Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (2) : 233-239    https://doi.org/10.1007/s11705-014-1408-z
REVIEW ARTICLE
Application of membrane separation technology in post-combustion carbon dioxide capture process
Mo LI,Xiaobin JIANG,Gaohong HE()
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
 Download: PDF(235 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Membrane separation technology is a possible breakthrough in post-combustion carbon dioxide capture process. This review first focuses on the requirements for CO2 separation membrane, and then outlines the existing competitive materials, promising preparation methods and processes to achieve desirable CO2 selectivity and permeability. A particular emphasis is addressed on polyimides, poly (ethylene oxide), mixed-matrix membrane, thermally-rearranged polymer, fixed site carrier membrane, ionic liquid membrane and electrodialysis process. The advantages and drawbacks of each of materials and methods are discussed. Research threads and methodology of CO2 separation membrane and the key issue in this area are concluded

Keywords membranes      carbon dioxide capture      separation      polymers      post-combustion     
Corresponding Author(s): Gaohong HE   
Issue Date: 22 May 2014
 Cite this article:   
Mo LI,Xiaobin JIANG,Gaohong HE. Application of membrane separation technology in post-combustion carbon dioxide capture process[J]. Front. Chem. Sci. Eng., 2014, 8(2): 233-239.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1408-z
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I2/233
SpeciesConcentration (by volume)
H2O5%–7%
O23%–4%
CO215%–16%
Total Hg1 ppb
CO20 ppm
Hydrocarbons10 ppm
HCl100 ppm
SO2800 ppm
SO310 ppm
NOx500 ppm
N2balance
Tab.1  Typical untreated flue gas composition from a power plant burning low sulfur eastern bituminous coal [8]
Fig.1  Permeation properties ((a)for CO2 permeability and (b) for CO2/N2 selectivity) of (l) Ultem®/ZIF-8 composite dual layers asymmetric hollow fibers and (○) pure Ultem® hollow fibers plotted as a function of measurement temperature [24]
Fig.2  The synthetic scheme of a TR polymer [27]
Fig.3  Relationship between CO2 permeability and CO2/N2 selectivity of TR polymer membranes tested with Robeson’s upper bound in 2008 [28]
Fig.4  Schematic of a process concept using electrodialysis to capture and regenerate CO2, while generating hydrogen and oxygen as by-products [36]
1 RubinE S, MantripragadaH, MarksA, VersteegP, KitchinJ. The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 2012, 38(5): 630–671
doi: 10.1016/j.pecs.2012.03.003
2 HerzogH J. Peer reviewed: What future for carbon capture and sequestration? Environmental Science & Technology, 2001, 35(7): 148–153
doi: 10.1021/es012307j
3 DavisonJ, ThambimuthuK. Technologies for capture of carbon dioxide. In: Proceedings of the Seventh Greenhouse Gas Technology Conference, Vancouver, Canada, International Energy Association (IEA), Greenhouse Gas R&D Progamme. 2004, 3–13
4 SteeneveldtR, BergerB, TorpT. CO2 Capture and storage: Closing the knowing-doing gap. Chemical Engineering Research & Design, 2006, 84(9): 739–763
doi: 10.1205/cherd05049
5 DukeM C, LadewigB, SmartS, RudolphV, Diniz da CostaJ C. Assessment of postcombustion carbon capture technologies for power generation. Frontiers of Chemical Engineering in China, 2009, 4(2): 184–195
doi: 10.1007/s11705-009-0234-1
6 OexmannJ, KatherA. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents. International Journal of Greenhouse Gas Control, 2010, 4(1): 36–43
doi: 10.1016/j.ijggc.2009.09.010
7 FavreE. Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects. Chemical Engineering Journal, 2011, 171(3): 782–793
doi: 10.1016/j.cej.2011.01.010
8 GraniteE J, PennlineH W. Photochemical removal of mercury from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(22): 5470–5476
doi: 10.1021/ie020251b
9 PowellC E, QiaoG G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279(1–2): 1–49
doi: 10.1016/j.memsci.2005.12.062
10 FavreE. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? Journal of Membrane Science, 2007, 294(1–2): 50–59
doi: 10.1016/j.memsci.2007.02.007
11 BrunettiA, ScuraF, BarbieriG, DrioliE. Membrane technologies for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 115–125
doi: 10.1016/j.memsci.2009.11.040
12 JolyC, GoizetS, SchrotterJ C, SanchezJ, EscoubesM. Sol-gel polyimide-silica composite membrane: gas transport properties. Journal of Membrane Science, 1997, 130(1–2): 63–74
doi: 10.1016/S0376-7388(97)00008-2
13 RobesonL M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400
doi: 10.1016/j.memsci.2008.04.030
14 Cecopieri-GómezM L, Palacios-AlquisiraJ, DomínguezJ M. On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes. Journal of Membrane Science, 2007, 293(1–2): 53–65
doi: 10.1016/j.memsci.2007.01.034
15 DuN Y, ParkH B, Dal-CinM M, GuiverM D. Advances in high permeability polymeric membrane materials for CO2 separations. Energy & Environmental Science, 2012, 5(6): 7306–7322
doi: 10.1039/c1ee02668b
16 HuL, XuX L, ColemanM R. Impact of H+ ion beam irradiation on Matrimid (R).II.Evolution in gas transport properties. Journal of Applied Polymer Science, 2007, 103(3): 1670–1680
doi: 10.1002/app.25359
17 SternS A. Polymers for gas separations—the next decade. Journal of Membrane Science, 1994, 94(1): 1–65
doi: 10.1016/0376-7388(94)00141-3
18 HirayamaY, KaseY, TaniharaR, SumiyamaY, KusukiY, HarayaK. Permeation properties to CO2 and N2 of poly(ethylene oxide)-containing and crosslinked polymer films. Journal of Membrane Science, 1999, 160(1): 87–99
doi: 10.1016/S0376-7388(99)00080-0
19 PotreckJ, NijmeijerK, KosinskiT, WesslingM. Mixed water vapor/gas transport through the rubbery polymer PEBAX (R) 1074. Journal of Membrane Science, 2009, 338(1–2): 11–16
doi: 10.1016/j.memsci.2009.03.051
20 HashemifardS A, IsmailA F, MatsuuraT. Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal. Chemical Engineering Journal, 2011, 170(1): 316–325
doi: 10.1016/j.cej.2011.03.063
21 HusainS, KorosW J. Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. Journal of Membrane Science, 2007, 288(1–2): 195–207
doi: 10.1016/j.memsci.2006.11.016
22 LiJ R, SculleyJ, ZhouH C. Metal-organic frameworks for separations. Chemical Reviews, 2012, 112(2): 869–932
doi: 10.1021/cr200190s
23 D'AlessandroD M, SmitB, LongJ R. Carbon dioxide capture: Prospects for new materials. Angewandte Chemie International Edition in English, 2010, 49(35): 6058–6082
doi: 10.1002/anie.201000431
24 DaiY, JohnsonJ R, KarvanO, ShollD S, KorosW J. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. Journal of Membrane Science, 2012, 401–402: 76–82
doi: 10.1016/j.memsci.2012.01.044
25 BrownA J, JohnsonJ R, LydonM E, KorosW J, JonesC W, NairS. Continuous polycrystalline zeolitic imidazolate framework-90 membranes on polymeric hollow fibers. Angewandte Chemie International Edition, 2012, 51(42): 10615–10618
doi: 10.1002/anie.201206640
26 ParkH B, JungC H, LeeY M, HillA J, PasS J, MudieS T, van WagnerE, FreemanB D, CooksonD J. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318(5848): 254–258
doi: 10.1126/science.1146744
27 KimS, HanS H, LeeY M. Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2012, 403: 169–178
doi: 10.1016/j.memsci.2012.02.041
28 ParkH B, HanS H, JungC H, LeeY M, HillA J. Thermally rearranged (TR) polymer membranes for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 11–24
doi: 10.1016/j.memsci.2009.09.037
29 HuangJ, ZouJ, HoW S W. Carbon dioxide capture using a CO2-selective facilitated transport membrane. Industrial & Engineering Chemistry Research, 2008, 47(4): 1261–1267
doi: 10.1021/ie070794r
30 MatsuyamaH, TeradaA, NakagawaraT, KitamuraY, TeramotoM. Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane. Journal of Membrane Science, 1999, 163(2): 221–227
doi: 10.1016/S0376-7388(99)00183-0
31 KimT J, LiB A, HaggM B. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. Journal of Polymer Science. Part B, Polymer Physics, 2004, 42(23): 4326–4336
doi: 10.1002/polb.20282
32 WangM, YangD, WangZ, WangJ, WangS. Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas. Frontiers of Chemical Engineering in China, 2009, 4(2): 127–132
doi: 10.1007/s11705-009-0231-4
33 Andrew LeeS, StevensG W, KentishS E. Facilitated transport behavior of humidified gases through thin-film composite polyamide membranes for carbon dioxide capture. Journal of Membrane Science, 2013, 429(0): 349–354
doi: 10.1016/j.memsci.2012.11.047
34 LozanoL J, GodinezC, de los RiosA P, Hernandez-FernandezF J, Sanchez-SegadoS, AlguacilF J. Recent advances in supported ionic liquid membrane technology. Journal of Membrane Science, 2011, 376(1–2): 1–14
doi: 10.1016/j.memsci.2011.03.036
35 ZhaoW, HeG, NieF, ZhangL, FengH, LiuH. Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation. Journal of Membrane Science, 2012, 411–412: 73–80
doi: 10.1016/j.memsci.2012.04.016
36 EisamanM D, AlvaradoL, LarnerD, WangP, GargB, LittauK A. CO2 separation using bipolar membrane electrodialysis. Energy & Environmental Science, 2011, 4(4): 1319–1328
doi: 10.1039/c0ee00303d
37 EisamanM D, AlvaradoL, LarnerD, WangP, LittauK A. CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy & Environmental Science, 2011, 4(10): 4031–4037
doi: 10.1039/c1ee01336j
[1] Huaiwei Shi, Teng Zhou. Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing[J]. Front. Chem. Sci. Eng., 2021, 15(1): 49-59.
[2] Hongzhe Hou, Yiqing Luo. A novel method for generating distillation configurations[J]. Front. Chem. Sci. Eng., 2020, 14(5): 834-846.
[3] Edward Mohamed Hadji, Bo Fu, Ayob Abebe, Hafiz Muhammad Bilal, Jingtao Wang. Sponge-based materials for oil spill cleanups: A review[J]. Front. Chem. Sci. Eng., 2020, 14(5): 749-762.
[4] Ye Zhang, Jian Song, Josue Quispe Mayta, Fusheng Pan, Xue Gao, Mei Li, Yimeng Song, Meidi Wang, Xingzhong Cao, Zhongyi Jiang. Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15[J]. Front. Chem. Sci. Eng., 2020, 14(4): 661-672.
[5] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[6] Shinji Kanehashi, Colin A. Scholes. Perspective of mixed matrix membranes for carbon capture[J]. Front. Chem. Sci. Eng., 2020, 14(3): 460-469.
[7] Xinlei Liu. Metal-organic framework UiO-66 membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 216-232.
[8] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[9] Xin Gao, Dandan Shu, Xingang Li, Hong Li. Improved film evaporator for mechanistic understanding of microwave-induced separation process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 759-771.
[10] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[11] Ana Mora-Boza, Francisco J. Aparicio, María Alcaire, Carmen López-Santos, Juan P. Espinós, Daniel Torres-Lagares, Ana Borrás, Angel Barranco. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition[J]. Front. Chem. Sci. Eng., 2019, 13(2): 330-339.
[12] Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion[J]. Front. Chem. Sci. Eng., 2018, 12(3): 346-357.
[13] Jintang Huang, Youju Huang, Si Wu. Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives[J]. Front. Chem. Sci. Eng., 2018, 12(3): 450-456.
[14] Lijuan Qiu, Ruiyang Zhang, Ying Zhang, Chengjin Li, Qian Zhang, Ying Zhou. Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 390-399.
[15] Erigene Bakangura, Yubin He, Xiaolin Ge, Yuan Zhu, Liang Wu, Jin Ran, Congliang Cheng, Kamana Emmanuel, Zhengjin Yang, Tongwen Xu. Tetrazole tethered polymers for alkaline anion exchange membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 306-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed