Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (2) : 172-175    https://doi.org/10.1007/s11705-009-0048-1
RESEARCH ARTICLE
Simulation studies on metastable phase equilibria in the aqueous ternary systems (NaCl-MgCl2-H2O) and (KCl-MgCl2-H2O) at 308.15 K
Tianlong DENG1,2(), Baojun ZHANG2, Dongchan LI2, Yafei GUO1
1. Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; 2. College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
 Download: PDF(96 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The solubilities and densities of the aqueous metastable ternary systems (NaCl-MgCl2-H2O) and (KCl-MgCl2-H2O) at 308.15 K were determined by the isothermal evaporation method. On the basis of the experimental results, the phase diagrams for those systems were plotted. It was found that the former system belongs to the hydrate-I type with one invariant point of (NaCl+ MgCl2?6H2O), two univariant curves, and two crystallization regions corresponding to halite (NaCl) and bischofite (MgCl2·6H2O); and the latter system belongs to the type of incongruent-double salts with two invariant points of (KCl+ KCl·MgCl2·6H2O) and (MgCl2·6H2O+ KCl·MgCl2·6H2O), three univariant curves, and three crystallization regions corresponding to potassium chloride (KCl), carnallite (KCl·MgCl2·6H2O) and bischofite (MgCl2·6H2O). No solid solutions were found in both systems.

Keywords green chemistry      solar pond technique      simulation      metastable phase equilibrium      solubility     
Corresponding Author(s): DENG Tianlong,Email:tldeng@isl.ac.cn   
Issue Date: 05 June 2009
 Cite this article:   
Tianlong DENG,Baojun ZHANG,Dongchan LI, et al. Simulation studies on metastable phase equilibria in the aqueous ternary systems (NaCl-MgCl2-H2O) and (KCl-MgCl2-H2O) at 308.15 K[J]. Front Chem Eng Chin, 2009, 3(2): 172-175.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0048-1
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I2/172
No.composition of liquid phase w/wt-%composition of wet residuals w/wt-%density ρ/(g·cm-3)equilibriumsolid phase a)
KClMgCl2KClMgCl2
1, A28.240.00ND b)ND1.1857KCl
223.463.63NDND1.1877KCl
322.314.68NDND1.1879KCl
417.299.09NDND1.1980KCl
511.8514.71NDND1.2085KCl
69.3917.4372.955.431.2181KCl
76.6621.8537.8014.861.2397KCl
84.1227.1939.5421.081.2810KCl
9, E3.3928.1817.6229.621.2772KCl+ Car
102.8729.26NDND1.2829Car
110.9631.7314.5932.711.3184Car
120.5435.97NDND1.3436Car
13, F0.4535.981.8341.091.3400Car+MgCl2·6H2O
140.2836.04NDNDNDMgCl2·6H2O
150.04736.03NDND1.3406MgCl2·6H2O
16, B0.0036.05NDND1.3408MgCl2·6H2O
Tab.1  Metastable solubility and density of the system (KCl-MgCl-HO) at 308.15 K
No.composition of liquid phase w/wt-%composition of wet residuals w/wt-%density ρ/(g·cm-3)equilibriumsolid phase
NaClMgCl2NaClMgCl2
1, A26.620.00NDa)ND1.1935NaCl
219.046.71NDNDNDNaCl
313.4712.0560.075.47NDNaCl
46.6119.64NDNDNDNaCl
54.4422.62NDND1.2356NaCl
64.0223.06NDNDNDNaCl
72.3126.07NDNDNDNaCl
81.5028.2057.5311.87NDNaCl
9, E0.2235.9528.4955.331.3387NaCl+ MgCl2·6H2O
100.08535.990.0008144.36NDMgCl2·6H2O
110.04436.01NDND1.3398MgCl2·6H2O
12, B0.0036.05NDND1.3408MgCl2·6H2O
Tab.2  Metastable solubility and density of the system (NaCl-MgCl-HO) at 308.15 K
Fig.1  Metastable phase diagram (KCl-MgCl-HO) at 308.15 K. ● experimental points; - isothermal solubility curves; Bis MgCl·6HO; Car KCl·MgCl·6HO
Fig.2  Metastable phase diagram (NaCl-MgCl-HO) at 308.15 K. ● experimental points; - isothermal metastable solubility curves; Bis MgCl·6HO
1 Zheng X Y, Tang Y, Xu C. Tibet Saline Lake. Beijing: Sci Press,1988, 23-28
2 Jin Z M, Xiao X Z, Liang S M. Study of the metastable equilibrium for pentanary system of (Na+, K+, Mg2+), (Cl, SO42-), H2O. Acta Chim Sinica , 1980, 38(4): 313-321
3 Jin Z M, Zhou H N, Wang L S. Study on the metastable phase equilibrium of Na+, K+, Mg2+//Cl, SO42--H2O Quinary system at 35°C. Chem J Chin Univ , 2001, 22: 634-638
4 Jin Z M, Zhou H N, Wang L S. Studies on the metastable phase equilibrium of Na+, K+, Mg2+//Cl–, SO42--H2O Quinary system at 15°C. Chem J Chin Univ , 2002, 23: 690-694
5 Su Y G, Li J, Jiang C F. Metastable phase equilibrium of K+, Na+, Mg2+//Cl, SO42--H2O Quinary system at 15°C. J Chem Ind Eng , 1992, 43:549-555
6 Deng T L, Wang S Q, Sun B J. Metastable phase equilibrium on the aqueous quarternary system (KCl+ K2SO4+ K2B4O7+ H2O) at 308.15 K. Chem Eng Data , 2008, 53(2), 411-414
doi: 10.1021/je700472p
7 Deng T L, Meng L Z, Sun B. Metastable phase equilibria of the reciprocal quaternary system containing sodium, potassium, chloride and borate ions at 308.15 K. J Chem Eng Data , 2008, 53(3):704-709
doi: 10.1021/je700552j
8 Deng T L, Li D C, Wang S Q. Metastable phase equilibrium on the aqueous quaternary system (KCl-CaCl2-H2O) at (288.15 and 308.15) K. J Chem Eng Data , 2008, 53(4), 1007-1011
doi: 10.1021/je700753g
9 Wang S Q, Deng T L. Solid-liquid isothermal evaporation phase equilibria in the aqueous ternary system (Li2SO4+ MgSO4+ H2O) at T= 308.15 K. J Chem Thermodyn , 2008, 40(6): 1007-1011
doi: 10.1016/j.jct.2008.02.008
10 Analytical Laboratory of Qinghai Institute of Salt Lakes at Chinese Academy of Sciences. Analytical Methods of Brines and Salts, 2nd ed. Beijing: Sci Press, 1988, 82-88
[1] Jie Liu, Jiahao Shen, Jingjing Wang, Yuan Liang, Routeng Wu, Wenwen Zhang, Delin Shi, Saixiang Shi, Yanping Wang, Yimin Wang, Yumin Xia. Polymeric ionic liquid—assisted polymerization for soluble polyaniline nanofibers[J]. Front. Chem. Sci. Eng., 2021, 15(1): 118-126.
[2] Ervin Saracevic, David Woess, Franz Theuretzbacher, Anton Friedl, Angela Miltner. Techno-economic assessment of providing control energy reserves with a biogas plant[J]. Front. Chem. Sci. Eng., 2018, 12(4): 763-771.
[3] Ismael Matino, Valentina Colla, Teresa A. Branca. Extension of pilot tests of cyanide elimination by ozone from blast furnace gas washing water through Aspen Plus® based model[J]. Front. Chem. Sci. Eng., 2018, 12(4): 718-730.
[4] Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
[5] Erik C. Neyts. Atomistic simulations of plasma catalytic processes[J]. Front. Chem. Sci. Eng., 2018, 12(1): 145-154.
[6] Jae-Yun Han, Chang-Hyun Kim, Boreum Lee, Sung-Chan Nam, Ho-Young Jung, Hankwon Lim, Kwan-Young Lee, Shin-Kun Ryi. Sorption enhanced catalytic CF4 hydrolysis with a three-stage catalyst-adsorbent reactor[J]. Front. Chem. Sci. Eng., 2017, 11(4): 537-544.
[7] Yang Zhou, Phillip Choi. Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures[J]. Front. Chem. Sci. Eng., 2017, 11(3): 440-447.
[8] Matteo Minelli, Maria Grazia De Angelis, Giulio C. Sarti. Predictive calculations of gas solubility and permeability in glassy polymeric membranes: An overview[J]. Front. Chem. Sci. Eng., 2017, 11(3): 405-413.
[9] Boreum Lee,Sunggeun Lee,Ho Young Jung,Shin-Kun Ryi,Hankwon Lim. Process simulation and economic analysis of reactor systems for perfluorinated compounds abatement without HF effluent[J]. Front. Chem. Sci. Eng., 2016, 10(4): 526-533.
[10] Guilan Chen, Xingfu Song, Shuying Sun, Yanxia Xu, Jianguo Yu. Solubility and diffusivity of CO2 in n-butanol+ N235 system and absorption mechanism of CO2 in a coupled reaction-extraction process[J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[11] Anan Wang,Helen H. Lou,Daniel Chen,Anfeng Yu,Wenyi Dang,Xianchang Li,Christopher Martin,Vijaya Damodara,Ajit Patki. Combustion mechanism development and CFD simulation for the prediction of soot emission during flaring[J]. Front. Chem. Sci. Eng., 2016, 10(4): 459-471.
[12] Rongbao Qi,Jingkang Wang,Junxiao Ye,Hongxun Hao,Ying Bao. The solubility of cefquinome sulfate in pure and mixed solvents[J]. Front. Chem. Sci. Eng., 2016, 10(2): 245-254.
[13] Fufeng LIU,Wenjie DU,Yan SUN,Jie ZHENG,Xiaoyan DONG. Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein[J]. Front. Chem. Sci. Eng., 2014, 8(4): 433-444.
[14] Ming TAN,Gaohong HE,Yan DAI,Rujie WANG,Wenhua SHI. Calculation on phase diagrams of polyetherimide/ N,N-dimethylacetamide/H2O-BuOH casting system and their relevance to membrane performances[J]. Front. Chem. Sci. Eng., 2014, 8(3): 312-319.
[15] Ali SHAHMOHAMMADI,Arezou JAFARI. Application of different CFD multiphase models to investigate effects of baffles and nanoparticles on heat transfer enhancement[J]. Front. Chem. Sci. Eng., 2014, 8(3): 320-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed