| 
					
						|  |  
    					|  |  
    					| Computational methods for identifying enhancer-promoter interactions |  
						| Haiyan Gong1, Zhengyuan Chen1, Yuxin Tang1, Minghong Li1, Sichen Zhang1, Xiaotong Zhang1,3(  ), Yang Chen2(  ) |  
						| 1. School of Computer and Communication Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing100083, China 2. State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
 3. Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract Background: As parts of the cis-regulatory mechanism of the human genome, interactions between distal enhancers and proximal promoters play a crucial role. Enhancers, promoters, and enhancer-promoter interactions (EPIs) can be detected using many sequencing technologies and computation models. However, a systematic review that summarizes these EPI identification methods and that can help researchers apply and optimize them is still needed.  Results: In this review, we first emphasize the role of EPIs in regulating gene expression and describe a generic framework for predicting enhancer-promoter interaction. Next, we review prediction methods for enhancers, promoters, loops, and enhancer-promoter interactions using different data features that have emerged since 2010, and we summarize the websites available for obtaining enhancers, promoters, and enhancer-promoter interaction datasets. Finally, we review the application of the methods for identifying EPIs in diseases such as cancer.  Conclusions: The advance of computer technology has allowed traditional machine learning, and deep learning methods to be used to predict enhancer, promoter, and EPIs from genetic, genomic, and epigenomic features. In the past decade, models based on deep learning, especially transfer learning, have been proposed for directly predicting enhancer-promoter interactions from DNA sequences, and these models can reduce the parameter training time required of bioinformatics researchers. We believe this review can provide detailed research frameworks for researchers who are beginning to study enhancers, promoters, and their interactions. |  
															| Keywords 
																																																				enhancer  
																		  																																				promoter  
																		  																																				enhancer-promoter interaction  
																		  																																				machine learning  
																		  																																				deep learning |  
															| Corresponding Author(s):
																Xiaotong Zhang,Yang Chen |  
															| About author: * These authors contributed equally to this work. |  
															| Just Accepted Date: 01 March 2023  
																																														Online First Date: 12 April 2023   
																																														Issue Date: 21 June 2023 |  |  
								            
								                
																																												
															| 1 | V. A., Bondarenko, Y. V., Liu, Y. I. Jiang, V. Studitsky, (2003). Communication over a large distance: enhancers and insulators. Biochem. Cell Biol., 81: 241–251 https://doi.org/10.1139/o03-051
 |  
															| 2 | J. L. Plank, (2014). Enhancer function: mechanistic and genome-wide insights come together. Mol. Cell, 55: 5–14 https://doi.org/10.1016/j.molcel.2014.06.015
 |  
															| 3 | V. Haberle, (2016). Promoter architectures and developmental gene regulation. Semin. Cell Dev. Biol., 57: 11–23 https://doi.org/10.1016/j.semcdb.2016.01.014
 |  
															| 4 | O., Harismendy, D., Notani, X., Song, N. G., Rahim, B., Tanasa, N., Heintzman, B., Ren, X. D., Fu, E. J., Topol, M. G. Rosenfeld, et al.. (2011). 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature, 470: 264–268 https://doi.org/10.1038/nature09753
 |  
															| 5 | X., Luo, Y., Liu, D., Dang, T., Hu, Y., Hou, X., Meng, F., Zhang, T., Li, C., Wang, M. Li, et al.. (2021). 3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell, 184: 723–740.e21 https://doi.org/10.1016/j.cell.2021.01.001
 |  
															| 6 | A. D., Schmitt, M., Hu, I., Jung, Z., Xu, Y., Qiu, C. L., Tan, Y., Li, S., Lin, Y., Lin, C. L. Barr, et al.. (2016). A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep., 17: 2042–2059 https://doi.org/10.1016/j.celrep.2016.10.061
 |  
															| 7 | C., Policarpi, L., Crepaldi, E., Brookes, J., Nitarska, S. M., French, A. Coatti, (2017). Enhancer sines link pol III to pol II transcription in neurons. Cell Rep., 21: 2879–2894 https://doi.org/10.1016/j.celrep.2017.11.019
 |  
															| 8 | M. R., Mumbach, A. T., Satpathy, E. A., Boyle, C., Dai, B. G., Gowen, S. W., Cho, M. L., Nguyen, A. J., Rubin, J. M., Granja, K. R. Kazane, et al.. (2017). Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet., 49: 1602–1612 https://doi.org/10.1038/ng.3963
 |  
															| 9 | D., May, M. J., Blow, T., Kaplan, D. J., McCulley, B. C., Jensen, J. A., Akiyama, A., Holt, I., Plajzer-Frick, M., Shoukry, C. Wright, et al.. (2011). Large-scale discovery of enhancers from human heart tissue. Nat. Genet., 44: 89–93 https://doi.org/10.1038/ng.1006
 |  
															| 10 | L. J., Davison, C., Wallace, J. D., Cooper, N. F., Cope, N. K., Wilson, D. J., Smyth, J. M., Howson, N., Saleh, A., Al-Jeffery, K. L. Angus, et al.. (2012). Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum. Mol. Genet., 21: 322–333 https://doi.org/10.1093/hmg/ddr468
 |  
															| 11 | S., Smemo, J. J., Tena, K. Kim, E. R., Gamazon, N. J., Sakabe, I., Aneas, F. L., Credidio, D. R., Sobreira, N. F. Wasserman, et al.. (2014). Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature, 507: 371–375 https://doi.org/10.1038/nature13138
 |  
															| 12 | C., Schmidl, A. F., Rendeiro, N. C. Sheffield, (2015). ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat. Methods, 12: 963–965 https://doi.org/10.1038/nmeth.3542
 |  
															| 13 | M. F., Carey, C. L. Peterson, S. Smale, (2009). Chromatin immunoprecipitation (ChIP). Cold Spring Harb. Protoc., 2009: pdb.prot5279 |  
															| 14 | P. J. Skene, (2017). An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife, 6: e21856 https://doi.org/10.7554/eLife.21856
 |  
															| 15 | J. M., Belton, R. P., McCord, J. H., Gibcus, N., Naumova, Y. Zhan, (2012). Hi-C: a comprehensive technique to capture the conformation of genomes. Methods, 58: 268–276 https://doi.org/10.1016/j.ymeth.2012.05.001
 |  
															| 16 | Z., Liang, G., Li, Z., Wang, M. N., Djekidel, Y., Li, M. Qian, M. Q. Zhang, (2017). BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions. Nat. Commun., 8: 1622 https://doi.org/10.1038/s41467-017-01754-3
 |  
															| 17 | S., Schoenfelder, B. M., Javierre, M., Furlan-Magaril, S. W. Wingett, (2018). Promoter capture Hi-C: high-resolution, genome-wide profiling of promoter interactions. J. Vis. Exp., (136): e57320 |  
															| 18 | G., Li, X., Ruan, R. K., Auerbach, K. S., Sandhu, M., Zheng, P., Wang, H. M., Poh, Y., Goh, J., Lim, J. Zhang, et al.. (2012). Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148: 84–98 https://doi.org/10.1016/j.cell.2011.12.014
 |  
															| 19 | M. R., Mumbach, A. J., Rubin, R. A., Flynn, C., Dai, P. A., Khavari, W. J. Greenleaf, H. Chang, (2016). HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods, 13: 919–922 https://doi.org/10.1038/nmeth.3999
 |  
															| 20 | Z. U., Khan, D. C., Pi, S. L., Yao, A., Nawaz, F. Ali, (2021). Pienpred: a bi-layered discriminative model for enhancers and their subtypes via novel cascade multi-level subset feature selection algorithm. Front. Comput. Sci., 15: 1–11 https://doi.org/10.1007/s11704-020-9504-3
 |  
															| 21 | A., Visel, E. M. Rubin, L. Pennacchio, (2009). Genomic views of distant-acting enhancers. Nature, 461: 199–205 https://doi.org/10.1038/nature08451
 |  
															| 22 | M. Levine, (2010). Transcriptional enhancers in animal development and evolution. Curr. Biol., 20: R754–R763 https://doi.org/10.1016/j.cub.2010.06.070
 |  
															| 23 | M. Bulger, (2011). Functional and mechanistic diversity of distal transcription enhancers. Cell, 144: 327–339 https://doi.org/10.1016/j.cell.2011.01.024
 |  
															| 24 | T. K. Kim, (2015). Architectural and functional commonalities between enhancers and promoters. Cell, 162: 948–959 https://doi.org/10.1016/j.cell.2015.08.008
 |  
															| 25 | C. T. Ong, V. Corces, (2011). Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet., 12: 283–293 https://doi.org/10.1038/nrg2957
 |  
															| 26 | E. Calo, (2013). Modification of enhancer chromatin: what, how, and why? Mol. Cell, 49: 825–837 https://doi.org/10.1016/j.molcel.2013.01.038
 |  
															| 27 | L., Yao, B. P. Berman, P. Farnham, (2015). Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Crit. Rev. Biochem. Mol. Biol., 50: 550–573 https://doi.org/10.3109/10409238.2015.1087961
 |  
															| 28 | D., Kleftogiannis, P. Kalnis, V. Bajic, (2016). Progress and challenges in bioinformatics approaches for enhancer identification. Brief. Bioinform., 17: 967–979 https://doi.org/10.1093/bib/bbv101
 |  
															| 29 | L. W. K., Lim, H. H., Chung, Y. L. Chong, N. Lee, (2018). A survey of recently emerged genome-wide computational enhancer predictor tools. Comput. Biol. Chem., 74: 132–141 https://doi.org/10.1016/j.compbiolchem.2018.03.019
 |  
															| 30 | A., Kaur, A. P. S., Chauhan, A. K. Aggarwal, (2019). Machine learning based comparative analysis of methods for enhancer prediction in genomic data. In: 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), 142–145 |  
															| 31 | O. Kyrchanova, (2021). Mechanisms of enhancer-promoter interactions in higher eukaryotes. Int. J. Mol. Sci., 22: 671 https://doi.org/10.3390/ijms22020671
 |  
															| 32 | A., Mora, G. K., Sandve, O. S. Gabrielsen, (2016). In the loop: promoter-enhancer interactions and bioinformatics. Brief. Bioinform., 17: 980–995 |  
															| 33 | T., Vanhaeren, F., Divina, M., a-Torres, F., mez-Vela, W. Vanhoof, (2020). A comparative study of supervised machine learning algorithms for the prediction of long-range chromatin interactions. Genes (Basel), 11: 985 https://doi.org/10.3390/genes11090985
 |  
															| 34 | H., Tao, H., Li, K., Xu, H., Hong, S., Jiang, G., Du, J., Wang, Y., Sun, X., Huang, Y. Ding, et al.. (2021). Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles. Brief. Bioinform., 22: bbaa405 https://doi.org/10.1093/bib/bbaa405
 |  
															| 35 | H., Xu, S., Zhang, X., Yi, D. Plewczynski, M. Li, (2020). Exploring 3D chromatin contacts in gene regulation: the evolution of approaches for the identification of functional enhancer-promoter interaction. Comput. Struct. Biotechnol. J., 18: 558–570 https://doi.org/10.1016/j.csbj.2020.02.013
 |  
															| 36 | C., He, G., Li, D. M., Nadhir, Y., Chen, X. Wang, M. Zhang, (2016). Advances in computational CHiA-PET data analysis. Quant. Biol., 4: 217–225 https://doi.org/10.1007/s40484-016-0080-3
 |  
															| 37 | X., Min, F. Lu, (2021). Sequence-based deep learning frameworks on enhancer-promoter interactions prediction. Curr. Pharm. Des., 27: 1847–1855 https://doi.org/10.2174/1381612826666201124112710
 |  
															| 38 | S. Schoenfelder, (2019). Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet., 20: 437–455 https://doi.org/10.1038/s41576-019-0128-0
 |  
															| 39 | O. I., Kulaeva, E. V., Nizovtseva, Y. S., Polikanov, S. V. Ulianov, V. Studitsky, (2012). Distant activation of transcription: mechanisms of enhancer action. Mol. Cell. Biol., 32: 4892–4897 https://doi.org/10.1128/MCB.01127-12
 |  
															| 40 | A., Williams, C. G. Spilianakis, R. Flavell, (2010). Interchromosomal association and gene regulation in trans. Trends Genet., 26: 188–197 https://doi.org/10.1016/j.tig.2010.01.007
 |  
															| 41 | P. G., Maass, A. R. Barutcu, J. Rinn, (2019). Interchromosomal interactions: a genomic love story of kissing chromosomes. J. Cell Biol., 218: 27–38 https://doi.org/10.1083/jcb.201806052
 |  
															| 42 | B., He, C., Chen, L. Teng, (2014). Global view of enhancer-promoter interactome in human cells. Proc. Natl. Acad. Sci. USA, 111: E2191–E2199 https://doi.org/10.1073/pnas.1320308111
 |  
															| 43 | B., Patel, Y., Kang, K., Cui, M., Litt, M. S., Riberio, C., Deng, T., Salz, S., Casada, X., Fu, Y. Qiu, et al.. (2014). Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia, 28: 349–361 https://doi.org/10.1038/leu.2013.158
 |  
															| 44 | D., Lee, R. Karchin, M. Beer, (2011). Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res., 21: 2167–2180 https://doi.org/10.1101/gr.121905.111
 |  
															| 45 | L., Taher, L. Narlikar, (2012). Clare: cracking the language of regulatory elements. Bioinformatics, 28: 581–583 https://doi.org/10.1093/bioinformatics/btr704
 |  
															| 46 | M. ndez, (2012). Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines. Nucleic Acids Res., 40: e77–e77 https://doi.org/10.1093/nar/gks149
 |  
															| 47 | N., Rajagopal, W., Xie, Y., Li, U., Wagner, W., Wang, J., Stamatoyannopoulos, J., Ernst, M. Kellis, (2013). RFECS: a random-forest based algorithm for enhancer identification from chromatin state. PLOS Comput. Biol., 9: e1002968 https://doi.org/10.1371/journal.pcbi.1002968
 |  
															| 48 | M., Ghandi, D., Lee, M. Mohammad-Noori, M. Beer, (2014). Enhanced regulatory sequence prediction using gapped k-mer features. PLOS Comput. Biol., 10: e1003711 https://doi.org/10.1371/journal.pcbi.1003711
 |  
															| 49 | G. D., Erwin, N., Oksenberg, R. M., Truty, D., Kostka, K. K., Murphy, N., Ahituv, K. S. Pollard, J. Capra, (2014). Integrating diverse datasets improves developmental enhancer prediction. PLOS Comput. Biol., 10: e1003677 https://doi.org/10.1371/journal.pcbi.1003677
 |  
															| 50 | Y., Lu, W., Qu, G. Shan, (2015). Delta: a distal enhancer locating tool based on AdaBoost algorithm and shape features of chromatin modifications. PLoS One, 10: e0130622 https://doi.org/10.1371/journal.pone.0130622
 |  
															| 51 | D., Kleftogiannis, P. Kalnis, V. Bajic, (2015). DEEP: a general computational framework for predicting enhancers. Nucleic Acids Res., 43: e6 https://doi.org/10.1093/nar/gku1058
 |  
															| 52 | B. Liu, (2016). Ienhancer-psedeknc: identification of enhancers and their subgroups based on pseudo degenerate kmer nucleotide composition. Neurocomputing, 217: 46–52 https://doi.org/10.1016/j.neucom.2015.12.138
 |  
															| 53 | B., Liu, L., Fang, R., Long, X. Lan, K. Chou, (2016). iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 32: 362–369 https://doi.org/10.1093/bioinformatics/btv604
 |  
															| 54 | C. Jia, (2016). EnhancerPred: a predictor for discovering enhancers based on the combination and selection of multiple features. Sci. Rep., 6: 38741 https://doi.org/10.1038/srep38741
 |  
															| 55 | J., Xu, H. Hu, (2016). Lmethyr-svm: predict human enhancers using low methylated regions based on weighted support vector machines. PLoS One, 11: e0163491 https://doi.org/10.1371/journal.pone.0163491
 |  
															| 56 | L. L., Colbran, L. Chen, J. Capra, (2017). Short DNA sequence patterns accurately identify broadly active human enhancers. BMC Genomics, 18: 536 https://doi.org/10.1186/s12864-017-3934-9
 |  
															| 57 | W. He, (2017). EnhancerPred2.0: predicting enhancers and their strength based on position-specific trinucleotide propensity and electron-ion interaction potential feature selection. Mol. Biosyst., 13: 767–774 https://doi.org/10.1039/C7MB00054E
 |  
															| 58 | Y., He, D. U., Gorkin, D. E., Dickel, J. R., Nery, R. G., Castanon, A. Y., Lee, Y., Shen, A., Visel, L. A., Pennacchio, B. Ren, et al.. (2017). Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proc. Natl. Acad. Sci. USA, 114: E1633–E1640 https://doi.org/10.1073/pnas.1618353114
 |  
															| 59 | B., Liu, K., Li, D. S. Huang, K. Chou, (2018). iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics, 34: 3835–3842 https://doi.org/10.1093/bioinformatics/bty458
 |  
															| 60 | D., Kleftogiannis, H. Ashoor, V. Bajic, (2018). Tels: a novel computational framework for identifying motif signatures of transcribed enhancers. Genom. Proteom. Bioinf., 16: 332–341 https://doi.org/10.1016/j.gpb.2018.05.003
 |  
															| 61 | A. P., Singh, S. Mishra, (2018). Sequence based prediction of enhancer regions from DNA random walk. Sci. Rep., 8: 15912 https://doi.org/10.1038/s41598-018-33413-y
 |  
															| 62 | A., Sethi, M., Gu, E., Gumusgoz, L., Chan, K. K., Yan, J., Rozowsky, I., Barozzi, V., Afzal, J. A., Akiyama, I. Plajzer-Frick, et al.. (2020). Supervised enhancer prediction with epigenetic pattern recognition and targeted validation. Nat. Methods, 17: 807–814 https://doi.org/10.1038/s41592-020-0907-8
 |  
															| 63 | D. Y., Lim, J., Khanal, H. Tayara, K. Chong, (2021). Ienhancer-rf: identifying enhancers and their strength by enhanced feature representation using random forest. Chemom. Intell. Lab. Syst., 212: 104284 https://doi.org/10.1016/j.chemolab.2021.104284
 |  
															| 64 | Y., Lyu, Z., Zhang, J., Li, W., He, Y. Ding, (2021). Ienhancer-kl: a novel two-layer predictor for identifying enhancers by position specific of nucleotide composition. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 18: 2809–2815 https://doi.org/10.1109/TCBB.2021.3053608
 |  
															| 65 | X., Niu, K., Deng, L., Liu, K. Yang, (2021). A statistical framework for predicting critical regions of p53-dependent enhancers. Brief. Bioinform., 22: bbaa053 https://doi.org/10.1093/bib/bbaa053
 |  
															| 66 | S., Basith, M. M., Hasan, G., Lee, L. Wei, (2021). Integrative machine learning framework for the identification of cell-specific enhancers from the human genome. Brief. Bioinform., 22: bbab252 https://doi.org/10.1093/bib/bbab252
 |  
															| 67 | H. A., Firpi, D. Ucar, (2010). Discover regulatory DNA elements using chromatin signatures and artificial neural network. Bioinformatics, 26: 1579–1586 https://doi.org/10.1093/bioinformatics/btq248
 |  
															| 68 | F., Liu, H., Li, C., Ren, X. Bo, (2016). PEDLA: predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep., 6: 28517 https://doi.org/10.1038/srep28517
 |  
															| 69 | X., Min, W., Zeng, S., Chen, N., Chen, T. Chen, (2017). Predicting enhancers with deep convolutional neural networks. BMC Bioinformatics, 18: 478 https://doi.org/10.1186/s12859-017-1878-3
 |  
															| 70 | B., Yang, F., Liu, C., Ren, Z., Ouyang, Z., Xie, X. Bo, (2017). BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics, 33: 1930–1936 https://doi.org/10.1093/bioinformatics/btx105
 |  
															| 71 | A., Thibodeau, A., Uyar, S., Khetan, M. L. Stitzel, (2018). A neural network based model effectively predicts enhancers from clinical ATAC-seq samples. Sci. Rep., 8: 16048 https://doi.org/10.1038/s41598-018-34420-9
 |  
															| 72 | N. Q. K., Le, E. K. Y., Yapp, Q. T., Ho, N., Nagasundaram, Y. Y. Ou, H. Yeh, (2019). iEnhancer-5Step: identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal. Biochem., 571: 53–61 https://doi.org/10.1016/j.ab.2019.02.017
 |  
															| 73 | J., Khanal, H. Tayara, K. Chong, (2020). Identifying enhancers and their strength by the integration of word embedding and convolution neural network. IEEE Access, 8: 58369–58376 https://doi.org/10.1109/ACCESS.2020.2982666
 |  
															| 74 | S., Chen, M., Gan, H. Lv, (2021). Deepcape: a deep convolutional neural network for the accurate prediction of enhancers. Genom. Proteom. Bioinf., 19: 565–577 https://doi.org/10.1016/j.gpb.2019.04.006
 |  
															| 75 | Z., Chen, J., Zhang, J., Liu, Y., Dai, D., Lee, M. R., Min, M. Xu, (2021). DECODE: a Deep-learning framework for condensing enhancers and refining boundaries with large-scale functional assays. Bioinformatics, 37: i280–i288 https://doi.org/10.1093/bioinformatics/btab283
 |  
															| 76 | T. H., Zhang, M. Flores, (2021). ES-ARCNN: predicting enhancer strength by using data augmentation and residual convolutional neural network. Anal. Biochem., 618: 114120 https://doi.org/10.1016/j.ab.2021.114120
 |  
															| 77 | N., Inayat, M., Khan, N., Iqbal, S., Khan, M., Raza, D. M., Khan, A. Khan, D. Wei, (2021). Ienhancer-dhf: identification of enhancers and their strengths using optimize deep neural network with multiple features extraction methods. IEEE Access, 9: 40783–40796 https://doi.org/10.1109/ACCESS.2021.3062291
 |  
															| 78 | R., Yang, F., Wu, C. Zhang, (2021). Ienhancer-gan: a deep learning framework in combination with word embedding and sequence generative adversarial net to identify enhancers and their strength. Int. J. Mol. Sci., 22: 3589 https://doi.org/10.3390/ijms22073589
 |  
															| 79 | Y., Gao, Y., Chen, H., Feng, Y. Zhang, (2022). Ricenn: prediction of rice enhancers with neural network based on DNA sequences. Interdiscip. Sci., 14: 555–565 https://doi.org/10.1007/s12539-022-00503-5
 |  
															| 80 | S. Amilpur, (2022). A sequence-based two-layer predictor for identifying enhancers and their strength through enhanced feature extraction. J. Bioinform. Comput. Biol., 20: 2250005 https://doi.org/10.1142/S0219720022500056
 |  
															| 81 | H., Kamran, M., Tahir, H. Tayara, K. Chong, (2022). Ienhancer-deep: a computational predictor for enhancer sites and their strength using deep learning. Appl. Sci. (Basel), 12: 2120 https://doi.org/10.3390/app12042120
 |  
															| 82 | S., Zhao, Q., Pan, Q., Zou, Y., Ju, L. Shi, (2022). Identifying and classifying enhancers by dinucleotide-based auto-cross covariance and attention-based Bi-LSTM. Comput. Math. Methods Med., 2022: 7518779 https://doi.org/10.1155/2022/7518779
 |  
															| 83 | K. Song, (2012). Recognition of prokaryotic promoters based on a novel variable-window Z-curve method. Nucleic Acids Res., 40: 963–971 https://doi.org/10.1093/nar/gkr795
 |  
															| 84 | Y., Li, C. Y. Chen, W. Wasserman, (2016). Deep feature selection: theory and application to identify enhancers and promoters. J. Comput. Biol., 23: 322–336 https://doi.org/10.1089/cmb.2015.0189
 |  
															| 85 | R. K. Umarov, V. Solovyev, (2017). Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One, 12: e0171410 https://doi.org/10.1371/journal.pone.0171410
 |  
															| 86 | R. V., Coelho, S., de Avila E Silva, S., Echeverrigaray, A. P. L. Delamare, A. P. Delamare, (2018). Bacillus subtilis promoter sequences data set for promoter prediction in Gram-positive bacteria. Data Brief, 19: 264–270 https://doi.org/10.1016/j.dib.2018.05.025
 |  
															| 87 | B., Liu, F., Yang, D. S. Huang, K. Chou, (2018). iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 34: 33–40 https://doi.org/10.1093/bioinformatics/btx579
 |  
															| 88 | M., Oubounyt, Z., Louadi, H. Tayara, K. Chong, (2019). Deepromoter: robust promoter predictor using deep learning. Front. Genet., 10: 286 https://doi.org/10.3389/fgene.2019.00286
 |  
															| 89 | N. Q. K., Le, E. K. Y., Yapp, N. Nagasundaram, H. Yeh, (2019). Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous fasttext N-grams. Front. Bioeng. Biotechnol., 7: 305 https://doi.org/10.3389/fbioe.2019.00305
 |  
															| 90 | R., Umarov, H., Kuwahara, Y., Li, X. Gao, (2019). Promoter analysis and prediction in the human genome using sequence-based deep learning models. Bioinformatics, 35: 2730–2737 https://doi.org/10.1093/bioinformatics/bty1068
 |  
															| 91 | H. Y., Lai, Z. Y., Zhang, Z. D., Su, W., Su, H., Ding, W. Chen, (2019). Iproep: a computational predictor for predicting promoter. Mol. Ther. Nucleic Acids, 17: 337–346 https://doi.org/10.1016/j.omtn.2019.05.028
 |  
															| 92 | B. Liu, (2019). Ipromoter-2l2. 0: identifying promoters and their types by combining smoothing cutting window algorithm and sequence-based features. Mol. Ther. Nucleic Acids, 18: 80–87 https://doi.org/10.1016/j.omtn.2019.08.008
 |  
															| 93 | M. S., Rahman, U., Aktar, M. R. Jani, (2019). iPromoter-FSEn: identification of bacterial σ70 promoter sequences using feature subspace based ensemble classifier. Genomics, 111: 1160–1166 https://doi.org/10.1016/j.ygeno.2018.07.011
 |  
															| 94 | M. S., Rahman, U., Aktar, M. R. Jani, (2019). iPro70-FMWin: identifying Sigma70 promoters using multiple windowing and minimal features. Mol. Genet. Genomics, 294: 69–84 https://doi.org/10.1007/s00438-018-1487-5
 |  
															| 95 | X., Xiao, Z. C., Xu, W. R., Qiu, P., Wang, H. T. Ge, K. Chou, (2019). iPSW(2L)-PseKNC: a two-layer predictor for identifying promoters and their strength by hybrid features via pseudo k-tuple nucleotide composition. Genomics, 111: 1785–1793 https://doi.org/10.1016/j.ygeno.2018.12.001
 |  
															| 96 | M., Zhang, F., Li, T. T., Marquez-Lago, A., Leier, C., Fan, C. K., Kwoh, K. C., Chou, J. Song, (2019). MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. Bioinformatics, 35: 2957–2965 https://doi.org/10.1093/bioinformatics/btz016
 |  
															| 97 | Y. L., Chen, D. H. Guo, Q. Li, (2020). An energy model for recognizing the prokaryotic promoters based on molecular structure. Genomics, 112: 2072–2079 https://doi.org/10.1016/j.ygeno.2019.12.001
 |  
															| 98 | R., Amin, C. R., Rahman, S., Ahmed, M. H. R., Sifat, M. N. K., Liton, M. M., Rahman, M. Z. H. Khan, (2020). iPromoter-BnCNN: a novel branched CNN-based predictor for identifying and classifying sigma promoters. Bioinformatics, 36: 4869–4875 https://doi.org/10.1093/bioinformatics/btaa609
 |  
															| 99 | H., Tayara, M. Tahir, K. Chong, (2020). Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics, 112: 1396–1403 https://doi.org/10.1016/j.ygeno.2019.08.009
 |  
															| 100 | M., Shujaat, A., Wahab, H. Tayara, K. Chong, (2020). Pcpromoter-CNN: a CNN-based prediction and classification of promoters. Genes (Basel), 11: 1529 https://doi.org/10.3390/genes11121529
 |  
															| 101 | Y., Liang, S., Zhang, H. Qiao, (2021). iPromoter-ET: identifying promoters and their strength by extremely randomized trees-based feature selection. Anal. Biochem., 630: 114335 https://doi.org/10.1016/j.ab.2021.114335
 |  
															| 102 | M., Shujaat, S. B., Lee, H. Tayara, K. Chong, (2021). Cr-prom: a convolutional neural network-based model for the prediction of rice promoters. IEEE Access, 9: 81485–81491 https://doi.org/10.1109/ACCESS.2021.3086102
 |  
															| 103 | Y., Lyu, W., He, S., Li, Q. Zou, (2021). Ipro2l-pstknc: a two-layer predictor for discovering various types of promoters by position specific of nucleotide composition. IEEE J. Biomed. Health Inform., 25: 2329–2337 https://doi.org/10.1109/JBHI.2020.3026735
 |  
															| 104 | A., Sun, X. Xiao, (2021). Iptt(2 L)-CNN: a two-layer predictor for identifying promoters and their types in plant genomes by convolutional neural network. Comput. Math. Methods Med., 2021: 6636350 https://doi.org/10.1155/2021/6636350
 |  
															| 105 | Y., Zhu, F., Li, D., Xiang, T., Akutsu, J. Song, (2021). Computational identification of eukaryotic promoters based on cascaded deep capsule neural networks. Brief. Bioinform., 22: bbaa299 https://doi.org/10.1093/bib/bbaa299
 |  
															| 106 | R., Bhukya, A., Kumari, S. Amilpur, C. Dasari, (2022). PPred-PCKSM: a multi-layer predictor for identifying promoter and its variants using position based features. Comput. Biol. Chem., 97: 107623 https://doi.org/10.1016/j.compbiolchem.2022.107623
 |  
															| 107 | H., Li, L., Shi, W., Gao, Z., Zhang, L., Zhang, Y. Zhao, (2022). dPromoter-XGBoost: detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods, 204: 215–222 https://doi.org/10.1016/j.ymeth.2022.01.001
 |  
															| 108 | Q. W., Li, L. C., Zhang, L., Xu, Q., Zou, J. Wu, Q. Li, (2022). Identification and classification of promoters using the attention mechanism based on long short-term memory. Front. Comput. Sci., 16: 164348 https://doi.org/10.1007/s11704-021-0548-9
 |  
															| 109 | H., Qiao, S., Zhang, T., Xue, J. Wang, (2022). iPro-GAN: a novel model based on generative adversarial learning for identifying promoters and their strength. Comput. Methods Programs Biomed., 215: 106625 https://doi.org/10.1016/j.cmpb.2022.106625
 |  
															| 110 | Y., Wang, Q., Peng, X., Mou, X., Wang, H., Li, T., Han, Z. Sun, (2022). A successful hybrid deep learning model aiming at promoter identification. BMC Bioinformatics, 23: 206 https://doi.org/10.1186/s12859-022-04735-6
 |  
															| 111 | P. J., Wei, Z. Z., Pang, L. J., Jiang, D. Y., Tan, Y. S. Su, C. Zheng, (2022). Promoter prediction in nannochloropsis based on densely connected convolutional neural networks. Methods, 204: 38–46 https://doi.org/10.1016/j.ymeth.2022.03.017
 |  
															| 112 | B., Mifsud, F., Tavares-Cadete, A. N., Young, R., Sugar, S., Schoenfelder, L., Ferreira, S. W., Wingett, S., Andrews, W., Grey, P. A. Ewels, et al.. (2015). Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet., 47: 598–606 https://doi.org/10.1038/ng.3286
 |  
															| 113 | B. M., Javierre, O. S., Burren, S. P., Wilder, R., Kreuzhuber, S. M., Hill, S., Sewitz, J., Cairns, S. W., Wingett, C., rnai, M. J. Thiecke, et al.. (2016). Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell, 167: 1369–1384.e19 https://doi.org/10.1016/j.cell.2016.09.037
 |  
															| 114 | T., Mikolov, W. Yih, (2013). Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human language technologies, 746–751 |  
															| 115 | J., Pennington, R. Socher, C. Manning, (2014). Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543 |  
															| 116 | P. Ng, (2017). Dna2vec: consistent vector representations of variable-length k-mers. arXiv, 1701.06279 |  
															| 117 | Y., Jiang, F., Qian, X., Bai, Y., Liu, Q., Wang, B., Ai, X., Han, S., Shi, J., Zhang, X. Li, et al.. (2019). SEdb: a comprehensive human super-enhancer database. Nucleic Acids Res., 47: D235–D243 https://doi.org/10.1093/nar/gky1025
 |  
															| 118 | R. C., rier, V., Praz, T., Junier, C. Bonnard, (2000). The eukaryotic promoter database (EPD). Nucleic Acids Res., 28: 302–303 https://doi.org/10.1093/nar/28.1.302
 |  
															| 119 | V., Ferretti, C., Poitras, D., Bergeron, B., Coulombe, F. Robert, (2007). PReMod: a database of genome-wide mammalian cis-regulatory module predictions. Nucleic Acids Res., 35: D122–D126 https://doi.org/10.1093/nar/gkl879
 |  
															| 120 | R., Andersson, C., Gebhard, I., Miguel-Escalada, I., Hoof, J., Bornholdt, M., Boyd, Y., Chen, X., Zhao, C., Schmidl, T. Suzuki, et al.. (2014). An atlas of active enhancers across human cell types and tissues. Nature, 507: 455–461 https://doi.org/10.1038/nature12787
 |  
															| 121 | A., Visel, S., Minovitsky, I. Dubchak, L. Pennacchio, (2007). VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res., 35: D88–D92 https://doi.org/10.1093/nar/gkl822
 |  
															| 122 | H. A., Hoke, C. Y., Lin, A., Lau, D. A., Orlando, C. R., Vakoc, J. E., Bradner, T. I. Lee, R. Young, (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 153: 320–334 https://doi.org/10.1016/j.cell.2013.03.036
 |  
															| 123 | X., Bai, S., Shi, B., Ai, Y., Jiang, Y., Liu, X., Han, M., Xu, Q., Pan, F., Wang, Q. Wang, et al.. (2020). ENdb: a manually curated database of experimentally supported enhancers for human and mouse. Nucleic Acids Res., 48: D51–D57 |  
															| 124 | Y., Wei, S., Zhang, S., Shang, B., Zhang, S., Li, X., Wang, F., Wang, J., Su, Q., Wu, H. Liu, et al.. (2016). SEA: a super-enhancer archive. Nucleic Acids Res., 44: D172–D179 https://doi.org/10.1093/nar/gkv1243
 |  
															| 125 | Z. N., Cai, Y., Cui, Z. Y., Tan, G. H., Zhang, Z. Y., Tan, X. L. Zhang, Y. Peng, (2019). RAEdb: A database of enhancers identified by high-throughput reporter assays. Database (Oxford), bay140 |  
															| 126 | Z. W., Guo, C., Xie, K., Li, X. M., Zhai, G. X., Cai, X. X. Yang, Y. Wu, (2019). Seler: a database of super-enhancer-associated lncRNA-directed transcriptional regulation in human cancers. Database (Oxford), baz027 |  
															| 127 | W. W., Zeng, X. Min, (2019). Endisease: a manually curated database for enhancer-disease associations. Database (Oxford), baz020 |  
															| 128 | M., Huang, Y., Wang, M., Yang, J., Yan, H., Yang, W., Zhuang, Y., Xu, H. P., Koeffler, D. C. Lin, (2020). dbInDel: a database of enhancer-associated insertion and deletion variants by analysis of H3K27ac ChIP-Seq. Bioinformatics, 36: 1649–1651 |  
															| 129 | R., Kumar, A., Lathwal, V., Kumar, S., Patiyal, P. K. Raghav, G. P. Raghava, (2020). CancerEnD: a database of cancer associated enhancers. Genomics, 112: 3696–3702 https://doi.org/10.1016/j.ygeno.2020.04.028
 |  
															| 130 | E. P., Vasyuchenko, P. S., Orekhov, G. A. Armeev, M. Bozdaganyan, (2021). Cpe-db: an open database of chemical penetration enhancers. Pharmaceutics, 13: 66 https://doi.org/10.3390/pharmaceutics13010066
 |  
															| 131 | W., Jin, G., Jiang, Y., Yang, J., Yang, W., Yang, D., Wang, X., Niu, R., Zhong, Z. Zhang, (2022). Animal-eRNAdb: a comprehensive animal enhancer RNA database. Nucleic Acids Res., 50: D46–D53 https://doi.org/10.1093/nar/gkab832
 |  
															| 132 | I. A., Shahmuradov, A. J., Gammerman, J. M., Hancock, P. M. Bramley, V. Solovyev, (2003). PlantProm: a database of plant promoter sequences. Nucleic Acids Res., 31: 114–117 https://doi.org/10.1093/nar/gkg041
 |  
															| 133 | O. G., Smirnova, S. S. Ibragimova, A. Kochetov, (2012). Simple database to select promoters for plant transgenesis. Transgenic Res., 21: 429–437 https://doi.org/10.1007/s11248-011-9538-2
 |  
															| 134 | I. Grienberg, (2005). Osteo-Promoter Database (OPD)—promoter analysis in skeletal cells. BMC Genomics, 6: 46 https://doi.org/10.1186/1471-2164-6-46
 |  
															| 135 | R. T., Morris, T. R. Connor, J. Wyrick, (2008). Osiris: an integrated promoter database for Oryza sativa L. Bioinformatics, 24: 2915–2917 https://doi.org/10.1093/bioinformatics/btn537
 |  
															| 136 | X., Chen, J. M., Wu, K., Hornischer, A. Kel, (2006). Tiprod: the tissue-specific promoter database. Nucleic Acids Res., 34: D104–D107 https://doi.org/10.1093/nar/gkj113
 |  
															| 137 | K., Nishikata, R. S. Cox, S., Shimoyama, Y., Yoshida, M., Matsui, Y. Makita, (2014). Database construction for PromoterCAD: synthetic promoter design for mammals and plants. ACS Synth. Biol., 3: 192–196 https://doi.org/10.1021/sb400178c
 |  
															| 138 | R., Dreos, G., Ambrosini, R. C. rier, (2015). The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res., 43: D92–D96 https://doi.org/10.1093/nar/gku1111
 |  
															| 139 | W., Su, M. L., Liu, Y. H., Yang, J. S., Wang, S. H., Li, H., Lv, F. Y., Dao, H. Yang, (2021). Ppd: a manually curated database for experimentally verified prokaryotic promoters. J. Mol. Biol., 433: 166860 https://doi.org/10.1016/j.jmb.2021.166860
 |  
															| 140 | L., Gordon, A. Y., Chervonenkis, A. J., Gammerman, I. A. Shahmuradov, V. Solovyev, (2003). Sequence alignment kernel for recognition of promoter regions. Bioinformatics, 19: 1964–1971 https://doi.org/10.1093/bioinformatics/btg265
 |  
															| 141 | M., Towsey, P., Timms, J. Hogan, S. Mathews, (2008). The cross-species prediction of bacterial promoters using a support vector machine. Comput. Biol. Chem., 32: 359–366 https://doi.org/10.1016/j.compbiolchem.2008.07.009
 |  
															| 142 | S. Knudsen, (1999). Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics, 15: 356–361 https://doi.org/10.1093/bioinformatics/15.5.356
 |  
															| 143 | S., Whalen, R. M. Truty, K. Pollard, (2016). Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet., 48: 488–496 https://doi.org/10.1038/ng.3539
 |  
															| 144 | Y., Yang, R., Zhang, S. Singh, (2017). Exploiting sequence-based features for predicting enhancer-promoter interactions. Bioinformatics, 33: i252–i260 https://doi.org/10.1093/bioinformatics/btx257
 |  
															| 145 | W., Zeng, M. Wu, (2018). Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics, 19: 84 https://doi.org/10.1186/s12864-018-4459-6
 |  
															| 146 | S., Singh, Y., Yang, B. czos, (2019). Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. Quant. Biol., 7: 122–137 https://doi.org/10.1007/s40484-019-0154-0
 |  
															| 147 | T. Zhang, (2019). An approach for recognition of enhancer-promoter associations based on random forest. In: Proceedings of the 2019 4th International Conference on Biomedical Signal and Image Processing (ICBIP 2019), 46–50 |  
															| 148 | Z., Zhuang, X. Shen, (2019). A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data. Bioinformatics, 35: 2899–2906 https://doi.org/10.1093/bioinformatics/bty1050
 |  
															| 149 | Z., Hong, X., Zeng, L. Wei, (2020). Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism. Bioinformatics, 36: 1037–1043 https://doi.org/10.1093/bioinformatics/btz694
 |  
															| 150 | A. P., Singh, S. Mishra, (2018). Sequence based prediction of enhancer regions from DNA random walk. Sci Rep. 8, 15912 |  
															| 151 | X., Min, C., Ye, X. Liu, (2021). Predicting enhancer-promoter interactions by deep learning and matching heuristic. Brief. Bioinform., 22: bbaa254 https://doi.org/10.1093/bib/bbaa254
 |  
															| 152 | M., Zhang, Y. Hu, (2021). Epishilbert: prediction of enhancer-promoter interactions via hilbert curve encoding and transfer learning. Genes (Basel), 12: 1385 https://doi.org/10.3390/genes12091385
 |  
															| 153 | Y., Ni, L., Fan, M., Wang, N., Zhang, Y. Zuo, (2022). Epi-mind: identifying enhancer-promoter interactions based on transformer mechanism. Interdiscip. Sci., 14: 786–794 https://doi.org/10.1007/s12539-022-00525-z
 |  
															| 154 | A., Talukder, S., Saadat, X. Li, (2019). EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction. Bioinformatics, 35: 3877–3883 https://doi.org/10.1093/bioinformatics/btz641
 |  
															| 155 | F., Jing, S. W. Zhang, (2020). Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network. BMC Bioinformatics, 21: 507 https://doi.org/10.1186/s12859-020-03844-4
 |  
															| 156 | N. V., Chawla, K. W., Bowyer, L. O. Hall, W. Kegelmeyer, (2002). Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res., 16: 321–357 https://doi.org/10.1613/jair.953
 |  
															| 157 | S. S. P., Rao, M. H., Huntley, N. C., Durand, E. K., Stamenova, I. D., Bochkov, J. T., Robinson, A. L., Sanborn, I., Machol, A. D., Omer, E. S. Lander, et al.. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159: 1665–1680 https://doi.org/10.1016/j.cell.2014.11.021
 |  
															| 158 | N., Servant, N., Varoquaux, B. R., Lajoie, E., Viara, C. Chen, J. Vert, E., Heard, J. Dekker, (2015). HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol., 16: 259 https://doi.org/10.1186/s13059-015-0831-x
 |  
															| 159 | P., Kerpedjiev, N., Abdennur, F., Lekschas, C., McCallum, K., Dinkla, H., Strobelt, J. M., Luber, S. B., Ouellette, A., Azhir, N. Kumar, et al.. (2018). HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol., 19: 125 https://doi.org/10.1186/s13059-018-1486-1
 |  
															| 160 | Y., Cao, Z., Chen, X., Chen, D., Ai, G., Chen, J., McDermott, Y., Huang, X. Guo, J. Han, (2020). Accurate loop calling for 3D genomic data with cLoops. Bioinformatics, 36: 666–675 https://doi.org/10.1093/bioinformatics/btz651
 |  
															| 161 | A., Kaul, S. Bhattacharyya, (2020). Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat. Protoc., 15: 991–1012 https://doi.org/10.1038/s41596-019-0273-0
 |  
															| 162 | A., Roayaei Ardakany, H. T., Gezer, S. Lonardi, (2020). Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation. Genome Biol., 21: 256 https://doi.org/10.1186/s13059-020-02167-0
 |  
															| 163 | N., Krietenstein, S., Abraham, S. V., Venev, N., Abdennur, J., Gibcus, T. S., Hsieh, K. M., Parsi, L., Yang, R., Maehr, L. A. Mirny, et al.. (2020). Ultrastructural details of mammalian chromosome architecture. Mol. Cell, 78: 554–565.e7 https://doi.org/10.1016/j.molcel.2020.03.003
 |  
															| 164 | T. M., Lagler, A., Abnousi, M., Hu, Y. Yang, (2021). HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test. Am. J. Hum. Genet., 108: 257–268 https://doi.org/10.1016/j.ajhg.2021.01.009
 |  
															| 165 | H. Lee, P. Seo, (2021). Hicore: Hi-c analysis for identification of core chromatin looping regions with higher resolution. Mol. Cells, 44: 883–892 https://doi.org/10.14348/molcells.2021.0014
 |  
															| 166 | C. A. Lareau, M. Aryee, (2018). hichipper: a preprocessing pipeline for calling DNA loops from HiChIP data. Nat. Methods, 15: 155–156 https://doi.org/10.1038/nmeth.4583
 |  
															| 167 | S., Bhattacharyya, V., Chandra, P. Vijayanand, (2019). Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun., 10: 4221 https://doi.org/10.1038/s41467-019-11950-y
 |  
															| 168 | R., Fang, M., Yu, G., Li, S., Chee, T., Liu, A. D. Schmitt, (2016). Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res., 26: 1345–1348 https://doi.org/10.1038/cr.2016.137
 |  
															| 169 | I., Juric, M., Yu, A., Abnousi, R., Raviram, R., Fang, Y., Zhao, Y., Zhang, Y., Qiu, Y., Yang, Y. Li, et al.. (2019). MAPS: model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLOS Comput. Biol., 15: e1006982 https://doi.org/10.1371/journal.pcbi.1006982
 |  
															| 170 | C., Shi, M. Rattray, (2020). HiChIP-Peaks: a HiChIP peak calling algorithm. Bioinformatics, 36: 3625–3631 https://doi.org/10.1093/bioinformatics/btaa202
 |  
															| 171 | G., Li, M. J., Fullwood, H., Xu, F. H., Mulawadi, S., Velkov, V., Vega, P. N., Ariyaratne, Y. B., Mohamed, H. S., Ooi, C. Tennakoon, et al.. (2010). ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol., 11: R22 https://doi.org/10.1186/gb-2010-11-2-r22
 |  
															| 172 | J., Paulsen, E. A., dland, L., Holden, M. Holden, (2014). A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions. Nucleic Acids Res., 42: e143 https://doi.org/10.1093/nar/gku738
 |  
															| 173 | C., He, M. Q. Zhang, (2015). MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 31: 3832–3834 https://doi.org/10.1093/bioinformatics/btv445
 |  
															| 174 | M. N., Djekidel, Z., Liang, Q., Wang, Z., Hu, G., Li, Y. Chen, M. Zhang, (2015). 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16: 288 https://doi.org/10.1186/s13059-015-0851-6
 |  
															| 175 | G., Li, Y., Chen, M. P. Snyder, M. Zhang, (2017). ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis. Nucleic Acids Res., 45: e4 https://doi.org/10.1093/nar/gkw809
 |  
															| 176 | W., Huang, M., Medvedovic, J. Zhang, (2019). ChIAPoP: a new tool for ChIA-PET data analysis. Nucleic Acids Res., 47: e37 https://doi.org/10.1093/nar/gkz062
 |  
															| 177 | B., Lee, J., Wang, L., Cai, M., Kim, S., Namburi, H., Tjong, Y., Feng, P., Wang, Z., Tang, A. Abbas, et al.. (2020). ChIA-PIPE: a fully automated pipeline for comprehensive ChIA-PET data analysis and visualization. Sci. Adv., 6: eaay2078 https://doi.org/10.1126/sciadv.aay2078
 |  
															| 178 | I., Vardaxis, M. B. Rye, B. Lindqvist, (2020). MACPET: model-based analysis for ChIA-PET. Biostatistics, 21: 625–639 https://doi.org/10.1093/biostatistics/kxy084
 |  
															| 179 | X. J., Yu, J. G., Zhou, M. M., Zhao, C., Yi, Q., Duan, W. Zhou, (2020). Exploiting XGboost for predicting enhancer-promoter interactions. Curr. Bioinform., 15: 1036–1045 https://doi.org/10.2174/1574893615666200120103948
 |  
															| 180 | P. Bartlett, (2006). Adaboost is consistent. Adv. Neural Inf. Process. Syst., 8: 2347–2368 |  
															| 181 | S., Zhang, X. Dong, (2012). Synonym recognition based on user behaviors in E-commerce. Journal of Chinese Information Processing (in Chinese), 26: 79–85 |  
															| 182 | T. Chen, (2016). XgBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794 |  
															| 183 | Z. X. Feng, Q. Li, (2017). Recognition of long-range enhancer-promoter interactions by adding genomic signatures of segmented regulatory regions. Genomics, 109: 341–352 https://doi.org/10.1016/j.ygeno.2017.05.009
 |  
															| 184 | K., Chen, H. Zhao, (2022). Capturing large genomic contexts for accurately predicting enhancer-promoter interactions. Brief. Bioinform., 23: bbab577 https://doi.org/10.1093/bib/bbab577
 |  
															| 185 | L., Tang, Z., Zhong, Y., Lin, Y., Yang, J., Wang, J. F. Martin, (2022). EPIXplorer: a web server for prediction, analysis and visualization of enhancer-promoter interactions. Nucleic Acids Res., 50: W290–W297 https://doi.org/10.1093/nar/gkac397
 |  
															| 186 | Y., Zhu, Z., Chen, K., Zhang, M., Wang, D., Medovoy, J. W., Whitaker, B., Ding, N., Li, L. Zheng, (2016). Constructing 3D interaction maps from 1D epigenomes. Nat. Commun., 7: 10812 https://doi.org/10.1038/ncomms10812
 |  
															| 187 | Q., Cao, C., Anyansi, X., Hu, L., Xu, L., Xiong, W., Tang, M. T. S., Mok, C., Cheng, X., Fan, M. Gerstein, et al.. (2017). Reconstruction of enhancer-target networks in 935 samples of human primary cells, tissues and cell lines. Nat. Genet., 49: 1428–1436 https://doi.org/10.1038/ng.3950
 |  
															| 188 | P. S., Belokopytova, M. A., Nuriddinov, E. A., Mozheiko, D. Fishman, (2020). Quantitative prediction of enhancer-promoter interactions. Genome Res., 30: 72–84 https://doi.org/10.1101/gr.249367.119
 |  
															| 189 | C. A. Lareau, M. Aryee, (2018). diffloop: a computational framework for identifying and analyzing differential DNA loops from sequencing data. Bioinformatics, 34: 672–674 https://doi.org/10.1093/bioinformatics/btx623
 |  
															| 190 | A. T. Lun, G. Smyth, (2015). diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinformatics, 16: 258 https://doi.org/10.1186/s12859-015-0683-0
 |  
															| 191 | M. N., Djekidel, Y. Chen, M. Zhang, (2018). FIND: difFerential chromatin INteractions Detection using a spatial Poisson process. Genome Res., 28: 412–422 https://doi.org/10.1101/gr.212241.116
 |  
															| 192 | J. C., Stansfield, K. G., Cresswell, V. I. Vladimirov, M. Dozmorov, (2018). HiCcompare: an R-package for joint normalization and comparison of Hi-C datasets. BMC Bioinformatics, 19: 279 https://doi.org/10.1186/s12859-018-2288-x
 |  
															| 193 | J. C., Stansfield, K. G. Cresswell, M. Dozmorov, (2019). multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments. Bioinformatics, 35: 2916–2923 https://doi.org/10.1093/bioinformatics/btz048
 |  
															| 194 | L., Baudry, G. A., Millot, A., Thierry, R. Koszul, V. Scolari, (2020). Serpentine: a flexible 2D binning method for differential Hi-C analysis. Bioinformatics, 36: 3645–3651 https://doi.org/10.1093/bioinformatics/btaa249
 |  
															| 195 | K. J., Karczewski, J. T., Dudley, K. R., Kukurba, R., Chen, A. J., Butte, S. B. Montgomery, (2013). Systematic functional regulatory assessment of disease-associated variants. Proc. Natl. Acad. Sci. USA, 110: 9607–9612 https://doi.org/10.1073/pnas.1219099110
 |  
															| 196 | O., Corradin, A., Saiakhova, B., Akhtar-Zaidi, L., Myeroff, J., Willis, R., Cowper-Sal lari, M., Lupien, S. Markowitz, P. Scacheri, (2014). Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res., 24: 1–13 https://doi.org/10.1101/gr.164079.113
 |  
															| 197 | N. V. N. Carullo, J. Day, (2019). Genomic enhancers in brain health and disease. Genes (Basel), 10: 43 https://doi.org/10.3390/genes10010043
 |  
															| 198 | J. Marsman, J. Horsfield, (2012). Long distance relationships: enhancer-promoter communication and dynamic gene transcription. Gene Regulatory Mechanisms., 1819: 1217–1227 |  
															| 199 | Y., Li, Y., He, Z., Liang, Y., Wang, F., Chen, M. N., Djekidel, G., Li, X., Zhang, S., Xiang, Z. Wang, et al.. (2018). Alterations of specific chromatin conformation affect ATRA-induced leukemia cell differentiation. Cell Death Dis., 9: 200 https://doi.org/10.1038/s41419-017-0173-6
 |  
															| 200 | H., Wang, J., Yang, Y. Zhang, (2021). Discover novel disease-associated genes based on regulatory networks of long-range chromatin interactions. Methods, 189: 22–33 https://doi.org/10.1016/j.ymeth.2020.10.010
 |  
															| 201 | R. E., Rodin, Y., Dou, M., Kwon, M. A., Sherman, A. M., Gama, R. N., Doan, L. M., Rento, K. M., Girskis, C. L., Bohrson, S. N. Kim, et al.. (2021). The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat. Neurosci., 24: 176–185 https://doi.org/10.1038/s41593-020-00765-6
 |  
															| 202 | L., Fachal, H., Aschard, J., Beesley, D. R., Barnes, J., Allen, S., Kar, K. A., Pooley, J., Dennis, K., Michailidou, C. Turman, et al.. (2020). Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat. Genet., 52: 56–73 https://doi.org/10.1038/s41588-019-0537-1
 |  
															| 203 | T., Dzida, M., Iqbal, I., Charapitsa, G., Reid, H., Stunnenberg, F., Matarese, K., Grote, A. Honkela, (2017). Predicting stimulation-dependent enhancer-promoter interactions from ChIP-Seq time course data. PeerJ, 5: e3742 https://doi.org/10.7717/peerj.3742
 |  
															| 204 | Z. X., Feng, Q. Z. Li, J. Meng, (2018). Recognition of the long range enhancer-promoter interactions by further adding DNA structure properties and transcription factor binding motifs in human cell lines. J. Theor. Biol., 445: 136–150 https://doi.org/10.1016/j.jtbi.2018.02.023
 |  
															| 205 | T. A., Hait, R. Elkon, (2022). CT-FOCS: a novel method for inferring cell type-specific enhancer-promoter maps. Nucleic Acids Res., 50: e55 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |