Please wait a minute...
Soil Ecology Letters

ISSN 2662-2289

ISSN 2662-2297(Online)

Soil Ecology Letters    2024, Vol. 6 Issue (4) : 240244    https://doi.org/10.1007/s42832-024-0244-4
Metals are overlooked in the evolution of antibiotic resistance
Yi Zhao1,2(), Rui Xu1,2, Siobhan F. Cox3, Min Qiao4, Huaming Guo1,2
1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China
2. Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
3. School of Natural and Built Environment, Queenʼs University of Belfast, David Keir Building, Stranmillis Road, Belfast BT9 6AX, United Kingdom
4. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
 Download: PDF(582 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Metals are increasingly important risk factors for the evolution of antibiotic resistance in environments.

The rapid development of antibiotic resistance is occurring at a global scale. We therefore stride into the post-antibiotic era and have to battle antibiotic resistance in the Anthropocene. Metals are widely used and their pollution is widespread worldwide. More importantly, metal-induced co-selection greatly expands the environmental resistomes and increases the health risk of antibiotic resistance in environments. Here, we reviewed the metal-induced co-selection and their increasingly important roles in the development of antibiotic resistance. In particular, we highlight the metal-rich environments that maintain reservoirs for high-risk antibiotic resistance genes with horizontally transferable potentials. We also call for considerations and further investigations of other co-selective agents and the efficacy of metal-based interventions to better manage and combat the global antibiotic resistance crisis within the One Health framework.

Keywords antibiotic resistance      metals      co-selection      mobile genetic elements      One Health     
Corresponding Author(s): Yi Zhao   
Issue Date: 10 April 2024
 Cite this article:   
Yi Zhao,Rui Xu,Siobhan F. Cox, et al. Metals are overlooked in the evolution of antibiotic resistance[J]. Soil Ecology Letters, 2024, 6(4): 240244.
 URL:  
https://academic.hep.com.cn/sel/EN/10.1007/s42832-024-0244-4
https://academic.hep.com.cn/sel/EN/Y2024/V6/I4/240244
Fig.1  Molecular mechanisms of metal-induced co-selection.
MetalsScenariosReferences
Cu, Hg, Zn, CdAgricultural soilsBerg et al., 2005; Seiler and Berendonk, 2012; Song et al., 2017; Kang et al., 2018; Mahbub et al., 2020; Zhao et al., 2021
Cu, Hg, Zn, CdAgricultural surface waterSeiler and Berendonk, 2012
As, Cd, Cu, Pb, ZnAnimal farm soilsZhu et al., 2013; Zhou et al., 2016; Mazhar et al., 2021
Al, As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, ZnUrban soils, residential soilsKnapp et al., 2011, 2017; Zhao et al., 2019; Ding et al., 2021
SeWetland, forest soilsShi et al., 2021; Wang et al., 2022
CdFreshwater, Brackish waterStepanauskas et al., 2006; Pu et al., 2021
Cd, Co, Cr, Cu, Ni, Pb, ZnUrban surface waterRoberto et al., 2019; Gupta et al., 2022
As, Co, Cr, Ni, PbTerrestrial subsurface soilsWang et al., 2021
As, Cd, Cu, Pb, ZnAnimal microbiomeZhu et al., 2013; Yazdankhah et al., 2014; Zhou et al., 2016; Zhao et al., 2018; Mazhar et al., 2021
Tab.1  Selected previous studies that provide potential evidence of metal-induced co-selection for antibiotic resistance in soils, water, and animal microbiomes.
1 S., Babakhani, M., Oloomi, 2018. Transposons: the agents of antibiotic resistance in bacteria. Journal of Basic Microbiology58, 905–917.
https://doi.org/10.1002/jobm.201800204
2 C., Baker-Austin, M.S., Wright, R., Stepanauskas, J.V., McArthur, 2006. Co-selection of antibiotic and metal resistance. Trends in Microbiology14, 176–182.
https://doi.org/10.1016/j.tim.2006.02.006
3 J., Berg, A., Tom-Petersen, O., Nybroe, 2005. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Letters in Applied Microbiology40, 146–151.
https://doi.org/10.1111/j.1472-765X.2004.01650.x
4 R., Cantón, P., Ruiz-Garbajosa, 2011. Co-resistance: an opportunity for the bacteria and resistance genes. Current Opinion in Pharmacology11, 477–485.
https://doi.org/10.1016/j.coph.2011.07.007
5 J., Ding, D., Zhu, Y., Wang, H.T., Wang, A.P., Liang, H.W., Sun, Q.L., Chen, S.B., Lassen, M., Lv, Q.L., Chen, 2021. Exposure to heavy metal and antibiotic enriches antibiotic resistant genes on the tire particles in soil. Science of the Total Environment792, 148417.
https://doi.org/10.1016/j.scitotenv.2021.148417
6 D.J., Du, X., Wang-Kan, A., Neuberger, H.W., van Veen, K.M., Pos, L.J.V., Piddock, B.F., Luisi, 2018. Multidrug efflux pumps: structure, function and regulation. Nature Reviews Microbiology16, 523–539.
https://doi.org/10.1038/s41579-018-0048-6
7 A., Frei, A.D., Verderosa, A.G., Elliott, J., Zuegg, M.A.T., Blaskovich, 2023. Metals to combat antimicrobial resistance. Nature Reviews Chemistry7, 202–224.
https://doi.org/10.1038/s41570-023-00463-4
8 L.S., Frost, R., Leplae, A.O., Summers, A., Toussaint, 2005. Mobile genetic elements: the agents of open source evolution. Nature Reviews Microbiology3, 722–732.
https://doi.org/10.1038/nrmicro1235
9 M.R., Gillings, 2014. Integrons: past, present, and future. Microbiology and Molecular Biology Reviews78, 257–277.
https://doi.org/10.1128/MMBR.00056-13
10 M.R., Gillings, W.H., Gaze, A., Pruden, K., Smalla, J.M., Tiedje, Y.G., Zhu, 2015. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. The ISME Journal9, 1269–1279.
https://doi.org/10.1038/ismej.2014.226
11 S., Gupta, D.W., Graham, T.R., Sreekrishnan, S.Z., Ahammad, 2022. Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. Environmental Pollution306, 119326.
https://doi.org/10.1016/j.envpol.2022.119326
12 X.L., Hao, J.J., Zhu, C., Rensing, Y., Liu, S.H., Gao, W.L., Chen, Q.Y.; Liu, Y.R., Huang, 2021. Recent advances in exploring the heavy metal(loid) resistant microbiome. Computational and Structural Biotechnology Journal19, 94–109.
https://doi.org/10.1016/j.csbj.2020.12.006
13 W., Kang, Y.J., Zhang, X., Shi, J.Z., He, H.W., Hu, 2018. Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil. Environmental Science and Pollution Research25, 29314–29324.
https://doi.org/10.1007/s11356-018-2978-y
14 C.W., Knapp, A.C., Callan, B., Aitken, R., Shearn, A., Koenders, A., Hinwood, 2017. Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environmental Science and Pollution Research24, 2484–2494.
https://doi.org/10.1007/s11356-016-7997-y
15 C.W., Knapp, S.M., McCluskey, B.K., Singh, C.D., Campbell, G., Hudson, D.W., Graham, 2011. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS One6, e27300.
https://doi.org/10.1371/journal.pone.0027300
16 A., Knöppel, J., Näsvall, D.I., Andersson, 2017. Evolution of antibiotic resistance without antibiotic exposure. Antimicrobial Agents and Chemotherapy61, e01495–17.
https://doi.org/10.1128/aac.01495-17
17 J.H., Kwon, W.G., Powderly, 2021. The post-antibiotic era is here. Science373, 471–471.
https://doi.org/10.1126/science.abl5997
18 D.G.J., Larsson, C.F., Flach, 2022. Antibiotic resistance in the environment. Nature Reviews Microbiology20, 257–269.
https://doi.org/10.1038/s41579-021-00649-x
19 J.A., Lemire, J.J., Harrison, R.J., Turner, 2013. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology11, 371–384.
https://doi.org/10.1038/nrmicro3028
20 B., Li, Y., Yang, L.P., Ma, F., Ju, F., Guo, J.M., Tiedje, T., Zhang, 2015. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. The ISME Journal9, 2490–2502.
https://doi.org/10.1038/ismej.2015.59
21 L.G., Li, Y., Xia, T., Zhang, 2017. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. The ISME Journal11, 651–662.
https://doi.org/10.1038/ismej.2016.155
22 K.R., Mahbub, W.L., King, N., Siboni, V.K., Nguyen, M.M., Rahman, M., Megharaj, J.R., Seymour, A.E., Franks, M., Labbate, 2020. Long-lasting effect of mercury contamination on the soil microbiota and its co-selection of antibiotic resistance. Environmental Pollution265, 115057.
https://doi.org/10.1016/j.envpol.2020.115057
23 S.H., Mazhar, X.J., Li, A., Rashid, J.M., Su, J.Q., Xu, A.D., Brejnrod, J.Q., Su, Y.J., Wu, Y.G., Zhu, S.G., Zhou, R.W., Feng, C., Rensing, 2021. Co-selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. Science of the Total Environment755, 142702.
https://doi.org/10.1016/j.scitotenv.2020.142702
24 J.O., Nriagu, 1996. A history of global metal pollution. Science272, 223–223.
https://doi.org/10.1126/science.272.5259.223
25 C., Pal, J., Bengtsson-Palme, E., Kristiansson, D.G.J., Larsson, 2015. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics16, 964.
https://doi.org/10.1186/s12864-015-2153-5
26 K., Poole, 2017. At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic activity and resistance. Trends in Microbiology25, 820–832.
https://doi.org/10.1016/j.tim.2017.04.010
27 Q., Pu, X.T., Fan, A.Q., Sun, T., Pan, H., Li, S., Bo Lassen, X.L., An, J.Q., Su, 2021. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes. Environment International152, 106453.
https://doi.org/10.1016/j.envint.2021.106453
28 A.A., Roberto, J.B., Van Gray, J., Engohang-Ndong, L.G., Leff, 2019. Distribution and co-occurrence of antibiotic and metal resistance genes in biofilms of an anthropogenically impacted stream. Science of the Total Environment688, 437–449.
https://doi.org/10.1016/j.scitotenv.2019.06.053
29 C., Seiler, T.U., Berendonk, 2012. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology3, 399.
https://doi.org/10.3389/fmicb.2012.00399
30 L.D., Shi, Q.J., Xu, J.Y., Liu, Z.X., Han, Y.G., Zhu, H.P., Zhao, 2021. Will a non-antibiotic metalloid enhance the spread of antibiotic resistance genes: the selenate story. Environmental Science & Technology55, 1004–1014.
https://doi.org/10.1021/acs.est.0c05698
31 J.X., Song, C., Rensing, P.E., Holm, M., Virta, K.K., Brandt, 2017. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil. Environmental Science & Technology51, 3040–3047.
https://doi.org/10.1021/acs.est.6b05342
32 R., Stepanauskas, T.C., Glenn, C.H., Jagoe, R.C., Tuckfield, A.H., Lindell, C.J., King, J.V., McArthur, 2006. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology8, 1510–1514.
https://doi.org/10.1111/j.1462-2920.2006.01091.x
33 T.P., van Boeckel, S., Gandra, A., Ashok, Q., Caudron, B.T., Grenfell, S.A., Levin, R., Laxminarayan, 2014. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases14, 742–750.
https://doi.org/10.1016/S1473-3099(14)70780-7
34 F.F., Wang, G.P., Liu, F., Zhang, Z.M., Li, X.L., Yang, C.D., Yang, J.L., Shen, J.Z., He, B.L., Li, J.G., Zeng, 2022. Natural selenium stress influences the changes of antibiotic resistome in seleniferous forest soils. Environmental Microbiome17, 26.
https://doi.org/10.1186/s40793-022-00419-z
35 X.M., Wang, B.R., Lan, H.X., Fei, S.Y., Wang, G.B., Zhu, 2021. Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils. Journal of Hazardous Materials411, 124848.
https://doi.org/10.1016/j.jhazmat.2020.124848
36 WHO, 2015. WHO Model Lists of Essential Medicines [Online]. available at the WHO website.
37 S., Yazdankhah, K., Rudi, A., Bernhoft, 2014. Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microbial Ecology in Health and Disease 25.
38 Z.Y., Zhang, Q., Zhang, T.Z., Wang, N.H., Xu, T., Lu, W.J., Hong, J., Penuelas, M., Gillings, M.X., Wang, W.W., Gao, H.F., Qian, 2022. Assessment of global health risk of antibiotic resistance genes. Nature Communications13, 1553.
https://doi.org/10.1038/s41467-022-29283-8
39 Y., Zhao, T., Cocerva, S., Cox, S., Tardif, J.Q., Su, Y.G., Zhu, K.K., Brandt, 2019. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Science of the Total Environment656, 512–520.
https://doi.org/10.1016/j.scitotenv.2018.11.372
40 Y., Zhao, H.W., Hu, J.Q., Su, X.L., Hao, H.M., Guo, Y.R., Liu, Y.G., Zhu, 2021. Influence of legacy mercury on antibiotic resistomes: evidence from agricultural soils with different cropping systems. Environmental Science & Technology55, 13913–13922.
https://doi.org/10.1021/acs.est.1c04030
41 Y., Zhao, J.Q., Su, X.L., An, F.Y., Huang, C., Rensing, K.K., Brandt, Y.G., Zhu, 2018. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut. Science of the Total Environment621, 1224–1232.
https://doi.org/10.1016/j.scitotenv.2017.10.106
42 B.R., Zhou, C., Wang, Q., Zhao, Y., Wang, M.J., Huo, J.D., Wang, S.L., Wang, 2016. Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms. Journal of Hazardous Materials320, 10–17.
https://doi.org/10.1016/j.jhazmat.2016.08.007
43 Y.G., Zhu, T.A., Johnson, J.Q., Su, M., Qiao, G.X., Guo, R.D., Stedtfeld, S.A., Hashsham, J.M., Tiedje, 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America110, 3435–3440.
https://doi.org/10.1073/pnas.1222743110
[1] Yan-Zi Wang, Hu Li, Qing-Lin Chen, Ting Pan, Yong-Guan Zhu, Dirk Springael, Jian-Qiang Su. Prevention and control strategies for antibiotic resistance: from species to community level[J]. Soil Ecology Letters, 2024, 6(3): 230222-.
[2] Mohammed F.S.A. Ghanem, Shahid Afzal, Humira Nesar, Zarrin Imran, Wasim Ahmad. Impact of metal polluted sewage water on soil nematode assemblages in agricultural settings of Aligarh, India[J]. Soil Ecology Letters, 2024, 6(1): 230193-.
[3] Song Zhang, Yating Du, Guangshen Shang, Kejiao Hu, Xing Wang. Low-density polyethylene microplastics partially alleviate the ecotoxicological effects induced by cadmium exposure on the earthworm Eisenia fetida[J]. Soil Ecology Letters, 2024, 6(1): 230184-.
[4] Ali Akbar Safari Sinegani, Mehdi Rashtbari. The static and cidal effects of veterinary antibiotics on soil microorganisms in the presence of organic and mineral amendments[J]. Soil Ecology Letters, 2023, 5(4): 230174-.
[5] Sana Khalid, Muhammad Shahid, Zeid A. ALOthman, Abdullah A. Al-Kahtani, Behzad Murtaza, Camille Dumat. Predicting chemical speciation of metals in soil using Visual Minteq[J]. Soil Ecology Letters, 2023, 5(3): 220162-.
[6] Xiao Liu, Xia Xu, Tian Ma, Shiwei Zhou, Xiaoli Bi, Hongbo He, Xudong Zhang, Weihuan Li. Linking microbial carbon pump capacity and efficacy to soil organic carbon storage and stability under heavy metal pollution[J]. Soil Ecology Letters, 2023, 5(2): 220140-.
[7] Anandkumar Jayapal, Tanushree Chaterjee, Biju Prava Sahariah. Bioremediation techniques for the treatment of mine tailings: A review[J]. Soil Ecology Letters, 2023, 5(2): 220149-.
[8] Yongxing Cui, Xia Wang, Xiangxiang Wang, Xingchang Zhang, Linchuan Fang. Evaluation methods of heavy metal pollution in soils based on enzyme activities: A review[J]. Soil Ecology Letters, 2021, 3(3): 169-177.
[9] Haijian Bing, Shaojun Qiu, Xin Tian, Jun Li, He Zhu, Yanhong Wu, Gan Zhang. Trace metal contamination in soils from mountain regions across China: spatial distribution, sources, and potential drivers[J]. Soil Ecology Letters, 2021, 3(3): 189-206.
[10] Dong Zhu, Hong-Tao Wang, Fei Zheng, Xiao-Ru Yang, Peter Christie, Yong-Guan Zhu. Collembolans accelerate the dispersal of antibiotic resistance genes in the soil ecosystem[J]. Soil Ecology Letters, 2019, 1(1-2): 14-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed