., 8: 15912
https://doi.org/10.1038/s41598-018-33413-y
62 A., Sethi, M., Gu, E., Gumusgoz, L., Chan, K. K., Yan, J., Rozowsky, I., Barozzi, V., Afzal, J. A., Akiyama, I. Plajzer-Frick, et al.. (2020). Supervised enhancer prediction with epigenetic pattern recognition and targeted validation. Nat. Methods, 17: 807–814
https://doi.org/10.1038/s41592-020-0907-8
63 D. Y., Lim, J., Khanal, H. Tayara, K. Chong, (2021). Ienhancer-rf: identifying enhancers and their strength by enhanced feature representation using random forest. Chemom. Intell. Lab. Syst., 212: 104284
https://doi.org/10.1016/j.chemolab.2021.104284
64 Y., Lyu, Z., Zhang, J., Li, W., He, Y. Ding, (2021). Ienhancer-kl: a novel two-layer predictor for identifying enhancers by position specific of nucleotide composition. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 18: 2809–2815
https://doi.org/10.1109/TCBB.2021.3053608
65 X., Niu, K., Deng, L., Liu, K. Yang, (2021). A statistical framework for predicting critical regions of p53-dependent enhancers. Brief. Bioinform., 22: bbaa053
https://doi.org/10.1093/bib/bbaa053
66 S., Basith, M. M., Hasan, G., Lee, L. Wei, (2021). Integrative machine learning framework for the identification of cell-specific enhancers from the human genome. Brief. Bioinform., 22: bbab252
https://doi.org/10.1093/bib/bbab252
67 H. A., Firpi, D. Ucar, (2010). Discover regulatory DNA elements using chromatin signatures and artificial neural network. Bioinformatics, 26: 1579–1586
https://doi.org/10.1093/bioinformatics/btq248
68 F., Liu, H., Li, C., Ren, X. Bo, (2016). PEDLA: predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep., 6: 28517
https://doi.org/10.1038/srep28517
69 X., Min, W., Zeng, S., Chen, N., Chen, T. Chen, (2017). Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics, 18: 478
https://doi.org/10.1186/s12859-017-1878-3
70 B., Yang, F., Liu, C., Ren, Z., Ouyang, Z., Xie, X. Bo, (2017). BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics, 33: 1930–1936
https://doi.org/10.1093/bioinformatics/btx105
71 A., Thibodeau, A., Uyar, S., Khetan, M. L. Stitzel, (2018). A neural network based model effectively predicts enhancers from clinical ATAC-seq samples. Sci. Rep., 8: 16048
https://doi.org/10.1038/s41598-018-34420-9
72 N. Q. K., Le, E. K. Y., Yapp, Q. T., Ho, N., Nagasundaram, Y. Y. Ou, H. Yeh, (2019). iEnhancer-5Step: identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal. Biochem., 571: 53–61
https://doi.org/10.1016/j.ab.2019.02.017
73 J., Khanal, H. Tayara, K. Chong, (2020). Identifying enhancers and their strength by the integration of word embedding and convolution neural network. IEEE Access, 8: 58369–58376
https://doi.org/10.1109/ACCESS.2020.2982666
74 S., Chen, M., Gan, H. Lv, (2021). Deepcape: a deep convolutional neural network for the accurate prediction of enhancers. Genom. Proteom. Bioinf., 19: 565–577
https://doi.org/10.1016/j.gpb.2019.04.006
75 Z., Chen, J., Zhang, J., Liu, Y., Dai, D., Lee, M. R., Min, M. Xu, (2021). DECODE: a Deep-learning framework for condensing enhancers and refining boundaries with large-scale functional assays. Bioinformatics, 37: i280–i288
https://doi.org/10.1093/bioinformatics/btab283
76 T. H., Zhang, M. Flores, (2021). ES-ARCNN: predicting enhancer strength by using data augmentation and residual convolutional neural network. Anal. Biochem., 618: 114120
https://doi.org/10.1016/j.ab.2021.114120
77 N., Inayat, M., Khan, N., Iqbal, S., Khan, M., Raza, D. M., Khan, A. Khan, D. Wei, (2021). Ienhancer-dhf: identification of enhancers and their strengths using optimize deep neural network with multiple features extraction methods. IEEE Access, 9: 40783–40796
https://doi.org/10.1109/ACCESS.2021.3062291
78 R., Yang, F., Wu, C. Zhang, (2021). Ienhancer-gan: a deep learning framework in combination with word embedding and sequence generative adversarial net to identify enhancers and their strength. Int. J. Mol. Sci., 22: 3589
https://doi.org/10.3390/ijms22073589
79 Y., Gao, Y., Chen, H., Feng, Y. Zhang, (2022). Ricenn: prediction of rice enhancers with neural network based on DNA sequences. Interdiscip. Sci., 14: 555–565
https://doi.org/10.1007/s12539-022-00503-5
80 S. Amilpur, (2022). A sequence-based two-layer predictor for identifying enhancers and their strength through enhanced feature extraction. J. Bioinform. Comput. Biol., 20: 2250005
https://doi.org/10.1142/S0219720022500056
81 H., Kamran, M., Tahir, H. Tayara, K. Chong, (2022). Ienhancer-deep: a computational predictor for enhancer sites and their strength using deep learning. Appl. Sci. (Basel), 12: 2120
https://doi.org/10.3390/app12042120
82 S., Zhao, Q., Pan, Q., Zou, Y., Ju, L. Shi, (2022). Identifying and classifying enhancers by dinucleotide-based auto-cross covariance and attention-based Bi-LSTM. Comput. Math. Methods Med., 2022: 7518779
https://doi.org/10.1155/2022/7518779
83 K. Song, (2012). Recognition of prokaryotic promoters based on a novel variable-window Z-curve method. Nucleic Acids Res., 40: 963–971
https://doi.org/10.1093/nar/gkr795
84 Y., Li, C. Y. Chen, W. Wasserman, (2016). Deep feature selection: theory and application to identify enhancers and promoters. J. Comput. Biol., 23: 322–336
https://doi.org/10.1089/cmb.2015.0189
85 R. K. Umarov, V. Solovyev, (2017). Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One, 12: e0171410
https://doi.org/10.1371/journal.pone.0171410
86 R. V., Coelho, S., de Avila E Silva, S., Echeverrigaray, A. P. L. Delamare, A. P. Delamare, (2018). Bacillus subtilis promoter sequences data set for promoter prediction in Gram-positive bacteria. Data Brief, 19: 264–270
https://doi.org/10.1016/j.dib.2018.05.025
87 B., Liu, F., Yang, D. S. Huang, K. Chou, (2018). iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 34: 33–40
https://doi.org/10.1093/bioinformatics/btx579
88 M., Oubounyt, Z., Louadi, H. Tayara, K. Chong, (2019). Deepromoter: robust promoter predictor using deep learning. Front. Genet., 10: 286
https://doi.org/10.3389/fgene.2019.00286
89 N. Q. K., Le, E. K. Y., Yapp, N. Nagasundaram, H. Yeh, (2019). Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous fasttext N-grams. Front. Bioeng. Biotechnol., 7: 305
https://doi.org/10.3389/fbioe.2019.00305
90 R., Umarov, H., Kuwahara, Y., Li, X. Gao, (2019). Promoter analysis and prediction in the human genome using sequence-based deep learning models. Bioinformatics, 35: 2730–2737
https://doi.org/10.1093/bioinformatics/bty1068
91 H. Y., Lai, Z. Y., Zhang, Z. D., Su, W., Su, H., Ding, W. Chen, (2019). Iproep: a computational predictor for predicting promoter. Mol. Ther. Nucleic Acids, 17: 337–346
https://doi.org/10.1016/j.omtn.2019.05.028
92 B. Liu, (2019). Ipromoter-2l2. 0: identifying promoters and their types by combining smoothing cutting window algorithm and sequence-based features. Mol. Ther. Nucleic Acids, 18: 80–87
https://doi.org/10.1016/j.omtn.2019.08.008
93 M. S., Rahman, U., Aktar, M. R. Jani, (2019). iPromoter-FSEn: identification of bacterial σ70 promoter sequences using feature subspace based ensemble classifier. Genomics, 111: 1160–1166
https://doi.org/10.1016/j.ygeno.2018.07.011
94 M. S., Rahman, U., Aktar, M. R. Jani, (2019). iPro70-FMWin: identifying Sigma70 promoters using multiple windowing and minimal features. Mol. Genet. Genomics, 294: 69–84
https://doi.org/10.1007/s00438-018-1487-5
95 X., Xiao, Z. C., Xu, W. R., Qiu, P., Wang, H. T. Ge, K. Chou, (2019). iPSW(2L)-PseKNC: a two-layer predictor for identifying promoters and their strength by hybrid features via pseudo k-tuple nucleotide composition. Genomics, 111: 1785–1793
https://doi.org/10.1016/j.ygeno.2018.12.001
96 M., Zhang, F., Li, T. T., Marquez-Lago, A., Leier, C., Fan, C. K., Kwoh, K. C., Chou, J. Song, (2019). MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. Bioinformatics, 35: 2957–2965
https://doi.org/10.1093/bioinformatics/btz016
97 Y. L., Chen, D. H. Guo, Q. Li, (2020). An energy model for recognizing the prokaryotic promoters based on molecular structure. Genomics, 112: 2072–2079
https://doi.org/10.1016/j.ygeno.2019.12.001
98 R., Amin, C. R., Rahman, S., Ahmed, M. H. R., Sifat, M. N. K., Liton, M. M., Rahman, M. Z. H. Khan, (2020). iPromoter-BnCNN: a novel branched CNN-based predictor for identifying and classifying sigma promoters. Bioinformatics, 36: 4869–4875
https://doi.org/10.1093/bioinformatics/btaa609
99 H., Tayara, M. Tahir, K. Chong, (2020). Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics, 112: 1396–1403
https://doi.org/10.1016/j.ygeno.2019.08.009
100 M., Shujaat, A., Wahab, H. Tayara, K. Chong, (2020). Pcpromoter-CNN: a CNN-based prediction and classification of promoters. Genes (Basel), 11: 1529
https://doi.org/10.3390/genes11121529
101 Y., Liang, S., Zhang, H. Qiao, (2021). iPromoter-ET: identifying promoters and their strength by extremely randomized trees-based feature selection. Anal. Biochem., 630: 114335
https://doi.org/10.1016/j.ab.2021.114335
102 M., Shujaat, S. B., Lee, H. Tayara, K. Chong, (2021). Cr-prom: a convolutional neural network-based model for the prediction of rice promoters. IEEE Access, 9: 81485–81491
https://doi.org/10.1109/ACCESS.2021.3086102
103 Y., Lyu, W., He, S., Li, Q. Zou, (2021). Ipro2l-pstknc: a two-layer predictor for discovering various types of promoters by position specific of nucleotide composition. IEEE J. Biomed. Health Inform., 25: 2329–2337
https://doi.org/10.1109/JBHI.2020.3026735
104 A., Sun, X. Xiao, (2021). Iptt(2 L)-CNN: a two-layer predictor for identifying promoters and their types in plant genomes by convolutional neural network. Comput. Math. Methods Med., 2021: 6636350
https://doi.org/10.1155/2021/6636350
105 Y., Zhu, F., Li, D., Xiang, T., Akutsu, J. Song, (2021). Computational identification of eukaryotic promoters based on cascaded deep capsule neural networks. Brief. Bioinform., 22: bbaa299
https://doi.org/10.1093/bib/bbaa299
106 R., Bhukya, A., Kumari, S. Amilpur, C. Dasari, (2022). PPred-PCKSM: a multi-layer predictor for identifying promoter and its variants using position based features. Comput. Biol. Chem., 97: 107623
https://doi.org/10.1016/j.compbiolchem.2022.107623
107 H., Li, L., Shi, W., Gao, Z., Zhang, L., Zhang, Y. Zhao, (2022). dPromoter-XGBoost: detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods, 204: 215–222
https://doi.org/10.1016/j.ymeth.2022.01.001
108 Q. W., Li, L. C., Zhang, L., Xu, Q., Zou, J. Wu, Q. Li, (2022). Identification and classification of promoters using the attention mechanism based on long short-term memory. Front. Comput. Sci., 16: 164348
https://doi.org/10.1007/s11704-021-0548-9
109 H., Qiao, S., Zhang, T., Xue, J. Wang, (2022). iPro-GAN: a novel model based on generative adversarial learning for identifying promoters and their strength. Comput. Methods Programs Biomed., 215: 106625
https://doi.org/10.1016/j.cmpb.2022.106625
110 Y., Wang, Q., Peng, X., Mou, X., Wang, H., Li, T., Han, Z. Sun, (2022). A successful hybrid deep learning model aiming at promoter identification. BMC Bioinformatics, 23: 206
https://doi.org/10.1186/s12859-022-04735-6
111 P. J., Wei, Z. Z., Pang, L. J., Jiang, D. Y., Tan, Y. S. Su, C. Zheng, (2022). Promoter prediction in nannochloropsis based on densely connected convolutional neural networks. Methods, 204: 38–46
https://doi.org/10.1016/j.ymeth.2022.03.017
112 B., Mifsud, F., Tavares-Cadete, A. N., Young, R., Sugar, S., Schoenfelder, L., Ferreira, S. W., Wingett, S., Andrews, W., Grey, P. A. Ewels, et al.. (2015). Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet., 47: 598–606
https://doi.org/10.1038/ng.3286
113 B. M., Javierre, O. S., Burren, S. P., Wilder, R., Kreuzhuber, S. M., Hill, S., Sewitz, J., Cairns, S. W., Wingett, C., rnai, M. J. Thiecke, et al.. (2016). Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell, 167: 1369–1384.e19
https://doi.org/10.1016/j.cell.2016.09.037
114 T., Mikolov, W. Yih, (2013). Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human language technologies, 746–751
115 J., Pennington, R. Socher, C. Manning, (2014). Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543
116 P. Ng, (2017). Dna2vec: consistent vector representations of variable-length k-mers. arXiv, 1701.06279
117 Y., Jiang, F., Qian, X., Bai, Y., Liu, Q., Wang, B., Ai, X., Han, S., Shi, J., Zhang, X. Li, et al.. (2019). SEdb: a comprehensive human super-enhancer database. Nucleic Acids Res., 47: D235–D243
https://doi.org/10.1093/nar/gky1025
118 R. C., rier, V., Praz, T., Junier, C. Bonnard, (2000). The eukaryotic promoter database (EPD). Nucleic Acids Res., 28: 302–303
https://doi.org/10.1093/nar/28.1.302
119 V., Ferretti, C., Poitras, D., Bergeron, B., Coulombe, F. Robert, (2007). PReMod: a database of genome-wide mammalian cis-regulatory module predictions. Nucleic Acids Res., 35: D122–D126
https://doi.org/10.1093/nar/gkl879
120 R., Andersson, C., Gebhard, I., Miguel-Escalada, I., Hoof, J., Bornholdt, M., Boyd, Y., Chen, X., Zhao, C., Schmidl, T. Suzuki, et al.. (2014). An atlas of active enhancers across human cell types and tissues. Nature, 507: 455–461
https://doi.org/10.1038/nature12787
121 A., Visel, S., Minovitsky, I. Dubchak, L. Pennacchio, (2007). VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res., 35: D88–D92
https://doi.org/10.1093/nar/gkl822
122 H. A., Hoke, C. Y., Lin, A., Lau, D. A., Orlando, C. R., Vakoc, J. E., Bradner, T. I. Lee, R. Young, (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 153: 320–334
https://doi.org/10.1016/j.cell.2013.03.036
123 X., Bai, S., Shi, B., Ai, Y., Jiang, Y., Liu, X., Han, M., Xu, Q., Pan, F., Wang, Q. Wang, et al.. (2020). ENdb: a manually curated database of experimentally supported enhancers for human and mouse. Nucleic Acids Res., 48: D51–D57
124 Y., Wei, S., Zhang, S., Shang, B., Zhang, S., Li, X., Wang, F., Wang, J., Su, Q., Wu, H. Liu, et al.. (2016). SEA: a super-enhancer archive. Nucleic Acids Res., 44: D172–D179
https://doi.org/10.1093/nar/gkv1243
125 Z. N., Cai, Y., Cui, Z. Y., Tan, G. H., Zhang, Z. Y., Tan, X. L. Zhang, Y. Peng, (2019). RAEdb: A database of enhancers identified by high-throughput reporter assays. Database (Oxford), bay140
126 Z. W., Guo, C., Xie, K., Li, X. M., Zhai, G. X., Cai, X. X. Yang, Y. Wu, (2019). Seler: a database of super-enhancer-associated lncRNA-directed transcriptional regulation in human cancers. Database (Oxford), baz027
127 W. W., Zeng, X. Min, (2019). Endisease: a manually curated database for enhancer-disease associations. Database (Oxford), baz020
128 M., Huang, Y., Wang, M., Yang, J., Yan, H., Yang, W., Zhuang, Y., Xu, H. P., Koeffler, D. C. Lin, (2020). dbInDel: a database of enhancer-associated insertion and deletion variants by analysis of H3K27ac ChIP-Seq. Bioinformatics, 36: 1649–1651
129 R., Kumar, A., Lathwal, V., Kumar, S., Patiyal, P. K. Raghav, G. P. Raghava, (2020). CancerEnD: a database of cancer associated enhancers. Genomics, 112: 3696–3702
https://doi.org/10.1016/j.ygeno.2020.04.028
130 E. P., Vasyuchenko, P. S., Orekhov, G. A. Armeev, M. Bozdaganyan, (2021). Cpe-db: an open database of chemical penetration enhancers. Pharmaceutics, 13: 66
https://doi.org/10.3390/pharmaceutics13010066
131 W., Jin, G., Jiang, Y., Yang, J., Yang, W., Yang, D., Wang, X., Niu, R., Zhong, Z. Zhang, (2022). Animal-eRNAdb: a comprehensive animal enhancer RNA database. Nucleic Acids Res., 50: D46–D53
https://doi.org/10.1093/nar/gkab832
132 I. A., Shahmuradov, A. J., Gammerman, J. M., Hancock, P. M. Bramley, V. Solovyev, (2003). PlantProm: a database of plant promoter sequences. Nucleic Acids Res., 31: 114–117
https://doi.org/10.1093/nar/gkg041
133 O. G., Smirnova, S. S. Ibragimova, A. Kochetov, (2012). Simple database to select promoters for plant transgenesis. Transgenic Res., 21: 429–437
https://doi.org/10.1007/s11248-011-9538-2
134 I. Grienberg, (2005). Osteo-Promoter Database (OPD)—promoter analysis in skeletal cells. BMC Genomics, 6: 46
https://doi.org/10.1186/1471-2164-6-46
135 R. T., Morris, T. R. Connor, J. Wyrick, (2008). Osiris: an integrated promoter database for Oryza sativa L. Bioinformatics, 24: 2915–2917
https://doi.org/10.1093/bioinformatics/btn537
136 X., Chen, J. M., Wu, K., Hornischer, A. Kel, (2006). Tiprod: the tissue-specific promoter database. Nucleic Acids Res., 34: D104–D107
https://doi.org/10.1093/nar/gkj113
137 K., Nishikata, R. S. Cox, S., Shimoyama, Y., Yoshida, M., Matsui, Y. Makita, (2014). Database construction for PromoterCAD: synthetic promoter design for mammals and plants. ACS Synth. Biol., 3: 192–196
https://doi.org/10.1021/sb400178c
138 R., Dreos, G., Ambrosini, R. C. rier, (2015). The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res., 43: D92–D96
https://doi.org/10.1093/nar/gku1111
139 W., Su, M. L., Liu, Y. H., Yang, J. S., Wang, S. H., Li, H., Lv, F. Y., Dao, H. Yang, (2021). Ppd: a manually curated database for experimentally verified prokaryotic promoters. J. Mol. Biol., 433: 166860
https://doi.org/10.1016/j.jmb.2021.166860
140 L., Gordon, A. Y., Chervonenkis, A. J., Gammerman, I. A. Shahmuradov, V. Solovyev, (2003). Sequence alignment kernel for recognition of promoter regions. Bioinformatics, 19: 1964–1971
https://doi.org/10.1093/bioinformatics/btg265
141 M., Towsey, P., Timms, J. Hogan, S. Mathews, (2008). The cross-species prediction of bacterial promoters using a support vector machine. Comput. Biol. Chem., 32: 359–366
https://doi.org/10.1016/j.compbiolchem.2008.07.009
142 S. Knudsen, (1999). Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics, 15: 356–361
https://doi.org/10.1093/bioinformatics/15.5.356
143 S., Whalen, R. M. Truty, K. Pollard, (2016). Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet., 48: 488–496
https://doi.org/10.1038/ng.3539
144 Y., Yang, R., Zhang, S. Singh, (2017). Exploiting sequence-based features for predicting enhancer-promoter interactions. Bioinformatics, 33: i252–i260
https://doi.org/10.1093/bioinformatics/btx257
145 W., Zeng, M. Wu, (2018). Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics, 19: 84
https://doi.org/10.1186/s12864-018-4459-6
146 S., Singh, Y., Yang, B. czos, (2019). Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. Quant. Biol., 7: 122–137
https://doi.org/10.1007/s40484-019-0154-0
147 T. Zhang, (2019). An approach for recognition of enhancer-promoter associations based on random forest. In: Proceedings of the 2019 4th International Conference on Biomedical Signal and Image Processing (ICBIP 2019), 46–50
148 Z., Zhuang, X. Shen, (2019). A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data. Bioinformatics, 35: 2899–2906
https://doi.org/10.1093/bioinformatics/bty1050
149 Z., Hong, X., Zeng, L. Wei, (2020). Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism. Bioinformatics, 36: 1037–1043
https://doi.org/10.1093/bioinformatics/btz694
150 A. P., Singh, S. Mishra, (2018). Sequence based prediction of enhancer regions from DNA random walk. Sci Rep. 8, 15912
151 X., Min, C., Ye, X. Liu, (2021). Predicting enhancer-promoter interactions by deep learning and matching heuristic. Brief. Bioinform., 22: bbaa254
https://doi.org/10.1093/bib/bbaa254
152 M., Zhang, Y. Hu, (2021). Epishilbert: prediction of enhancer-promoter interactions via hilbert curve encoding and transfer learning. Genes (Basel), 12: 1385
https://doi.org/10.3390/genes12091385
153 Y., Ni, L., Fan, M., Wang, N., Zhang, Y. Zuo, (2022). Epi-mind: identifying enhancer-promoter interactions based on transformer mechanism. Interdiscip. Sci., 14: 786–794
https://doi.org/10.1007/s12539-022-00525-z
154 A., Talukder, S., Saadat, X. Li, (2019). EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction. Bioinformatics, 35: 3877–3883
https://doi.org/10.1093/bioinformatics/btz641
155 F., Jing, S. W. Zhang, (2020). Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network. BMC Bioinformatics, 21: 507
https://doi.org/10.1186/s12859-020-03844-4
156 N. V., Chawla, K. W., Bowyer, L. O. Hall, W. Kegelmeyer, (2002). Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res., 16: 321–357
https://doi.org/10.1613/jair.953
157 S. S. P., Rao, M. H., Huntley, N. C., Durand, E. K., Stamenova, I. D., Bochkov, J. T., Robinson, A. L., Sanborn, I., Machol, A. D., Omer, E. S. Lander, et al.. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159: 1665–1680
https://doi.org/10.1016/j.cell.2014.11.021
158 N., Servant, N., Varoquaux, B. R., Lajoie, E., Viara, C. Chen, J. Vert, E., Heard, J. Dekker, (2015). HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol., 16: 259
https://doi.org/10.1186/s13059-015-0831-x
159 P., Kerpedjiev, N., Abdennur, F., Lekschas, C., McCallum, K., Dinkla, H., Strobelt, J. M., Luber, S. B., Ouellette, A., Azhir, N. Kumar, et al.. (2018). HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol., 19: 125
https://doi.org/10.1186/s13059-018-1486-1
160 Y., Cao, Z., Chen, X., Chen, D., Ai, G., Chen, J., McDermott, Y., Huang, X. Guo, J. Han, (2020). Accurate loop calling for 3D genomic data with cLoops. Bioinformatics, 36: 666–675
https://doi.org/10.1093/bioinformatics/btz651
161 A., Kaul, S. Bhattacharyya, (2020). Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat. Protoc., 15: 991–1012
https://doi.org/10.1038/s41596-019-0273-0
162 A., Roayaei Ardakany, H. T., Gezer, S. Lonardi, (2020). Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation. Genome Biol., 21: 256
https://doi.org/10.1186/s13059-020-02167-0
163 N., Krietenstein, S., Abraham, S. V., Venev, N., Abdennur, J., Gibcus, T. S., Hsieh, K. M., Parsi, L., Yang, R., Maehr, L. A. Mirny, et al.. (2020). Ultrastructural details of mammalian chromosome architecture. Mol. Cell, 78: 554–565.e7
https://doi.org/10.1016/j.molcel.2020.03.003
164 T. M., Lagler, A., Abnousi, M., Hu, Y. Yang, (2021). HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test. Am. J. Hum. Genet., 108: 257–268
https://doi.org/10.1016/j.ajhg.2021.01.009
165 H. Lee, P. Seo, (2021). Hicore: Hi-c analysis for identification of core chromatin looping regions with higher resolution. Mol. Cells, 44: 883–892
https://doi.org/10.14348/molcells.2021.0014
166 C. A. Lareau, M. Aryee, (2018). hichipper: a preprocessing pipeline for calling DNA loops from HiChIP data. Nat. Methods, 15: 155–156
https://doi.org/10.1038/nmeth.4583
167 S., Bhattacharyya, V., Chandra, P. Vijayanand, (2019). Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun., 10: 4221
https://doi.org/10.1038/s41467-019-11950-y
168 R., Fang, M., Yu, G., Li, S., Chee, T., Liu, A. D. Schmitt, (2016). Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res., 26: 1345–1348
https://doi.org/10.1038/cr.2016.137
169 I., Juric, M., Yu, A., Abnousi, R., Raviram, R., Fang, Y., Zhao, Y., Zhang, Y., Qiu, Y., Yang, Y. Li, et al.. (2019). MAPS: model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLOS Comput. Biol., 15: e1006982
https://doi.org/10.1371/journal.pcbi.1006982
170 C., Shi, M. Rattray, (2020). HiChIP-Peaks: a HiChIP peak calling algorithm. Bioinformatics, 36: 3625–3631
https://doi.org/10.1093/bioinformatics/btaa202
171 G., Li, M. J., Fullwood, H., Xu, F. H., Mulawadi, S., Velkov, V., Vega, P. N., Ariyaratne, Y. B., Mohamed, H. S., Ooi, C. Tennakoon, et al.. (2010). ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol., 11: R22
https://doi.org/10.1186/gb-2010-11-2-r22
172 J., Paulsen, E. A., dland, L., Holden, M. Holden, (2014). A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions. Nucleic Acids Res., 42: e143
https://doi.org/10.1093/nar/gku738
173 C., He, M. Q. Zhang, (2015). MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 31: 3832–3834
https://doi.org/10.1093/bioinformatics/btv445
174 M. N., Djekidel, Z., Liang, Q., Wang, Z., Hu, G., Li, Y. Chen, M. Zhang, (2015). 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16: 288
https://doi.org/10.1186/s13059-015-0851-6
175 G., Li, Y., Chen, M. P. Snyder, M. Zhang, (2017). ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis. Nucleic Acids Res., 45: e4
https://doi.org/10.1093/nar/gkw809
176 W., Huang, M., Medvedovic, J. Zhang, (2019). ChIAPoP: a new tool for ChIA-PET data analysis. Nucleic Acids Res., 47: e37
https://doi.org/10.1093/nar/gkz062
177 B., Lee, J., Wang, L., Cai, M., Kim, S., Namburi, H., Tjong, Y., Feng, P., Wang, Z., Tang, A. Abbas, et al.. (2020). ChIA-PIPE: a fully automated pipeline for comprehensive ChIA-PET data analysis and visualization. Sci. Adv., 6: eaay2078
https://doi.org/10.1126/sciadv.aay2078
178 I., Vardaxis, M. B. Rye, B. Lindqvist, (2020). MACPET: model-based analysis for ChIA-PET. Biostatistics, 21: 625–639
https://doi.org/10.1093/biostatistics/kxy084
179 X. J., Yu, J. G., Zhou, M. M., Zhao, C., Yi, Q., Duan, W. Zhou, (2020). Exploiting XGboost for predicting enhancer-promoter interactions. Curr. Bioinform., 15: 1036–1045
https://doi.org/10.2174/1574893615666200120103948
180 P. Bartlett, (2006). Adaboost is consistent. Adv. Neural Inf. Process. Syst., 8: 2347–2368
181 S., Zhang, X. Dong, (2012). Synonym recognition based on user behaviors in E-commerce. Journal of Chinese Information Processing (in Chinese), 26: 79–85
182 T. Chen, (2016). XgBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794
183 Z. X. Feng, Q. Li, (2017). Recognition of long-range enhancer-promoter interactions by adding genomic signatures of segmented regulatory regions. Genomics, 109: 341–352
https://doi.org/10.1016/j.ygeno.2017.05.009
184 K., Chen, H. Zhao, (2022). Capturing large genomic contexts for accurately predicting enhancer-promoter interactions. Brief. Bioinform., 23: bbab577
https://doi.org/10.1093/bib/bbab577
185 L., Tang, Z., Zhong, Y., Lin, Y., Yang, J., Wang, J. F. Martin, (2022). EPIXplorer: a web server for prediction, analysis and visualization of enhancer-promoter interactions. Nucleic Acids Res., 50: W290–W297
https://doi.org/10.1093/nar/gkac397
186 Y., Zhu, Z., Chen, K., Zhang, M., Wang, D., Medovoy, J. W., Whitaker, B., Ding, N., Li, L. Zheng, (2016). Constructing 3D interaction maps from 1D epigenomes. Nat. Commun., 7: 10812
https://doi.org/10.1038/ncomms10812
187 Q., Cao, C., Anyansi, X., Hu, L., Xu, L., Xiong, W., Tang, M. T. S., Mok, C., Cheng, X., Fan, M. Gerstein, et al.. (2017). Reconstruction of enhancer-target networks in 935 samples of human primary cells, tissues and cell lines. Nat. Genet., 49: 1428–1436
https://doi.org/10.1038/ng.3950
188 P. S., Belokopytova, M. A., Nuriddinov, E. A., Mozheiko, D. Fishman, (2020). Quantitative prediction of enhancer-promoter interactions. Genome Res., 30: 72–84
https://doi.org/10.1101/gr.249367.119
189 C. A. Lareau, M. Aryee, (2018). diffloop: a computational framework for identifying and analyzing differential DNA loops from sequencing data. Bioinformatics, 34: 672–674
https://doi.org/10.1093/bioinformatics/btx623
190 A. T. Lun, G. Smyth, (2015). diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinformatics, 16: 258
https://doi.org/10.1186/s12859-015-0683-0
191 M. N., Djekidel, Y. Chen, M. Zhang, (2018). FIND: difFerential chromatin INteractions Detection using a spatial Poisson process. Genome Res., 28: 412–422
https://doi.org/10.1101/gr.212241.116
192 J. C., Stansfield, K. G., Cresswell, V. I. Vladimirov, M. Dozmorov, (2018). HiCcompare: an R-package for joint normalization and comparison of Hi-C datasets. BMC Bioinformatics, 19: 279
https://doi.org/10.1186/s12859-018-2288-x
193 J. C., Stansfield, K. G. Cresswell, M. Dozmorov, (2019). multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments. Bioinformatics, 35: 2916–2923
https://doi.org/10.1093/bioinformatics/btz048
194 L., Baudry, G. A., Millot, A., Thierry, R. Koszul, V. Scolari, (2020). Serpentine: a flexible 2D binning method for differential Hi-C analysis. Bioinformatics, 36: 3645–3651
https://doi.org/10.1093/bioinformatics/btaa249
195 K. J., Karczewski, J. T., Dudley, K. R., Kukurba, R., Chen, A. J., Butte, S. B. Montgomery, (2013). Systematic functional regulatory assessment of disease-associated variants. Proc. Natl. Acad. Sci. USA, 110: 9607–9612
https://doi.org/10.1073/pnas.1219099110
196 O., Corradin, A., Saiakhova, B., Akhtar-Zaidi, L., Myeroff, J., Willis, R., Cowper-Sal lari, M., Lupien, S. Markowitz, P. Scacheri, (2014). Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res., 24: 1–13
https://doi.org/10.1101/gr.164079.113
197 N. V. N. Carullo, J. Day, (2019). Genomic enhancers in brain health and disease. Genes (Basel), 10: 43
https://doi.org/10.3390/genes10010043
198 J. Marsman, J. Horsfield, (2012). Long distance relationships: enhancer-promoter communication and dynamic gene transcription. Gene Regulatory Mechanisms., 1819: 1217–1227
199 Y., Li, Y., He, Z., Liang, Y., Wang, F., Chen, M. N., Djekidel, G., Li, X., Zhang, S., Xiang, Z. Wang, et al.. (2018). Alterations of specific chromatin conformation affect ATRA-induced leukemia cell differentiation. Cell Death Dis., 9: 200
https://doi.org/10.1038/s41419-017-0173-6
200 H., Wang, J., Yang, Y. Zhang, (2021). Discover novel disease-associated genes based on regulatory networks of long-range chromatin interactions. Methods, 189: 22–33
https://doi.org/10.1016/j.ymeth.2020.10.010
201 R. E., Rodin, Y., Dou, M., Kwon, M. A., Sherman, A. M., Gama, R. N., Doan, L. M., Rento, K. M., Girskis, C. L., Bohrson, S. N. Kim, et al.. (2021). The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat. Neurosci., 24: 176–185
https://doi.org/10.1038/s41593-020-00765-6
202 L., Fachal, H., Aschard, J., Beesley, D. R., Barnes, J., Allen, S., Kar, K. A., Pooley, J., Dennis, K., Michailidou, C. Turman, et al.. (2020). Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat. Genet., 52: 56–73
https://doi.org/10.1038/s41588-019-0537-1
203 T., Dzida, M., Iqbal, I., Charapitsa, G., Reid, H., Stunnenberg, F., Matarese, K., Grote, A. Honkela, (2017). Predicting stimulation-dependent enhancer-promoter interactions from ChIP-Seq time course data. PeerJ, 5: e3742
https://doi.org/10.7717/peerj.3742
204 Z. X., Feng, Q. Z. Li, J. Meng, (2018). Recognition of the long range enhancer-promoter interactions by further adding DNA structure properties and transcription factor binding motifs in human cell lines. J. Theor. Biol., 445: 136–150
https://doi.org/10.1016/j.jtbi.2018.02.023
205 T. A., Hait, R. Elkon, (2022). CT-FOCS: a novel method for inferring cell type-specific enhancer-promoter maps. Nucleic Acids Res., 50: e55
[1] Chunliang Feng, Frank Krueger, Ruolei Gu, Wenbo Luo. Decoding fear of negative evaluation from brain morphology: A machine-learning study on structural neuroimaging data[J]. Quant. Biol., 2022, 10(4): 390-402.
[2] Huijie Sun, Junli Zhao, Chengyuan Wang, Yi Li, Niankai Zhang, Mingquan Zhou. Skull ethnic classification by combining skull auxiliary image with deep learning[J]. Quant. Biol., 2022, 10(4): 381-389.
[3] Xiaokang Chai, Yachao Di, Zhao Feng, Yue Guan, Guoqing Zhang, Anan Li, Qingming Luo. Deep learning-based large-scale named entity recognition for anatomical region of mammalian brain[J]. Quant. Biol., 2022, 10(3): 253-263.
[4] Aishwarza Panday, Muhammad Ashad Kabir, Nihad Karim Chowdhury. A survey of machine learning techniques for detecting and diagnosing COVID-19 from imaging[J]. Quant. Biol., 2022, 10(2): 188-207.
[5] Wajid Arshad Abbasi, Syed Ali Abbas, Saiqa Andleeb, Maryum Bibi, Fiaz Majeed, Abdul Jaleel, Muhammad Naveed Akhtar. COVIDX: Computer-aided diagnosis of COVID-19 and its severity prediction with raw digital chest X-ray scans[J]. Quant. Biol., 2022, 10(2): 208-220.
[6] Georgios D. Barmparis, Giorgos P. Tsironis. Physics-informed machine learning for the COVID-19 pandemic: Adherence to social distancing and short-term predictions for eight countries[J]. Quant. Biol., 2022, 10(2): 139-149.
[7] HyeongChan Jo, Juhyun Kim, Tzu-Chen Huang, Yu-Li Ni. condLSTM-Q: A novel deep learning model for predicting COVID-19 mortality in fine geographical scale[J]. Quant. Biol., 2022, 10(2): 125-138.
[8] Md. Bahadur Badsha, Rui Li, Boxiang Liu, Yang I. Li, Min Xian, Nicholas E. Banovich, Audrey Qiuyan Fu. Imputation of single-cell gene expression with an autoencoder neural network[J]. Quant. Biol., 2020, 8(1): 78-94.
[9] Jie Ren, Kai Song, Chao Deng, Nathan A. Ahlgren, Jed A. Fuhrman, Yi Li, Xiaohui Xie, Ryan Poplin, Fengzhu Sun. Identifying viruses from metagenomic data using deep learning[J]. Quant. Biol., 2020, 8(1): 64-77.
[10] Jie Zheng, Ke Wang. Emerging deep learning methods for single-cell RNA-seq data analysis[J]. Quant. Biol., 2019, 7(4): 247-254.
[11] Shashank Singh, Yang Yang, Barnabás Póczos, Jian Ma. Predicting enhancer-promoter interaction from genomic sequence with deep neural networks[J]. Quant. Biol., 2019, 7(2): 122-137.
[12] Tanlin Sun, Luhua Lai, Jianfeng Pei. Analysis of protein features and machine learning algorithms for prediction of druggable proteins[J]. Quant. Biol., 2018, 6(4): 334-343.
[13] Sheng Wang, Zhen Li, Yizhou Yu, Xin Gao. WaveNano: a signal-level nanopore base-caller via simultaneous prediction of nucleotide labels and move labels through bi-directional WaveNets[J]. Quant. Biol., 2018, 6(4): 359-368.
[14] Hailin Meng, Yingfei Ma, Guoqin Mai, Yong Wang, Chenli Liu. Construction of precise support vector machine based models for predicting promoter strength[J]. Quant. Biol., 2017, 5(1): 90-98.
[15] Yasen Jiao, Pufeng Du. Performance measures in evaluating machine learning based bioinformatics predictors for classifications[J]. Quant. Biol., 2016, 4(4): 320-330.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed