Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (4) : 461-466    https://doi.org/10.1007/s11705-015-1543-1
RESEARCH ARTICLE
Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts
Zhiqiang Song,Hua Wang,Yufei Niu,Xiao Liu,Jinyu Han()
Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
 Download: PDF(296 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report a process of selective conversion of microcrystalline cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. A 58.1% yield of hexitols and a 71.0% conversion of cellulose were achieved over Ru/SZSi(100:15)-773 catalyst at 443 K. The as-synthesized catalysts were characterized by X-ray diffraction (XRD), BET, thermogravimetric analysis and pyridine adsorption Fourier transform infrared spectroscopy (FTIR). XRD results indicated that the sulfated catalysts were pure tetragonal phase of ZrO2 when calcined at 773 K. Monoclinic zirconia appeared at the calcination temperature of 873 K, and the content of monoclinic phase increased with the elevating temperature. Compared with sulfated zirconia catalyst, sulfated silica-zirconia catalysts possessed a higher ratio of Brønsted to Lewis on the surface of catalysts, as shown from pyridine adsorption FTIR results. The reaction results indicated that the tetragonal zirconia, which is necessary for the formation of superacidity, was the active phase to cellulose conversion. The higher amounts of Brønsted acid sites can remarkably accelerate the cellulose depolymerization and promote side reactions that convert C5–C6 alcohols into the unknown soluble degradation products.

Keywords hexitols      cellulose      hydrogenation      sulfated zirconia      ruthenium     
Corresponding Author(s): Jinyu Han   
Online First Date: 18 November 2015    Issue Date: 26 November 2015
 Cite this article:   
Hua Wang,Yufei Niu,Xiao Liu, et al. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts[J]. Front. Chem. Sci. Eng., 2015, 9(4): 461-466.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1543-1
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I4/461
Fig.1  XRD patterns of catalysts. (A) Ru/Z-773; (B) Ru/SZ- 773; (C) Ru/SZ-873; (D) Ru/SZ-973; (E) Ru/SZSi(100:15)-773; (F) Ru/SZSi(100:100)-773
Catalyst BET surface area /(m2·g−1) Pore volume /(cm3·g−1) Pore size /nm [B]/[L]a)
Ru/SZ-773 84.9 0.097 4.6 1.1
Ru/SZSi(100:15)-773 113.5 0.14 5.0 1.5
Ru/SZSi(100:100)-773 151.2 0.28 7.4 2.2
Tab.1  Physicochemical characteristics of catalysts
Fig.2  N2 adsorption-desorption isotherms of sulfated zirconia and silica-zirconia catalysts
Fig.3  FTIR spectra of catalysts. (A) Ru/SZ-773; (B) Ru/SZSi (100:15)-773; (C) Ru/SZSi(100:100)-773
Fig.4  TGA and DTG curves of catalysts. (A) TGA curve of Ru/SZ-773; (B) TGA curve of Ru/SZSi(100:15)-773; (C) DTG curve of Ru/SZ-773; (D) DTG curve of Ru/SZSi(100:15)-773
Entry Catalyst Conversion /% Yield /%
Hexitols Xylitol C2-C3 Othersb)
1 Ru/Z-773 39.9 0.57 0.94 0.97 37.5
2 Ru/SZ-773 71.8 57.9 9.1 0.25 4.6
3 Ru/SZ-873 25.8 20.3 2.7 0.3 2.5
4 Ru/SZ-973 14.3 4.9 1.8 0.26 7.3
5 Ru/SZSi(100:15)-773 71.0 58.1 5.6 0.87 6.5
6 Ru/SZSi(100:100)-773 87.4 33.7 11.3 6.4 36.0
Tab.2  Catalytic performance for hydrogenation of cellulosea)
Fig.5  Reusability of Ru/SZ-773 and Ru/SZSi (100:15)-773 catalysts
1 Dhepe  P L, Fukuoka  A. Cellulose conversion under heterogeneous catalysis. ChemSusChem, 2008, 1(12): 969–975
https://doi.org/10.1002/cssc.200800129
2 Yang  P F, Kobayashi  H, Fukuoka  A. Recent developments in the catalytic conversion of cellulose into valuable chemicals. Chinese Journal of Catalysis, 2011, 32(5): 716–722
https://doi.org/10.1016/S1872-2067(10)60232-X
3 Van de Vyver  S, Geboers  J, Jacobs  P A, Sels  B F. Recent advances in the catalytic conversion of cellulose. ChemCatChem, 2011, 3(1): 82–94
https://doi.org/10.1002/cctc.201000302
4 Luo  C, Wang  S, Liu  H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angewandte Chemie International Edition, 2007, 119(46): 7780–7783
https://doi.org/10.1002/ange.200702661
5 Ji  N, Zhang  T, Zheng  M Y, Wang  A Q, Wang  H, Wang  X D, Chen  J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angewandte Chemie International Edition, 2008, 47(44): 8510–8513
https://doi.org/10.1002/anie.200803233
6 Palkovits  R, Tajvidi  K, Procelewska  J, Rinaldi  R, Ruppert  A. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts. Green Chemistry, 2010, 12(6): 972–978
https://doi.org/10.1039/c000075b
7 Geboers  J, Van de Vyver  S, Carpentier  K, Jacobs  P, Sels  B. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chemical Communications, 2011, 47(19): 5590–5592
https://doi.org/10.1039/c1cc10422e
8 Rinaldi  R, Palkovits  R, Schuth  F. Depolymerization of cellulose using solid catalysts in ionic liquids. Angewandte Chemie International Edition, 2008, 47(42): 8047–8050
https://doi.org/10.1002/anie.200802879
9 Li  C Z, Zhao  Z K. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis, 2007, 349(11-12): 1847–1850
https://doi.org/10.1002/adsc.200700259
10 Ignatyev  I A, Doorslaer  C V, Mertens  P G, Binnemans  K, Vos  D E. Reductive splitting of cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride. ChemSusChem, 2010, 3(1): 91–96
https://doi.org/10.1002/cssc.200900213
11 Onda  A, Ochi  T, Yanagisawa  K. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 2008, 10(10): 1033–1037
https://doi.org/10.1039/b808471h
12 Chambon  F, Rataboul  F, Pinel  C, Cabiac  A, Guillon  E, Essayem  N. Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis B: Environmental, 2011, 105(1-2): 171–181
https://doi.org/10.1016/j.apcatb.2011.04.009
13 Pang  J F, Wang  A Q, Zheng  M Y, Zhang  T. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chemical Communications, 2010, 46(37): 6935–6937
https://doi.org/10.1039/c0cc02014a
14 Cabiac  A, Guillon  E, Chambon  F, Pinel  C, Rataboul  F, Essayem  N. Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A, 2011, 402(1-2): 1–10
https://doi.org/10.1016/j.apcata.2011.05.029
15 Kobayashi  H, Ito  Y, Komaanoya  T, Hosaka  Y, Dhepe  P L, Kasai  K, Hara  K, Fukuoka  A. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chemistry, 2011, 13(2): 326–333
https://doi.org/10.1039/C0GC00666A
16 Fukuoka  A, Dhepe  P L. Catalytic conversion of cellulose into sugar alcohols. Angewandte Chemie International Edition, 2006, 45(31): 5161–5163
https://doi.org/10.1002/anie.200601921
17 Deng  W P, Tan  X S, Fang  W H, Zhang  Q H, Wang  Y. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catalysis Letters, 2009, 133(1-2): 167–174
https://doi.org/10.1007/s10562-009-0136-3
18 Han  J W, Lee  H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catalysis Communications, 2012, 19: 115–118
https://doi.org/10.1016/j.catcom.2011.12.032
19 Cutrufello  M G, Diebold  U, Gonzalez  R C. Optimization of synthesis variables in the preparation of active sulfated zirconia catalysts. Catalysis Letters, 2005, 101(1-2): 5–13
https://doi.org/10.1007/s10562-005-3740-x
20 Li  X B, Nagaoka  K, Simon  L J, Olindo  R, Lercher  J A. Influence of calcination procedure on the catalytic property of sulfated zirconia. Catalysis Letters, 2007, 113(1-2): 34–40
https://doi.org/10.1007/s10562-006-9005-5
21 Zhao  E, Isaev  Y, Sklyarov  A, Fripiat  J J. Acid centers in sulfated, phosphated and/or aluminated zirconias. Catalysis Letters, 1999, 60(4): 173–181
https://doi.org/10.1023/A:1019027628585
22 Barthos  R, Lonyi  F, Engelhardt  J, Valyon  J. A study of the acidic and catalytic properties of pure and sulfated zirconia-titania and zirconia-silica mixed oxides. Topics in Catalysis, 2000, 10(1-2): 79–87
https://doi.org/10.1023/A:1019112017065
23 Chen  X R, Ju  Y H, Mou  C Y. Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. Journal of Physical Chemistry C, 2007, 111(50): 18731–18737
https://doi.org/10.1021/jp0749221
24 Oh  J, Dash  S, Lee  H. Selective conversion of glycerol to 1,3-propanediol using Pt-sulfated zirconia. Green Chemistry, 2011, 13(8): 2004–2007
https://doi.org/10.1039/c1gc15263g
25 Wang  Y, Ma  J H, Liang  D, Zhou  M M, Li  F X, Li  R F. Lewis and Brønsted acids in super-acid catalyst SO42−/ZrO2-SiO2. Journal of Materials Science, 2009, 44(24): 6736–6740
https://doi.org/10.1007/s10853-009-3603-8
26 Hammache  S, Goodwin  J G Jr. Characteristics of the active sites on sulfated zirconia for n-butane isomerization. Journal of Catalysis, 2003, 218(2): 258–266
https://doi.org/10.1016/S0021-9517(03)00067-8
27 Li  X B, Nagaoka  K, Lercher  J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis, 2004, 227(1): 130–137
https://doi.org/10.1016/j.jcat.2004.07.003
28 Deutschmann  O, Knözinger  H, Kochloefl  K, Turek  T. Heterogeneous catalysis and solid catalysts. Ullmann’s Encyclopedia of Industrial Chemistry  , Wiley, 2009, 38–39
29 Li  X B, Nagaoka  K, Lercher  J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis, 2004, 227(1): 130–137
https://doi.org/10.1016/j.jcat.2004.07.003
30 Suwannakarn  K, Lotero  E, Goodwin  J G Jr, Lu  C. Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. Journal of Catalysis, 2008, 255(2): 279–286
https://doi.org/10.1016/j.jcat.2008.02.014
31 Thitsartarn  W, Kawi  S. Transesterification of oil by sulfated Zr-supported mesoporous silica. Industrial & Engineering Chemistry Research, 2011, 50(13): 7857–7865
https://doi.org/10.1021/ie1022817
[1] Bangxian Peng, Rusen Zhou, Ying Chen, Song Tu, Yingwu Yin, Liyi Ye. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1006-1017.
[2] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[3] Chunyan Yang, Xiaoliang Yuan, Xueting Wang, Kejing Wu, Yingying Liu, Changjun Liu, Houfang Lu, Bin Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Front. Chem. Sci. Eng., 2020, 14(4): 605-613.
[4] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[5] Songshan Jiang, Helen Daly, Huan Xiang, Ying Yan, Huiping Zhang, Christopher Hardacre, Xiaolei Fan. Microwave-assisted catalyst-free hydrolysis of fibrous cellulose for deriving sugars and biochemicals[J]. Front. Chem. Sci. Eng., 2019, 13(4): 718-726.
[6] Qing-Xi Wu, Yi-Xin Guan, Shan-Jing Yao. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing[J]. Front. Chem. Sci. Eng., 2019, 13(1): 46-58.
[7] Peiwen Liu, Carsten Mai, Kai Zhang. Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas[J]. Front. Chem. Sci. Eng., 2018, 12(3): 383-389.
[8] Yuxia Jiang, Donge Wang, Zhendong Pan, Huaijun Ma, Min Li, Jiahe Li, Anda Zheng, Guang Lv, Zhijian Tian. Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 32-42.
[9] Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank. New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate[J]. Front. Chem. Sci. Eng., 2018, 12(1): 194-208.
[10] Bozhen Wu, Biyao Geng, Yufei Chen, Hongzhi Liu, Guangyao Li, Qiang Wu. Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films[J]. Front. Chem. Sci. Eng., 2017, 11(4): 554-563.
[11] Alexander B. Koven, Shitang S. Tong, Ramin R. Farnood, Charles Q. Jia. Alkali-thermal gasification and hydrogen generation potential of biomass[J]. Front. Chem. Sci. Eng., 2017, 11(3): 369-378.
[12] Enxian Yuan, Xiangwei Ren, Li Wang, Wentao Zhao. A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al 2O3 catalyst[J]. Front. Chem. Sci. Eng., 2017, 11(2): 177-184.
[13] Guozhen Xu, Jian Zhang, Shengping Wang, Yujun Zhao, Xinbin Ma. Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
[14] Peibo Hu,Yahao Dong,Xiaotian Wu,Yuping Wei. 2-Aminopyridine functionalized cellulose based Pd nanoparticles: An efficient and ecofriendly catalyst for the Suzuki cross-coupling reaction[J]. Front. Chem. Sci. Eng., 2016, 10(3): 389-395.
[15] Xinxiang Cao,Arash Mirjalili,James Wheeler,Wentao Xie,Ben W.-L. Jang. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2015, 9(4): 442-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed