Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (2) : 239-246    https://doi.org/10.1007/s11705-017-1680-9
RESEARCH ARTICLE
Microfluidic dual loops reactor for conducting a multistep reaction
Si Hyung Jin1, Jae-Hoon Jung2,3, Seong-Geun Jeong1, Jongmin Kim1, Tae Jung Park3, Chang-Soo Lee1()
1. Department of Chemical Engineering, Chungnam National University, Daejeon 34134, Korea
2. Lotte Chemical R&D Center, Daejeon 34110, Korea
3. Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
 Download: PDF(260 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Precise control of each individual reaction that constitutes a multistep reaction must be performed to obtain the desired reaction product efficiently. In this work, we present a microfluidic dual loops reactor that enables multistep reaction by integrating two identical loop reactors. Specifically, reactants A and B are synthesized in the first loop reactor and transferred to the second loop reactor to synthesize with reactant C to form the final product. These individual reactions have nano-liter volumes and are carried out in a stepwise manner in each reactor without any cross-contamination issue. To precisely control the mixing efficiency in each loop reactor, we investigate the operating pressure and the operating frequency on the mixing valves for rotary mixing. This microfluidic dual loops reactor is integrated with several valves to realize the fully automated unit operation of a multistep reaction, such as metering the reactants, rotary mixing, transportation, and collecting the product. For proof of concept, CdSeZn nanoparticles are successfully synthesized in a microfluidic dual loops reactor through a fully automated multistep reaction. Taking all of these features together, this microfluidic dual loops reactor is a general microfluidic screening platform that can synthesize various materials through a multistep reaction.

Keywords microfluidics      multistep reaction      rotary mixing      nanoparticle     
Corresponding Author(s): Chang-Soo Lee   
Just Accepted Date: 17 August 2017   Online First Date: 03 November 2017    Issue Date: 09 May 2018
 Cite this article:   
Si Hyung Jin,Jae-Hoon Jung,Seong-Geun Jeong, et al. Microfluidic dual loops reactor for conducting a multistep reaction[J]. Front. Chem. Sci. Eng., 2018, 12(2): 239-246.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1680-9
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I2/239
Fig.1  Microfluidic dual loops reactors for conducting a multistep reaction. (a) Schematic diagram of the microfluidic dual loops reactor. Black arrows indicate the direction of flow of the reactants and products. White arrows indicate the introduction of nitrogen gas and distilled ionized water (DIW). In case of valves, black and gray rectangles indicate rotary mixing and blocking valves, respectively. (b) Snapshot image of the microfluidic dual loops reactor. Red, blue, and green food dyes are used to visualize microfluidic channels, blocking valves, and rotary mixing valves, respectively. Scale bar indicates 1 cm. (c) Magnified image of the dual loops reactor. Rotary mixing and blocking valves are visualized in green (black arrows) and blue (white arrows) dyes, respectively. Scale bar indicates 1 mm
Fig.2  Characteristics of the microfluidic loop reactor for efficient mixing. (a) Time-lapse image of rotary mixing in a loop reactor. Scale bar indicates 500 µm. (b) Mixing efficiency according to the valve operating pressure.(c) Mixing efficiency according to the valve operating frequency. The error bars indicate standard deviations derived from repeated experiments on three devices
Fig.3  The workflow of the multistep reaction in the microfluidic dual loops reactor. (a) The reactants and distilled water are introduced simultaneously into the channels. (b) Reactant A and B are delivered by nitrogen gas into the first loop reactor. (c) Reactants are circulated along the first loop reactor to obtain rapid mixing. (d) Intermediate (PA+B) and reactant C are also introduced into the second loop reactor. (e) Intermediate product and reactant C are circulated in the second loop reactor; (f) The final product is diluted 10-fold with distilled water and collected in a reservoir
Fig.4  Energy dispersive spectroscopy spectra and transmission electron microscope image of CdSeZn nanoparticle
1 Webb D, Jamison T F. Continuous flow multi-step organic synthesis. Chemical Science (Cambridge), 2010, 1(6): 675–680
https://doi.org/10.1039/c0sc00381f
2 Shukla C A, Kulkarni A A. Automating multistep flow synthesis: Approach and challenges in integrating chemistry, machines and logic. Beilstein Journal of Organic Chemistry, 2017, 13: 960–987
https://doi.org/10.3762/bjoc.13.97
3 Porta R, Benaglia M, Puglisi A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Organic Process Research & Development, 2016, 20(1): 2–25
https://doi.org/10.1021/acs.oprd.5b00325
4 Bannock J H, Krishnadasan S H, Nightingale A M, Yau C P, Khaw K, Burkitt D, Halls J J M, Heeney M, de Mello J C. Continuous synthesis of device-grade semiconducting polymers in droplet-based microreactors. Advanced Functional Materials, 2013, 23(17): 2123–2129
https://doi.org/10.1002/adfm.201203014
5 Duraiswamy S, Khan S A. Droplet-dased microfluidic synthesis of anisotropic metal nanocrystals. Small, 2009, 5(24): 2828–2834
https://doi.org/10.1002/smll.200901453
6 Duraiswamy S, Khan S A. Plasmonic nanoshell synthesis in microfluidic composite foams. Nano Letters, 2010, 10(9): 3757–3763
https://doi.org/10.1021/nl102478q
7 Nightingale A M, Bannock J H, Krishnadasan S H, O’Mahony F T F, Haque S A, Sloan J, Drury C, McIntyre R, deMello J C. Large-scale synthesis of nanocrystals in a multichannel droplet reactor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(12): 4067–4076
https://doi.org/10.1039/c3ta10458c
8 McQuade D T, Seeberger P H. Applying flow chemistry: Methods, materials, and multistep synthesis. Journal of Organic Chemistry, 2013, 78(13): 6384–6389
https://doi.org/10.1021/jo400583m
9 Asadi-Saghandi H, Karimi-Sabet J. Performance evaluation of a novel reactor configuration for oxidative dehydrogenation of ethane to ethylene. Korean Journal of Chemical Engineering, 2017, 34(7): 1905–1913
https://doi.org/10.1007/s11814-017-0025-1
10 Pennemann H, Watts P, Haswell S J, Hessel V, Lowe H. Benchmarking of microreactor applications. Organic Process Research & Development, 2004, 8(3): 422–439
https://doi.org/10.1021/op0341770
11 Jahnisch K, Hessel V, Lowe H, Baerns M. Chemistry in microstructured reactors. Angewandte Chemie International Edition, 2004, 43(4): 406–446
https://doi.org/10.1002/anie.200300577
12 Sahoo H R, Kralj J G, Jensen K F. Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angewandte Chemie International Edition, 2007, 46(30): 5704–5708
https://doi.org/10.1002/anie.200701434
13 Singh R, Lee H J, Singh A K, Kim D P. Recent advances for serial processes of hazardous chemicals in fully integrated microfluidic systems. Korean Journal of Chemical Engineering, 2016, 33(8): 2253–2267
https://doi.org/10.1007/s11814-016-0114-6
14 Su M. Synthesis of highly monodisperse silica nanoparticles in the microreactor system. Korean Journal of Chemical Engineering, 2017, 34(2): 484–494
https://doi.org/10.1007/s11814-016-0297-x
15 Lee C C, Sui G D, Elizarov A, Shu C Y J, Shin Y S, Dooley A N, Huang J, Daridon A, Wyatt P, Stout D, et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science, 2005, 310(5755): 1793–1796
https://doi.org/10.1126/science.1118919
16 Chen S P, Javed M R, Kim H K, Lei J, Lazari M, Shah G J, van Dam R M, Keng P Y, Kim C J. Radiolabelling diverse positron emission tomography (PET) tracers using a single digital microfluidic reactor chip. Lab on a Chip, 2014, 14(5): 902–910
https://doi.org/10.1039/C3LC51195B
17 Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T, Kobayashi S. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions. Science, 2004, 304(5675): 1305–1308
https://doi.org/10.1126/science.1096956
18 Phillips T W, Lignos I G, Maceiczyk R M, deMello A J, deMello J C. Nanocrystal synthesis in microfluidic reactors: Where next? Lab on a Chip, 2014, 14(17): 3172–3180
https://doi.org/10.1039/C4LC00429A
19 Chan E M, Mathies R A, Alivisatos A P. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Letters, 2003, 3(2): 199–201
https://doi.org/10.1021/nl0259481
20 Wang J, Bunimovich Y L, Sui G D, Savvas S, Wang J Y, Guo Y Y, Heath J R, Tseng H R. Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system. Chemical Communications, 2006, •••(29): 3075–3077
https://doi.org/10.1039/b604426c
21 Hou S, Wang S, Yu Z T F, Zhu N Q M, Liu K, Sun J, Lin W Y, Shen C K F, Fang X, Tseng H R. A hydrodynamically focused stream as a dynamic template for site-specific electrochemical micropatterning of conducting polymers. Angewandte Chemie International Edition, 2008, 47(6): 1072–1075
https://doi.org/10.1002/anie.200704264
22 Li W, Pharn H H, Nie Z, MacDonald B, Guenther A, Kumacheva E. Multi-step microfluidic polymerization reactions conducted in droplets: The internal trigger approach. Journal of the American Chemical Society, 2008, 130(30): 9935–9941
https://doi.org/10.1021/ja8029174
23 Hartman R L, Naber J R, Buchwald S L, Jensen K F. Multistep microchemical synthesis enabled by microfluidic distillation. Angewandte Chemie International Edition, 2010, 49(5): 899–903
https://doi.org/10.1002/anie.200904634
24 Noel T, Kuhn S, Musacchio A J, Jensen K F, Buchwald S L. Suzuki-Miyaura cross-coupling reactions in flow: Multistep synthesis enabled by a microfluidic extraction. Angewandte Chemie International Edition, 2011, 50(26): 5943–5946
https://doi.org/10.1002/anie.201101480
25 Lee C C, Snyder T M, Quake S R. A microfluidic oligonucleotide synthesizer. Nucleic Acids Research, 2010, 38(8): 2514–2521
https://doi.org/10.1093/nar/gkq092
26 Zhou X C, Cai S Y, Hong A L, You Q M, Yu P L, Sheng N J, Srivannavit O, Muranjan S, Rouillard J M, Xia Y M, et al. Microfluidic Picoarray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucleic Acids Research, 2004, 32(18): 5409–5417
https://doi.org/10.1093/nar/gkh879
27 Kim E B, Seo J M, Kim G W, Lee S Y, Park T J. In vivo synthesis of europium selenide nanoparticles and related cytotoxicity evaluation of human cells. Enzyme and Microbial Technology, 2016, 95: 201–208
https://doi.org/10.1016/j.enzmictec.2016.08.012
28 Jeong H H, Jin S H, Lee B J, Kim T, Lee C S. Microfluidic static droplet array for analyzing microbial communication on a population gradient. Lab on a Chip, 2015, 15(3): 889–899
https://doi.org/10.1039/C4LC01097C
29 Jin S H, Jeong H H, Lee B, Lee S S, Lee C S. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval. Lab on a Chip, 2015, 15(18): 3677–3686
https://doi.org/10.1039/C5LC00651A
30 Jeong H H, Lee B, Jin S H, Jeong S G, Lee C S. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution. Lab on a Chip, 2016, 16(9): 1698–1707
https://doi.org/10.1039/C6LC00212A
31 Jang S, Lee B, Jeong H H, Jin S H, Jang S, Kim S G, Jung G Y, Lee C S. On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array. Lab on a Chip, 2016, 16(10): 1909–1916
https://doi.org/10.1039/C6LC00118A
32 Chou H P, Unger M A, Quake S R. A microfabricated rotary pump. Biomedical Microdevices, 2001, 3(4): 323–330
https://doi.org/10.1023/A:1012412916446
33 Hong J W, Studer V, Hang G, Anderson W F, Quake S R. A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology, 2004, 22(4): 435–439
https://doi.org/10.1038/nbt951
34 Yun J Y, Jambovane S, Kim S K, Cho S H, Duin E C, Hong J W. Log-scale dose response of inhibitors on a chip. Analytical Chemistry, 2011, 83(16): 6148–6153
https://doi.org/10.1021/ac201177g
35 Wang Y J, Lin W Y, Liu K, Lin R J, Selke M, Kolb H C, Zhang N G, Zhao X Z, Phelps M E, Shen C K F, Faull K F, Tseng H R. An integrated microfluidic device for large-scale in situ click chemistry screening. Lab on a Chip, 2009, 9(16): 2281–2285
https://doi.org/10.1039/b907430a
36 Unger M A, Chou H P, Thorsen T, Scherer A, Quake S R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000, 288(5463): 113–116
https://doi.org/10.1126/science.288.5463.113
37 Lin W Y, Wang Y, Wang S, Tseng H R. Integrated microfluidic reactors. Nano Today, 2009, 4(6): 470–481
https://doi.org/10.1016/j.nantod.2009.10.007
38 Tseng H Y, Wang C H, Lin W Y, Lee G B. Membrane-activated microfluidic rotary devices for pumping and mixing. Biomedical Microdevices, 2007, 9(4): 545–554
https://doi.org/10.1007/s10544-007-9062-6
39 Chang C C, Yang R J. Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks. Journal of Micromechanics and Microengineering, 2004, 14(4): 550–558
https://doi.org/10.1088/0960-1317/14/4/016
40 Wang C H, Lee G B. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection. Biosensors & Bioelectronics, 2005, 21(3): 419–425
https://doi.org/10.1016/j.bios.2004.11.004
41 Wang C H, Lee G B. Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels. Journal of Micromechanics and Microengineering, 2006, 16(2): 341–348
https://doi.org/10.1088/0960-1317/16/2/019
42 Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 2003, 107(3): 668–677
https://doi.org/10.1021/jp026731y
43 Zaniewski A M, Schriver M, Lee J G, Crommie M F, Zettl A. Electronic and optical properties of metal-nanoparticle filled graphene sandwiches. Applied Physics Letters, 2013, 102(2): 023108
https://doi.org/10.1063/1.4772542
44 Seo W S, Jo H H, Lee K, Kim B, Oh S J, Park J T. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angewandte Chemie International Edition, 2004, 43(9): 1115–1117
https://doi.org/10.1002/anie.200352400
45 Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013–2016
https://doi.org/10.1126/science.281.5385.2013
46 Coe S, Woo W K, Bawendi M, Bulovic V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800–803
https://doi.org/10.1038/nature01217
47 McDonald S A, Konstantatos G, Zhang S G, Cyr P W, Klem E J D, Levina L, Sargent E H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 2005, 4(2): 138–142
https://doi.org/10.1038/nmat1299
48 Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179
https://doi.org/10.1126/science.1077229
49 Song L M, Zhang S J. Hydrothermal synthesis and highly visible light-induced photocatalytic activity of zinc-doped cadmium selenide photocatalysts. Chemical Engineering Journal, 2011, 166(2): 779–782
https://doi.org/10.1016/j.cej.2010.11.074
50 Park T J, Lee S Y, Heo N S, Seo T S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angewandte Chemie International Edition, 2010, 49(39): 7019–7024
https://doi.org/10.1002/anie.201001524
[1] Supplementary Material 1 Download
[1] Wenqian Chen, Vikram Karde, Thomas N. H. Cheng, Siti S. Ramli, Jerry Y. Y. Heng. Surface hydrophobicity: effect of alkyl chain length and network homogeneity[J]. Front. Chem. Sci. Eng., 2021, 15(1): 90-98.
[2] Yichen Liu, Yongli Li, Andreas Hensel, Juergen J. Brandner, Kai Zhang, Xiaoze Du, Yongping Yang. A review on emulsification via microfluidic processes[J]. Front. Chem. Sci. Eng., 2020, 14(3): 350-364.
[3] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[4] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
[5] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[6] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[7] Fan Shu, Meng Wang, Jinbo Pang, Ping Yu. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil[J]. Front. Chem. Sci. Eng., 2019, 13(2): 393-399.
[8] Di Lu, Ran Tao, Zheng Wang. Carbon-based materials for photodynamic therapy: A mini-review[J]. Front. Chem. Sci. Eng., 2019, 13(2): 310-323.
[9] Vo-Van Giau, Yoon-Hee Park, Kyu-Hwan Shim, Sang-Wook Son, Seong-Soo A. An. Dynamic changes of protein corona compositions on the surface of zinc oxide nanoparticle in cell culture media[J]. Front. Chem. Sci. Eng., 2019, 13(1): 90-97.
[10] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[11] Xiu-Tian-Feng E, Lei Zhang, Fang Wang, Xiangwen Zhang, Ji-Jun Zou. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels[J]. Front. Chem. Sci. Eng., 2018, 12(3): 358-366.
[12] Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions[J]. Front. Chem. Sci. Eng., 2018, 12(1): 24-31.
[13] Kai Shi, Matthew Haynes, Leaf Huang. Nanovaccines for remodeling the suppressive tumor microenvironment: New horizons in cancer immunotherapy[J]. Front. Chem. Sci. Eng., 2017, 11(4): 676-684.
[14] Pengwei Zhang, Junxiao Ye, Ergang Liu, Lu Sun, Jiacheng Zhang, Seung Jin Lee, Junbo Gong, Huining He, Victor C. Yang. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer[J]. Front. Chem. Sci. Eng., 2017, 11(4): 529-536.
[15] Mani Abirami, Krishnan Kannabiran. Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications[J]. Front. Chem. Sci. Eng., 2016, 10(4): 542-551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed