Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 400-408    https://doi.org/10.1007/s11705-018-1753-4
RESEARCH ARTICLE
Synthesis of iron(II) complexes with asymmetric N2O2 coordinating Schiff base-like ligands and their spin crossover properties
Wolfgang Bauer, Tanja Ossiander, Birgit Weber()
Department of Chemistry, University of Bayreuth, 95440 Bayreuth, Germany
 Download: PDF(431 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The synthesis of new Schiff base-like ligands with asymmetric substituents pattern and their iron complexes with pyridine as axial ligand is described. Two of the ligands and one of the iron(II) complexes were characterized by single crystal X-ray structure analysis. One of the the iron(II) complexes shows spin crossover behavior while the others remain in the high spin state. The influence of the reduced symmetry of the ligand on the properties of the complexes is discussed.

Keywords iron      Schiff base-like ligands      magnetism      spin crossover      X-ray structures     
Corresponding Author(s): Birgit Weber   
Just Accepted Date: 13 June 2018   Online First Date: 06 September 2018    Issue Date: 18 September 2018
 Cite this article:   
Wolfgang Bauer,Tanja Ossiander,Birgit Weber. Synthesis of iron(II) complexes with asymmetric N2O2 coordinating Schiff base-like ligands and their spin crossover properties[J]. Front. Chem. Sci. Eng., 2018, 12(3): 400-408.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1753-4
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/400
Fig.1  Scheme 1 General procedure for the synthesis of the asymmetric Schiff base-like ligands and their iron(II) complexes together with the used abbreviations
Sample H2L2a H2L2c Lit [59]
C–N 1.405(4)/1.418(4) 1.428(5)/1.419(5) 1.46
N = C 1.338(4)/1.336(4) 1.342(4)/1.337(5) 1.33
C–C 1.456(5)/1.458(6) 1.459(7)/1.4401(6) 1.46
C= C 1.378(5)/1.384(5) 1.362(6)/1.388(6) 1.40
C= O 1.246(4)/1.239(5) 1.235(4)/1.253(5) 1.25
Tab.1  Selected bond lengths (Å) of the Ligands H2L2a and H2L2c and comparison with the theoretical values for the corresponding single or double bonds
Fig.2  ORTEP drawing of the ligands H2L2a (left) and H2L2c (right) and the numbering scheme used in the manuscript. The ellipsoids are drawn at the 50% probability level. Hydrogen atoms were omitted for clarity
Fig.3  Packing of the molecules in the crystal. Left: H2L2a projected along [100] and right: H2L2c projected along [100]. Hydrogen atoms have been omitted for clarity
Fig.4  ORTEP drawing of the complex [Fe(L2b)(py)2] and the numbering scheme used in the manuscript. The ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity
Fe–Neq Fe–Oeq Fe–Nax Oeq–Fe–Oeq Nax–Fe–Nax ∠ py/py
2.115(2) 2.020(2) 2.231(2) 113.79(7) 167.65(8) 37.9
2.122(2) 2.081(2) 2.275(2)
Tab.2  Selected bond lengths (Å) and angles (°) of the first coordination sphere of the iron center
Fig.5  Packing of [Fe(L2b)(py)2] in the crystal. Top: projected along [100] and bottom: projected along [001]. Hydrogen atoms have been omitted for clarity. The dotted lines illustrate short intermolecular contacts discussed in the manuscript
Fig.6  Plot of the cMT product vs. T in the 300-50 K range for (A) [Fe(L2b)(py)2], (B) [Fe(L2b)(py)2] single crystals, (C) [Fe(L2a)(py)2] and (D) [Fe(L2d)(py)2]
1 Catala L, Mallah T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications. Coordination Chemistry Reviews, 2017, 346: 32–61
https://doi.org/10.1016/j.ccr.2017.04.005
2 Ferrando-Soria J, Vallejo J, Castellano M, Martínez-Lillo J, Pardo E, Cano J, Castro I, Lloret F, Ruiz-García R, Julve M. Molecular magnetism, quo vadis?: A historical perspective from a coordination chemist viewpoint. Coordination Chemistry Reviews, 2017, 339: 17–103
https://doi.org/10.1016/j.ccr.2017.03.004
3 Miller J S. Magnetically ordered molecule-based materials. Chemical Society Reviews, 2011, 40(6): 3266–3296
https://doi.org/10.1039/c0cs00166j
4 Sieklucka B, Pinkowicz D. Molecular Magnetic Materials.Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, 1–483
5 Gaspar A B, Weber B. Spin Crossover Phenomenon in Coordination Compounds. In: Molecular Magnetic Materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, 231–252
6 Halcrow M A. Spin-Crossover Materials. Chichester: John Wiley & Sons Ltd, 2013, 1–546
7 Feltham H L, Barltrop A S, Brooker S. Spin crossover in iron(II) complexes of 3,4,5-tri-substituted-1,2,4-triazole (Rdpt), 3,5-di-substituted-1,2,4-triazolate (dpt -), and related ligands. Coordination Chemistry Reviews, 2017, 344: 26–53
https://doi.org/10.1016/j.ccr.2016.10.006
8 Ni Z P, Liu J L, Hoque M N, Liu W, Li J Y, Chen Y C, Tong M L. Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 335: 28–43
https://doi.org/10.1016/j.ccr.2016.12.002
9 Otsubo K, Haraguchi T, Kitagawa H. Nanoscale crystalline architectures of Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346: 123–138
https://doi.org/10.1016/j.ccr.2017.03.022
10 Senthil Kumar K, Ruben M. Emerging trends in spin crossover (SCO) based functional materials and devices. Coordination Chemistry Reviews, 2017, 346: 176–205
https://doi.org/10.1016/j.ccr.2017.03.024
11 Harding D J, Harding P, Phonsri W. Spin crossover in iron(III) complexes. Coordination Chemistry Reviews, 2016, 313: 38–61
https://doi.org/10.1016/j.ccr.2016.01.006
12 Brooker S. Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chemical Society Reviews, 2015, 44(10): 2880–2892
https://doi.org/10.1039/C4CS00376D
13 Gütlich P, Gaspar A B, Garcia Y. Spin state switching in iron coordination compounds. Beilstein Journal of Organic Chemistry, 2013, 9: 342–391
https://doi.org/10.3762/bjoc.9.39
14 Jureschi C-M, Linares J, Boulmaali A, Dahoo P R, Rotaru A, Garcia Y.Pressure and temperature sensors using two spin crossover materials. Sensors, 2016, 16: 187/1–187/9
15 Gütlich P, Goodwin H. Spin Crossover in Transition Metal Compounds I–III. Heidelberg: Springer, 2004, 1–294
16 Boillot M L, Weber B. Mononuclear ferrous and ferric complexes. Comptes Rendus. Chimie, 2018 (Online). doi: 10.1016/j.crci.2018.01.006
17 Weber B, Bauer W, Obel J. An iron(II) spin-crossover complex with a 70 K wide thermal hysteresis loop. Angewandte Chemie International Edition, 2008, 47(52): 10098–10101
https://doi.org/10.1002/anie.200802806
18 Levchenko G G, Bukin G V, Gaspar A B, Real J A. The pressure-induced spin transition in the Fe(phen)2(NCS)2 model compound. Russian Journal of Physical Chemistry A, 2009, 83(6): 951–954
https://doi.org/10.1134/S0036024409060144
19 Nowak R, Prasetyanto E A, de Cola L, Bojer B, Siegel R, Senker J, Rössler E, Weber B. Proton-driven coordination-induced spin state switch (PD-CISSS) of iron(II) complexes. Chemical Communications, 2017, 53(5): 971–974
https://doi.org/10.1039/C6CC08618G
20 Baldé C, Bauer W, Kaps E, Neville S, Desplanches C, Chastanet G, Weber B, Létard J F. Light-induced excited spin-state properties in 1D iron(II) chain compounds. European Journal of Inorganic Chemistry, 2013, 2013: 2744–2750
21 Gaspar A B, Seredyuk M. Spin crossover in soft matter. Coordination Chemistry Reviews, 2014, 268: 41–58
https://doi.org/10.1016/j.ccr.2014.01.018
22 Luo Y H, Liu Q L, Yang L J, Sun Y, Wang J W, You C Q, Sun B W. Magnetic observation of above room-temperature spin transition in vesicular nano-spheres. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2016, 4(34): 8061–8069
https://doi.org/10.1039/C6TC02796B
23 Romero-Morcillo T, Seredyuk M, Munoz M C, Real J A. Meltable spin transition molecular materials with tunable Tc and hysteresis loop width. Angewandte Chemie International Edition, 2015, 54(49): 14777–14781
https://doi.org/10.1002/anie.201507620
24 Gandolfi C, Morgan G G, Albrecht M. A magnetic iron(III) switch with controlled and adjustable thermal response for solution processing. Dalton Transactions, 2012, 41(13): 3726–3730
https://doi.org/10.1039/c2dt12037b
25 Garcia Y, Su B-L, Komatsu Y, Kato K, Yamamoto Y, Kamihata H, Lee Y H, Fuyuhiro A, Kawata S, Hayami S.Spin-crossover behaviors based on intermolecular interactions for cobalt(II) complexes with long alkyl chains. European Journal of Inorganic Chemistry, 2012, 2012: 2769–2775
26 Schlamp S, Weber B, Naik A D, Garcia Y. Cooperative spin transition in a lipid layer like system. Chemical Communications, 2011, 47(25): 7152–7154
https://doi.org/10.1039/c1cc12162f
27 Schlamp S, Thoma P, Weber B. Influence of the alkyl chain length on the self-assembly of amphiphilic iron complexes: An analysis of X-ray structures. Chemistry, 2014, 20(21): 6462–6473
https://doi.org/10.1002/chem.201304653
28 Bodenthin Y, Schwarz G, Tomkowicz Z, Lommel M, Geue T, Haase W, Möhwald H, Pietsch U, Kurth D G. Spin-crossover phenomena in extended multi-component metallo-supramolecular assemblies. Coordination Chemistry Reviews, 2009, 253(19–20): 2414–2422
https://doi.org/10.1016/j.ccr.2008.10.019
29 Gaspar A B, Seredyuk M, Gütlich P. Spin crossover in metallomesogens. Coordination Chemistry Reviews, 2009, 253(19–20): 2399–2413
https://doi.org/10.1016/j.ccr.2008.11.016
30 Zein S, Borshch S A. Energetics of binuclear spin transition complexes. Journal of the American Chemical Society, 2005, 127(46): 16197–16201
https://doi.org/10.1021/ja054282k
31 Lochenie C, Schötz K, Panzer F, Kurz H, Maier B, Puchtler F, Agarwal S, Köhler A, Weber B. Spin-crossover iron(II) coordination polymer with fluorescent properties: Correlation between emission properties and spin state. Journal of the American Chemical Society, 2018, 140(2): 700–709
https://doi.org/10.1021/jacs.7b10571
32 Kurz H, Lochenie C, Wagner K G, Schneider S, Karg M, Weber B. Synthesis and optical properties of phenanthroline-derived Schiff base-like dinuclear Ru(II)-Ni(II) complexes. Chemistry, 2018, 24(20): 5100–5111
https://doi.org/10.1002/chem.201704632
33 Schäfer B, Bauer T, Faus I, Wolny J A, Dahms F, Fuhr O, Lebedkin S, Wille H C, Schlage K, Chevalier K, et al.. A luminescent Pt2Fe spin crossover complex. Dalton Transactions, 2017, 46(7): 2289–2302
https://doi.org/10.1039/C6DT04360G
34 Shepherd H J, Quintero C M, Molnár G, Salmon L, Bousseksou A. Luminescent Spin-Crossover Materials. In: Spin-Crossover Materials. Chichester: John Wiley & Sons Ltd, 2013, 347–373
35 Hasegawa M, Renz F, Hara T, Kikuchi Y, Fukuda Y, Okubo J, Hoshi T, Linert W. Fluorescence spectra of Fe(II) spin crossover complexes with 2,6-bis(benzimidazole-2′-yl)pyridine. Chemical Physics, 2002, 277(1): 21–30
https://doi.org/10.1016/S0301-0104(01)00706-6
36 Faulmann C, Jacob K, Dorbes S, Lampert S, Malfant I, Doublet M L, Valade L, Real J A. Electrical conductivity and spin crossover: A new achievement with a metal bis dithiolene complex. Inorganic Chemistry, 2007, 46(21): 8548–8559
https://doi.org/10.1021/ic062461c
37 Dorbes S, Valade L, Real J A, Faulmann C. [Fe(sal2-trien)][Ni(dmit)2]: Towards switchable spin crossover molecular conductors. Chemical Communications, 2005, (1): 69–71
https://doi.org/10.1039/b412182a
38 Chen Y C, Meng Y, Ni Z P, Tong M L. Synergistic electrical bistability in a conductive spin crossover heterostructure. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(5): 945–949
https://doi.org/10.1039/C4TC02580F
39 Ohkoshi S I, Imoto K, Tsunobuchi Y, Takano S, Tokoro H. Light-induced spin-crossover magnet. Nature Chemistry, 2011, 3(7): 564–569
https://doi.org/10.1038/nchem.1067
40 Suleimanov I, Kraieva O, Sánchez Costa J, Fritsky I O, Molnár G, Salmon L, Bousseksou A. Electronic communication between fluorescent pyrene excimers and spin crossover complexes in nanocomposite particles. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(19): 5026–5032
https://doi.org/10.1039/C5TC00667H
41 Kraieva O, Suleimanov I, Molnár G, Salmon L, Bousseksou A. CdTe quantum dot fluorescence modulation by spin crossover. Magnetochemistry, 2016, 2(1): 11
https://doi.org/10.3390/magnetochemistry2010011
42 Quintero C M, Gural’skiy I A, Salmon L, Molnar G, Bergaud C, Bousseksou A. Soft lithographic patterning of spin crossover complexes. Part 1: Fluorescent detection of the spin transition in single nano-objects. Journal of Materials Chemistry, 2012, 22(9): 3745–3751
https://doi.org/10.1039/c2jm15662h
43 Weber B. Synthesis of coordination polymer nanoparticles using self-assembled block copolymers as template. Chemistry, 2017, 23(72): 18093–18100
https://doi.org/10.1002/chem.201703280
44 Klimm O, Göbel C, Rosenfeldt S, Puchtler F, Miyajima N, Marquardt K, Drechsler M, Breu J, Förster S, Weber B. Synthesis of Fe(L)(bipy)n spin crossover nanoparticles using blockcopolymer micelles. Nanoscale, 2016, 8(45): 19058–19065
https://doi.org/10.1039/C6NR06330F
45 Fitzpatrick A J, O’Connor H M, Morgan G G. A room temperature spin crossover ionic liquid. Dalton Transactions, 2015, 44(48): 20839–20842
https://doi.org/10.1039/C5DT04264J
46 Okuhata M, Funasako Y, Takahashi K, Mochida T. A spin-crossover ionic liquid from the cationic iron(III) Schiff base complex. Chemical Communications, 2013, 49(69): 7662–7664
https://doi.org/10.1039/c3cc44199g
47 Liu X, Manzur C, Novoa N, Celedón S, Carrillo D, Hamon J R. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews, 2018, 357: 144–172
https://doi.org/10.1016/j.ccr.2017.11.030
48 Altomare A, Burla M C, Camalli M, Cascarano G L, Giacovazzo C, Guagliardi A, Moliterni A G G, Polidori G, Spagna R. SIR97: A new tool for crystal structure determination and refinement. Journal of Applied Crystallography, 1999, 32(1): 115–119
https://doi.org/10.1107/S0021889898007717
49 Sheldrick G M. A short history of SHELX. Acta Crystallographica. Section A, Foundations of Crystallography, 2008, 64(1): 112–122
https://doi.org/10.1107/S0108767307043930
50 Farrugia L. ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 1997, 30(5): 565
https://doi.org/10.1107/S0021889897003117
51 Johnson C K, Burnett M N. ORTEP-III. Oak-Ridge: Oak-Ridge National Laboratory, 1996
52 Keller E. Schakal-99. Freiburg: University of Freiburg, 1999
53 Kahn O. Molecular Magnetism. New York: VCH, 1993, 1–380
54 Becker H G O. Organikum, 19th ed. Berlin: Johann Ambrosius Barth, 1993, 1–786
55 Jäger E G. “Bioinspired” metal complexes of macrocyclic [N42-] and open chain [N2O22-] Schiff base ligands—a link between porphyrins and salicylaldimines. In: Chemistry At The Beginning of The Third Millennium: Molecular Design, Supramolecules, Nanotechnology, And Beyond. Berlin: Springer, 2000, 103–138
56 Jäger E G. Koordinierte und freie Estergruppen in stabilen Metallchelaten. Zeitschrift fur Anorganische und Allgemeine Chemie, 1967, 349: 139–150
https://doi.org/10.1002/zaac.19673490305
57 Claisen L. Untersuchungen über die Oxymethylenverbindungen. Justus Liebigs Annalen der Chemie, 1897, 297(1-2): 1–98
https://doi.org/10.1002/jlac.18972970102
58 Weber B, Betz R, Bauer W, Schlamp S. Crystal structure of iron(II) acetate. Zeitschrift fur Anorganische und Allgemeine Chemie, 2011, 637(1): 102–107
https://doi.org/10.1002/zaac.201000274
59 Holleman A F, Wiberg E, Wiberg N. Lehrbuch der anorganischen Chemie, 101st ed. Berlin: de Gruyter, 1995, 1–2149
60 Weber B, Jäger E-G. Structure and magnetic properties of iron(II/III) complexes with N2O22- coordinating Schiff base like ligands. European Journal of Inorganic Chemistry, 2009, 2009: 465–477
61 Bauer W, Ossiander T, Weber B.A promising new Schiff base-like ligand for the synthesis of octahedral iron(II) spin crossover complexes. Zeitschrift für Naturforschung B, 2010, 2010: 323–328
62 Lochenie C, Heinz J, Milius W, Weber B. Iron(II) spin crossover complexes with diaminonaphthalene-based Schiff base-like ligands: Mononuclear complexes. Dalton Transactions, 2015, 44(41): 18065–18077
https://doi.org/10.1039/C5DT03048J
63 Dankhoff K, Weber B. Novel Cu(II) complexes with NNO-Schiff base-like ligands—structures and magnetic properties. CrystEngComm, 2018, 20(6): 818–828
https://doi.org/10.1039/C7CE02007D
64 Weber B, Kaps E, Obel J, Bauer W. Synthesis and magnetic properties of new octahedral iron(II) complexes. Zeitschrift fur Anorganische und Allgemeine Chemie, 2008, 634(8): 1421–1426
https://doi.org/10.1002/zaac.200800132
65 Weber B, Obel J, Henner-Vasquez D, Bauer W.Two new iron(II) spin-crossover complexes with N4O2 coordination sphere and spin transition around room temperature. European Journal of Inorganic Chemistry, 2009, 2009: 5527–5534
66 Pfaffeneder T M, Thallmair S, Bauer W, Weber B. Complete and incomplete spin transitions in 1D chain iron(II) compounds. New Journal of Chemistry, 2011, 35(3): 691–700
https://doi.org/10.1039/C0NJ00750A
67 Bauer W, Pfaffeneder T, Achterhold K, Weber B. Complete two-step spin-transition in a 1D chain iron(II) complex with a 110-K wide intermediate plateau. European Journal of Inorganic Chemistry, 2011, 2011: 3183–3192
68 Schlamp S, Thoma P, Weber B. New octahedral, head-tail iron(II) complexes with spin crossover properties. European Journal of Inorganic Chemistry, 2012, 2012: 2759–2768
69 Weber B. Spin crossover complexes with N4O2 coordination sphere—the influence of covalent linkers on cooperative interactions. Coordination Chemistry Reviews, 2009, 253(19–20): 2432–2449
https://doi.org/10.1016/j.ccr.2008.10.002
70 Göbel C, Klimm O, Puchtler F, Rosenfeldt S, Förster S, Weber B. Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles. Beilstein Journal of Nanotechnology, 2017, 8: 1318–1327
https://doi.org/10.3762/bjnano.8.133
71 Nowak R, Bauer W, Ossiander T, Weber B. Slow self-assembly favours hysteresis above room temperature for an iron(II) 1D-chain spin-crossover complex. European Journal of Inorganic Chemistry, 2013, 2013: 975–983
72 Weber B, Kaps E S, Desplanches C, Létard J-F. Quenching the hysteresis in single crystals of a 1D chain iron(II) spin crossover complex. European Journal of Inorganic Chemistry, 2008, 2008: 2963–2966
[1] FCE-18030-OF-BW_suppl_1 Download
[1] Feng Sun, Jinren Lu, Yuhong Wang, Jie Xiong, Congjie Gao, Jia Xu. Reductant-assisted polydopamine-modified membranes for efficient water purification[J]. Front. Chem. Sci. Eng., 2021, 15(1): 109-117.
[2] Bangxian Peng, Rusen Zhou, Ying Chen, Song Tu, Yingwu Yin, Liyi Ye. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1006-1017.
[3] Rafael Muniz de Oliveira, Nereida Mello da Rosa Gioppo, Jancineide Oliveira de Carvalho, Francilio Carvalho Oliveira, Thomas Jay Webster, Fernanda Roberta Marciano, Anderson Oliveira Lobo. Decontamination of mobile phones and electronic devices for health care professionals using a chlorhexidine/carbomer 940® gel[J]. Front. Chem. Sci. Eng., 2019, 13(1): 192-198.
[4] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[5] Kai Shi, Matthew Haynes, Leaf Huang. Nanovaccines for remodeling the suppressive tumor microenvironment: New horizons in cancer immunotherapy[J]. Front. Chem. Sci. Eng., 2017, 11(4): 676-684.
[6] Kevin A. Kovalchik, Matthew S. MacLennan, Kerry M. Peru, John V. Headley, David D.Y. Chen. Standard method design considerations for semi-quantification of total naphthenic acids in oil sands process affected water by mass spectrometry: A review[J]. Front. Chem. Sci. Eng., 2017, 11(3): 497-507.
[7] Weibin Kong, Qi Miao, Peiyong Qin, Jan Baeyens, Tianwei Tan. Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression[J]. Front. Chem. Sci. Eng., 2017, 11(2): 166-176.
[8] Adrian W. K. Law,Chunyan Tang. Industrial water treatment and industrial marine outfalls: Achieving the right balance[J]. Front. Chem. Sci. Eng., 2016, 10(4): 472-479.
[9] Yan Zhang,Pingqiang Gao,Lin Zhao,Yizhong Chen. Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite[J]. Front. Chem. Sci. Eng., 2016, 10(1): 147-161.
[10] Xiaoqing REN,Hongwei CHEN,Victor YANG,Duxin SUN. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy[J]. Front. Chem. Sci. Eng., 2014, 8(3): 253-264.
[11] Phillip R. WESTMORELAND. Opportunities and challenges for a Golden Age of chemical engineering[J]. Front Chem Sci Eng, 2014, 8(1): 1-7.
[12] Alireza MOHAMMADREZAEI, Sadegh PAPARI, Mousa ASADI, Abas NADERIFAR, Reza GOLHOSSEINI. Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst[J]. Front Chem Sci Eng, 2012, 6(3): 253-258.
[13] Wei WANG, Jinlong GONG. Methanation of carbon dioxide: an overview[J]. Front Chem Sci Eng, 2011, 5(1): 2-10.
[14] Jianglong YU, Liping CHANG, Fan LI, Kechang XIE. A review on research and development of iron-based sorbents for removal of hydrogen sulfide from hot coal gases[J]. Front Chem Eng Chin, 2010, 4(4): 529-535.
[15] Xiurong REN, Weiren BAO, Fan LI, Liping CHANG, Kechang XIE. Desulfurization performance of iron-manganese-based sorbent for hot coal gas[J]. Front Chem Eng Chin, 2010, 4(4): 429-434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed