| 
					
						|  |  
    					|  |  
    					| Building digital life systems for future biology and medicine |  
						| Xuegong Zhang1,2,3(  ), Lei Wei1, Rui Jiang1, Xiaowo Wang1,2, Jin Gu1, Zhen Xie1,2, Hairong Lv1 |  
						| 1. MOE Key Lab of Bioinformatics and Bioinformatics Division of BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China 2. Center of Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
 3. School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract The rapid development of biological technology (BT) and information technology (IT) especially of genomics and artificial intelligence (AI) is bringing great potential for revolutionizing future medicine. We propose the concept and framework of Digital Life Systems or dLife as a new paradigm to unleash this potential. It includes the multi-scale and multi-granule measure and representation of life in the digital space, the mathematical and/or computational modeling of the biology behind physiological and pathological processes, and ultimately cyber twins of healthy or diseased human body in the virtual space that can be used to simulate complex biological processes and deduce effects of medical treatments. We advocate that dLife is the route toward future AI precision medicine and should be the new paradigm for future biological and medical research. |  
															| Keywords 
																																																				digital life systems  
																		  																																				digital twin  
																		  																																				aritificial intelligence  
																		  																																				precision medicine |  
															| Corresponding Author(s):
																Xuegong Zhang |  
															| Just Accepted Date: 19 June 2023  
																																														Online First Date: 13 July 2023   
																																														Issue Date: 08 October 2023 |  |  
								            
								                
																																												
															| 1 | M., Loukas, M., Hanna, N., Alsaiegh, M. M. Shoja, R. Tubbs, (2011). Clinical anatomy as practiced by ancient Egyptians. Clin. Anat., 24: 409–415 https://doi.org/10.1002/ca.21155
 |  
															| 2 | B. Ford, (1982). Bacteria and cells of human origin on van Leeuwenhoek’s sections of 1674. Trans. Am. Microsc. Soc., 101: 1–9 https://doi.org/10.2307/3225566
 |  
															| 3 | P. Kligfield, (2016). The Bicentennial of the Stethoscope: 1816 to 2016. Am. J. Cardiol., 118: 1601–1602 https://doi.org/10.1016/j.amjcard.2016.08.033
 |  
															| 4 | R. Mould, (1995). The early history of X-ray diagnosis with emphasis on the contributions of physics 1895–1915. Phys. Med. Biol., 40: 1741–1787 https://doi.org/10.1088/0031-9155/40/11/001
 |  
															| 5 | W. Fye, (1994). A history of the origin, evolution, and impact of electrocardiography. Am. J. Cardiol., 73: 937–949 https://doi.org/10.1016/0002-9149(94)90135-X
 |  
															| 6 | J. L. Stone, J. Hughes, (2013). Early history of electroencephalography and establishment of the American Clinical Neurophysiology Society. J. Clin. Neurophysiol., 30: 28–44 https://doi.org/10.1097/WNP.0b013e31827edb2d
 |  
															| 7 | I. Edler, C. Hertz, (2004). The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. Clin. Physiol. Funct. Imaging, 24: 118–136 https://doi.org/10.1111/j.1475-097X.2004.00539.x
 |  
															| 8 | E. Beckmann, (2006). CT scanning the early days. Br. J. Radiol., 79: 5–8 https://doi.org/10.1259/bjr/29444122
 |  
															| 9 | T., Ai, J. N., Morelli, X., Hu, D., Hao, F. L., Goerner, B. Ager, V. Runge, (2012). A historical overview of magnetic resonance imaging, focusing on technological innovations. Invest. Radiol., 47: 725–741 https://doi.org/10.1097/RLI.0b013e318272d29f
 |  
															| 10 | J. Riley, (2005). Estimates of regional and global life expectancy, 1800–2001. Popul. Dev. Rev., 31: 537–543 https://doi.org/10.1111/j.1728-4457.2005.00083.x
 |  
															| 11 | T. H. N., Ellis, J. M. I., Hofer, G. M., Timmerman-Vaughan, C. J. Coyne, R. Hellens, (2011). Mendel, 150 years on. Trends Plant Sci., 16: 590–596 https://doi.org/10.1016/j.tplants.2011.06.006
 |  
															| 12 | R. Dahm, D. N. Discovering, (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum. Genet., 122: 565–581 https://doi.org/10.1007/s00439-007-0433-0
 |  
															| 13 | A., Thess, I., Hoerr, B. Y., Panah, G. Jung, (2021). Historic nucleic acids isolated by Friedrich Miescher contain RNA besides DNA. Biol. Chem., 402: 1179–1185 https://doi.org/10.1515/hsz-2021-0226
 |  
															| 14 | H. Hartley, (1951). Origin of the word “protein”. Nature, 168: 244 https://doi.org/10.1038/168244a0
 |  
															| 15 | J. D. Watson, F. H. Crick, (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 171: 737–738 https://doi.org/10.1038/171737a0
 |  
															| 16 | R. Wu, (1970). Nucleotide sequence analysis of DNA. I. Partial sequence of the cohesive ends of bacteriophage lambda and 186 DNA. J. Mol. Biol., 51: 501–521 https://doi.org/10.1016/0022-2836(70)90004-5
 |  
															| 17 | F. S., Collins, M. Morgan, (2003). The Human Genome Project: lessons from large-scale biology. Science, 300: 286–290 https://doi.org/10.1126/science.1084564
 |  
															| 18 | A., RegevS. A., TeichmannE. S., LanderI., AmitC., BenoistE., BirneyB., BodenmillerP., CampbellP., CarninciM., Clatworthy, (2017) The Human Cell Atlas. eLife, 6, e27041 |  
															| 19 | Consortium HuBMAP. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature, 574,187–192 |  
															| 20 | S., Chen, Y., Luo, H., Gao, F., Li, Y., Chen, J., Li, R., You, M., Hao, H., Bian, X. Xi, et al.. (2022). hECA: the cell-centric assembly of a cell atlas. iScience, 25: 104318 https://doi.org/10.1016/j.isci.2022.104318
 |  
															| 21 | M., Vaduganathan, G. A., Mensah, J. V., Turco, V. Fuster, G. Roth, (2022). The global burden of cardiovascular diseases and risk: a compass for future health. J. Am. Coll. Cardiol., 80: 2361–2371 https://doi.org/10.1016/j.jacc.2022.11.005
 |  
															| 22 | R. L., Siegel, K. D., Miller, H. E. Fuchs, (2022). Cancer statistics, 2022. CA Cancer J. Clin., 72: 7–33 https://doi.org/10.3322/caac.21708
 |  
															| 23 | M., Moor, O., Banerjee, Z. S. H., Abad, H. M., Krumholz, J., Leskovec, E. J. Topol, (2023). Foundation models for generalist medical artificial intelligence. Nature, 616: 259–265 https://doi.org/10.1038/s41586-023-05881-4
 |  
															| 24 | on the Learning Health Care System in America & Institute of Medicine Committee. (2013) Best Care at Lower Cost: The Path to Continuously Learning Health Care in America. Washington (DC): National Academies Press |  
															| 25 | J., Li, Z., Qiu, C., Zhang, S., Chen, M., Wang, Q., Meng, H., Lu, L., Wei, H., Lv, W. Zhong, et al.. (2022). ITHscore: comprehensive quantification of intra-tumor heterogeneity in NSCLC by multi-scale radiomic features. Eur. Radiol., 33: 893–903 https://doi.org/10.1007/s00330-022-09055-0
 |  
															| 26 | Y., Yuan, B., Liu, P., Xie, M. Q., Zhang, Y., Li, Z. Xie, (2015). Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA, 112: 3158–3163 https://doi.org/10.1073/pnas.1413896112
 |  
															| 27 | L., Wei, Y., Yuan, T., Hu, S., Li, T., Cheng, J., Lei, Z., Xie, M. Q. Zhang, (2019). Regulation by competition: a hidden layer of gene regulatory network. Quant. Biol., 7: 110–121 https://doi.org/10.1007/s40484-018-0162-5
 |  
															| 28 | H., Huang, Y., Liu, W., Liao, Y., Cao, Q., Liu, Y., Guo, Y. Lu, (2019). Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nat. Commun., 10: 4801 https://doi.org/10.1038/s41467-019-12794-2
 |  
															| 29 | L., Wei, S., Li, P., Zhang, T., Hu, M. Q., Zhang, Z. Xie, (2021). Characterizing microRNA-mediated modulation of gene expression noise and its effect on synthetic gene circuits. Cell Rep., 36: 109573 https://doi.org/10.1016/j.celrep.2021.109573
 |  
															| 30 | H. O., Demirel, S. Ahmed, V. Duffy, (2022). Digital human modeling: a review and reappraisal of origins, present, and expected future methods for representing humans computationally. Int. J. Hum. Comput. Interact., 38: 897–937 https://doi.org/10.1080/10447318.2021.1976507
 |  
															| 31 | M. Campbell, (2022). Digital self: the next evolution of the digital human. Computer, 55: 82–86 https://doi.org/10.1109/MC.2022.3148642
 |  
															| 32 | R. W., Morris, C. A., Bean, G. K., Farber, D., Gallahan, E., Jakobsson, Y., Liu, P. M., Lyster, G. C. Y., Peng, F. S., Roberts, M. Twery, et al.. (2005). Digital biology: an emerging and promising discipline. Trends Biotechnol., 23: 113–117 https://doi.org/10.1016/j.tibtech.2005.01.005
 |  
															| 33 | J., Corral-Acero, F., Margara, M., Marciniak, C., Rodero, F., Loncaric, Y., Feng, A., Gilbert, J. F., Fernandes, H. A., Bukhari, A. Wajdan, et al.. (2020). The “digital twin” to enable the vision of precision cardiology. Eur. Heart J., 41: 4556–4564 https://doi.org/10.1093/eurheartj/ehaa159
 |  
															| 34 | K. Subramanian, (2020). Digital twin for drug discovery and development—the virtual liver. J. Indian Inst. Sci., 100: 653–662 https://doi.org/10.1007/s41745-020-00185-2
 |  
															| 35 | J., Masison, J., Beezley, Y., Mei, H., Ribeiro, A. C., Knapp, L., Sordo Vieira, B., Adhikari, Y., Scindia, M., Grauer, B. Helba, et al.. (2021). A modular computational framework for medical digital twins. Proc. Natl. Acad. Sci. USA, 118: e2024287118 https://doi.org/10.1073/pnas.2024287118
 |  
															| 36 | A., Mussomeli, A., Parrott, B. Umbenhauer, (2020). Deloitte. TechTrends, 2020: 70–71 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |