Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (1) : 94-104    https://doi.org/10.1007/s11705-015-1460-3
RESEARCH ARTICLE
Thermodynamic study on dynamic water and organic vapor sorption on amorphous valnemulin hydrochloride
Jinbo OUYANG1,2,Jingkang WANG1,2,Yongli WANG1,2,Qiuxiang YIN1,2,Hongxun HAO1,2,*()
1. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300072, China
 Download: PDF(1005 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The sorption of water and organic vapors on valnemulin hydrochloride was determined by dynamic vapor sorption at 25 °C. The adsorption-desorption behavior of water vapor and a series of organic vapors was investigated to probe the structural changes in valnemulin hydrochloride before and after sorption. The isothermal adsorption equilibrium data was evaluated using Guggenheim-Anderson-deBoer (GAB) and Brunauer-Emmett-Teller (BET) models. The BET model is applicable only at low relative pressures (0.1≤RP≤0.4) while the GAB model is applicable in the whole range of RPs (0.1≤RP≤0.9). The sorption kinetics at high RPs was determined by fitting the sorption data to the Avrami equation and the sorption content vs. time relationship could be predicted by the Avrami equation. Finally, the possible sorption mechanism of valnemulin hydrochloride was also discussed.

Keywords valnemulin hydrochloride      water vapor      organic vapors      sorption      kinetics     
Corresponding Author(s): Hongxun HAO   
Online First Date: 02 February 2015    Issue Date: 07 April 2015
 Cite this article:   
Yongli WANG,Qiuxiang YIN,Hongxun HAO, et al. Thermodynamic study on dynamic water and organic vapor sorption on amorphous valnemulin hydrochloride[J]. Front. Chem. Sci. Eng., 2015, 9(1): 94-104.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1460-3
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I1/94
Fig.1  Relative pressure steps with the corresponding mass change for valnemulin hydrochloride at 25 °C. Relative pressure: stepped line; weight change: the curve
Fig.2  Representative pictures of (a) the powder sample of valnemulin hydrochloride and (b) the gel product after sorption-desorption experiments
Fig.3  Representative x-ray powder di?raction pattern of (a) the powder sample of valnemulin hydrochloride and (b) the gel product after sorption-desorption experiments
RP Equilibrium vapor content, M /(g·g-1 d.s.)
Methanol Dichloromethane Toluene Water
0.0 0.0000 0.0000 0.0000 0.0000
0.1 0.0182 0.0168 0.0103 0.0082
0.2 0.0338 0.0274 0.0178 0.0157
0.3 0.0531 0.0390 0.0234 0.0226
0.4 0.0821 0.0533 0.0307 0.0284
0.5 0.1272 0.0716 0.0757 0.0358
0.6 0.1521 0.0931 0.1471 0.0492
0.7 0.2351 0.1175 0.1739 0.0704
0.8 0.4056 0.1458 0.2130 0.1008
0.9 0.6631 0.1798 0.3038 0.1500
0.8 0.5412 0.1675 0.2708 0.1269
0.7 0.3477 0.1575 0.2482 0.1124
0.6 0.2685 0.1516 0.2358 0.1024
0.5 0.2277 0.1472 0.2275 0.0947
0.4 0.2052 0.1429 0.2203 0.0879
0.3 0.1913 0.1383 0.2157 0.0810
0.2 0.1812 0.1325 0.2111 0.0707
0.1 0.1733 0.1237 0.2061 0.0560
0.0 0.1659 0.0489 0.2028 0.0274
0.1 0.1616 0.0924 0.2005 0.0221
0.2 0.1581 0.1010 0.1993 0.0254
0.3 0.1554 0.0984 0.1987 0.0302
0.4 0.1539 0.0945 0.1988 0.0357
0.5 0.1579 0.0951 0.1986 0.0399
0.6 0.1835 0.0962 0.1970 0.0483
Tab.1  Experimental vapor content in valnemulin hydrochloride at different relative pressuresa)
Fig.4  Experimentally measured equilibrium vapor content in valnemulin hydrochloride in (a) methanol, (b) dichloromethane, (c) toluene, (d) water; □, adsorption 1; ?, desorption 1; ○, adsorption 2
Fig.5  Experimental and BET equilibrium vapor content in valnemulin hydrochloride in (a) methanol, (b) dichloromethane, (c) toluene, and (d) water. The solid lines are the values calculated using the BET model. The arrow represents the upper limit at RP=0.4
Fig.6  Experimental and GAB equilibrium vapor content in valnemulin hydrochloride in (a) methanol, (b) dichloromethane, (c) toluene, and (d) water. The solid lines are the values calculated using the GAB model
RP Experimental vapor content, M /(g·g-1 d.s.) Calculated vapor content, M /(g·g-1 d.s.)
BET GAB
Methanol
0.0 0.0000 0.0000 0.0000
0.1 0.0182 0.0179 0.0128
0.2 0.0338 0.0348 0.0289
0.3 0.0531 0.0525 0.0497
0.4 0.0821 0.0729 0.0772
0.5 0.1272 0.0987 0.1148
0.6 0.1521 0.1350 0.1687
0.7 0.2351 0.1930 0.2507
0.8 0.4056 0.3061 0.3890
0.9 0.6631 0.6408 0.6660
SSE 0.0133 0.0010
RMSE 0.0365 0.0102
Dichloromethane
0.0 0.0000 0.0000 0.0000
0.1 0.0168 0.0165 0.0126
0.2 0.0274 0.0281 0.0258
0.3 0.0390 0.0386 0.0399
0.4 0.0533 0.0502 0.0555
0.5 0.0716 0.0647 0.0729
0.6 0.0931 0.0851 0.0929
0.7 0.1175 0.1178 0.1164
0.8 0.1458 0.1819 0.1448
0.9 0.1798 0.3724 0.1806
SSE 0.0385 0.0000
RMSE 0.0620 0.0018
Toluene
0.0 0.0000 0.0000 0.0000
0.1 0.0103 0.0105 0.0099
0.2 0.0178 0.0174 0.0223
0.3 0.0234 0.0236 0.0380
0.4 0.0307 0.0305 0.0579
0.5 0.0756 0.0390 0.0836
0.6 0.1471 0.0511 0.1172
0.7 0.1739 0.0705 0.1617
0.8 0.2130 0.1085 0.2220
0.9 0.3038 0.2216 0.3058
SSE 0.0389 0.0022
RMSE 0.0624 0.0147
Water
0.0 0.0000 0.0000 0.0000
0.1 0.0082 0.0082 0.0069
0.2 0.0157 0.0154 0.0137
0.3 0.0226 0.0227 0.0209
0.4 0.0284 0.0311 0.0291
0.5 0.0358 0.0414 0.0388
0.6 0.0492 0.0559 0.0515
0.7 0.0704 0.0795 0.0696
0.8 0.1008 0.1255 0.0983
0.9 0.1499 0.2583 0.1508
SSE 0.0125 0.0002
RMSE 0.0354 0.0018
Tab.2  Experimental and correlated vapor adsorption content in valnemulin hydrochloride at different relative pressures
Parameters Methanol Dichloromethane Toluene Water
BET
Wm /(g·g-1 d.s.) 0.0666 0.0380 0.0225 0.0268
C 2.8700 5.7900 6.4500 3.4300
GAB
Wm /(g·g-1 d.s.) 0.1593 0.1119 0.4814 0.0324
C 0.7890 1.7440 0.0330 2.4440
K 0.9050 0.6310 0.5520 0.8940
Tab.3  Calculated parameters of the BET and GAB models
Fig.7  Experimental and correlated dynamic sorption vapor content in valnemulin hydrochloride in (a) methanol, (b) dichloromethane, (c) toluene, and (d) water. The solid step lines are the RP values and the solid curves are the values calculated from the Avrami equation
Parameter Methanol Dichloromethane Toluene Water
Target relative pressure
0.5
W0 /(g·g-1 d.s.) 0.0469 0.0261 0.0046 0.0130
dW /(g·g-1 d.s.) 0.0562 0.0569 0.0599 0.0045
K 0.1366 0.0100 0.0370 0.0540
SSE 0.0457 0.0014 0.0025 0.0001
RMSE 0.0036 0.0005 0.0008 0.0014
0.6
W0 /(g·g-1 d.s.) 0.1111 0.0511 0.0448 0.0188
dW /(g·g-1 d.s.) 0.0224 0.0702 0.0773 0.0122
K 0.0320 0.0080 0.0980 0.0410
SSE 0.0001 0.0024 0.0055 0.0000
RMSE 0.0001 0.0008 0.0011 0.0000
0.7
W0 /(g·g-1 d.s.) 0.1187 0.0624 0.1196 0.0259
dW /(g·g-1 d.s.) 0.1332 0.0339 0.0284 0.0278
K 0.0250 0.0390 0.0730 0.0460
SSE 0.0107 0.0048 0.0038 0.0067
RMSE 0.0015 0.0011 0.0009 0.0011
0.8
W0 /(g·g-1 d.s.) 0.1874 0.0843 0.1483 0.0541
dW /(g·g-1 d.s.) 0.2507 0.0354 0.0454 0.0275
K 0.0330 0.0651 0.0433 0.0730
SSE 0.0734 0.0225 0.0067 0.0000
RMSE 0.0041 0.0023 0.0012 0.0000
0.9
W0 /(g·g-1 d.s.) 0.3509 0.1095 0.1850 0.0733
dW /(g·g-1 d.s.) 0.4858 0.0433 0.1152 0.0581
k 0.0191 0.0880 0.0352 0.0401
SSE 0.0855 0.0782 0.0038 0.0195
RMSE 0.0044 0.0044 0.0009 0.0016
Tab.4  Calculated Avrami equation kinetic parameters at different RPs
Fig.8  Schematic diagram of two different sorption mechanisms (a) surface adsorption, (b) bulk absorption. The black and white ovals represent solvent molecules and valnemulin hydrochloride, respectively
1 Samra R M, Buckton G. The crystallisation of a model hydrophobic drug (terfenadine) following exposure to humidity and organic vapours. International Journal of Pharmaceutics, 2004, 284(1-2): 53–60
2 Greco S, Authelin J R, Leveder C, Segalini A. A practical method to predict physical stability of amorphous solid dispersions. Pharmaceutical Research, 2012, 29(10): 2792–2805
3 Raula J, Thielmann F, Kansikas J, Hietala S, Annala M, Seppala J, Lahde A, Kauppinen E I. Investigations on the humidity-induced transformations of salbutamol sulphate particles coated with L-leucine. Pharmaceutical Research, 2008, 25(10): 2250–2261
4 Stubberud L, Arwidsson H G, Graffner C. Water-solid interactions: I. A technique for studying moisture sorption/desorption. International Journal of Pharmaceutics, 1995, 114(1): 55–64
5 Remmelgas J, Simonutti A L, Ronkvist A, Gradinarsky L, Lofgren A. A mechanistic model for the prediction of in-use moisture uptake by packaged dosage forms. International Journal of Pharmaceutics, 2013, 441(1-2): 316–322
6 Ghorab M K, Marrs K, Taylor L S, Mauer L J. Water-solid interactions between amorphous maltodextrins and crystalline sodium chloride. Food Chemistry, 2014, 144(1): 26–35
7 Bianco S, Tewes F, Tajber L, Caron V, Corrigan O I, Healy A M. Bulk, surface properties and water uptake mechanisms of salt/acid amorphous composite systems. International Journal of Pharmaceutics, 2013, 456(1): 143–152
8 Xia D N, Wu J X, Cui F D, Qu H Y, Rades T, Rantanen J, Yang M. Rantanen Jukka, Yang M S. Solvent-mediated amorphous-to-crystalline transformation of nitrendipine in amorphous particle suspensions containing polymers. European Journal of Pharmaceutical Sciences, 2012, 46(5): 446–454
9 Argyropoulos D, Alex R, Kohler R, Müller J. Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption. LWT-Food Science and Technology, 2012, 47(2): 324–331
10 Hunter N E, Frampton C S, Craig D Q, Belton P S. The use of dynamic vapour sorption methods for the characterisation of water uptake in amorphous trehalose. Carbohydrate Research, 2010, 345(13): 1938–1944
11 Dubey V, Kuthe S, Saxena C, Jaiswal D K. Study of sorption/desorption of water and organic vapors on poly (ethylene maleate)-based sensor-coating materials using an automated gravimetric analyzer. Journal of Applied Polymer Science, 2003, 88(7): 1760–1767
12 Harley S J, Glascoe E A, Maxwell R S. Thermodynamic study on dynamic water vapor sorption in Sylgard-184. Journal of Physical Chemistry B, 2012, 116(48): 14183–14190
13 Pinto M L, Pires J, Carvalho A P, de Carvalho M B, Bordado J C. Sorption isotherms of organic vapors on polyurethane foams. Journal of Physical Chemistry B, 2004, 108(36): 13813–13820
14 Passauer L, Struch M, Schuldt S, Appelt J, Schneider Y, Jaros D, Rohm H. Dynamic moisture sorption characteristics of xerogels from water-swellable oligo(oxyethylene) lignin derivatives. Applied Materials & Interfaces, 2012, 4(11): 5852–5862
15 Phillips O A, Sharaf L H. Pleuromutilin antibacterial agents: patent review 2001–2006. Expert Opinion on Therapeutic Patents, 2007, 17(4): 429–435
16 Heilmann C, Jensen L, Jensen J, Lundstrom K, Windsor D, Windsor H, Webster D. Treatment of resistant mycoplasma infection in immunocompromised patients with a new pleuromutilin antibiotic. Journal of Infection, 2001, 43(4): 234–238
17 Huang Q, Li J, Xia L, Xia X, Duan P, Shen J, Ding S. Residue depletion of valnemulin in swine tissues after oral administration. Analytica Chimica Acta, 2010, 664(1): 62–67
18 Gregg S, Sing K. Porosity. 2nd ed. London: Academic Press, 1982, 3–5
19 Timmermann E, Chirife J, Iglesias H. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? Journal of Food Engineering, 2001, 48(1): 19–31
20 Wolf W, Spiess W, Jung G, Weisser H, Bizot H, Duckworth R. The water-vapour sorption isotherms of microcrystalline cellulose (MCC) and of purified potato starch. Results of a collaborative study. Journal of Food Engineering, 1984, 3(1): 51–73
21 Timmermann E O. Multilayer sorption parameters: BET or GAB values? Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 220(1-3): 235–260
22 Ozawa T. Kinetics of non-isothermal crystallization. Polymer, 1971, 12(3): 150–158
23 Hunnius M, Rufińska A, Maier W. Selective surface adsorption versus imprinting in amorphous microporous silicas. Microporous and Mesoporous Materials, 1999, 29(3): 389–403
24 Vartapetyan R S, Voloshchuk A. The mechanism of the adsorption of water molecules on carbon adsorbents. Russian Chemical Reviews, 1995, 64(11): 1055–1072
25 Klein C A, Miller R P, Stierwalt D L. Surface and bulk absorption characteristics of chemically vapor-deposited zinc selenide in the infrared. Applied Optics, 1994, 33(19): 4304–4313
26 Mirabel P, Reiss H, Bowles R K. A theory for the deliquescence of small particles. Journal of Physical Chemistry, 2000, 113(18): 8200–8205
27 Hancock B C, Shamblin S L. Water vapour sorption by pharmaceutical sugars. Pharmaceutical Science & Technology Today, 1998, 1(8): 345–351
[1] Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1124-1135.
[2] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[3] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[4] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[5] Edward Mohamed Hadji, Bo Fu, Ayob Abebe, Hafiz Muhammad Bilal, Jingtao Wang. Sponge-based materials for oil spill cleanups: A review[J]. Front. Chem. Sci. Eng., 2020, 14(5): 749-762.
[6] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[7] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[8] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[9] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[10] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[11] Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture[J]. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
[12] Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu. Photothermal materials for efficient solar powered steam generation[J]. Front. Chem. Sci. Eng., 2019, 13(4): 636-653.
[13] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[14] Xuantao Wu, Jie Wang. Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(2): 415-426.
[15] Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi. Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches[J]. Front. Chem. Sci. Eng., 2019, 13(1): 120-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed