Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (1) : 90-97    https://doi.org/10.1007/s11705-018-1766-z
RESEARCH ARTICLE
Dynamic changes of protein corona compositions on the surface of zinc oxide nanoparticle in cell culture media
Vo-Van Giau1, Yoon-Hee Park2, Kyu-Hwan Shim1, Sang-Wook Son2(), Seong-Soo A. An1()
1. Department of Bionanotechnology and Gachon Medical Research Institute, Gachon University and Gachon Medical Research Institute, Seongnam, Korea
2. Laboratory of Cell Signaling and Nanomedicine, Department of Dermatology and Division of Brain Korea 21 Project for Biomedical Science, Korea University College of Medicine, Seoul, Korea
 Download: PDF(1264 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The potential applications of nanomaterials used in nanomedicine as ingredients in drug delivery systems and in other products continue to expand. When nanomaterials are introduced into physiological environments and driven by energetics, they readily associate proteins forming a protein corona (PC) on their surface. This PC could result in an alteration of the nanomaterial’s surface characteristics, affecting their interaction with cells due to conformational changes in adsorbed protein molecules. However, our current understanding of nanobiological interactions is still very limited. Utilizing a liquid chromatography–mass spectroscopy/mass spectroscopy technology and a Cytoscape plugin (ClueGO) approach, we examined the composition of the PC for a set of zinc oxide nanoparticles (ZnONP) from cell culture media typically and further analyzed the biological interaction of identified proteins, respectively. In total, 36 and 33 common proteins were investigated as being bound to ZnONP at 5 min and 60 min, respectively. These proteins were further analyzed with ClueGO, a Cytoscape plugin, which provided gene ontology and the biological interaction processes of identified proteins. Proteins bound to the surface of nanoparticles that may modify the structure, therefore the function of the adsorbed protein could be consequently affect the complicated biological processes.

Keywords ZnONPs      nanoparticles      protein corona      ClueGO     
Corresponding Author(s): Sang-Wook Son,Seong-Soo A. An   
Just Accepted Date: 27 July 2018   Online First Date: 25 January 2019    Issue Date: 25 February 2019
 Cite this article:   
Vo-Van Giau,Yoon-Hee Park,Kyu-Hwan Shim, et al. Dynamic changes of protein corona compositions on the surface of zinc oxide nanoparticle in cell culture media[J]. Front. Chem. Sci. Eng., 2019, 13(1): 90-97.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1766-z
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I1/90
5 min 60 min
α-1-antiproteinase precursor α-2-HS-glycoprotein precursor
α-2-macroglobulin precursor Antithrombin-III precursor
Apolipoprotein A-I preproprotein Apolipoprotein B-100
Complement C3 preproprotein Complement C4 precursor
Complement C4-A Complement factor B precursor
Complement factor H precursor Gelsolin isoform a precursor
Heat shock protein HSP 90-α Heat shock protein HSP 90-β
Hemoglobin subunit α Hemoglobin, ε 1
Hemoglobin, γ 2 Hemopexin precursor
Inter-α-trypsin inhibitor heavy chain H1 precursor Inter-α-trypsin inhibitor heavy chain H2 precursor
Kininogen-2 isoform I precursor Plasma serine protease inhibitor precursor
Prothrombin precursor Serum albumin precursor
Tetranectin precursor Vitronectin precursor
Tab.1  Diversity of the abundant common proteins absorbed to ZnONPs between 5 and 60 min
Fig.1  ZnO nanoparticle (ZnONP) geometric diameter measured using transmission electron microscopy (TEM). (A) TEM images of ZnONP without incubation; (B and C) TEM image of ZnONP incubated in cell culture medium at 37°C for 5 and 60 min respectively
5 min 60 min
Centromere protein F Coagulation factor IX
Complement factor I precursor Coagulation factor V precursor
Elongation factor 1-α 2 Myosin-viia
Factor XIIa inhibitor precursor Serotransferrin precursor
Fibrinogen α chain precursor
Pigment epithelium-derived factor precursor
Talin-1
Thrombospondin-1 precursor
Tab.2  List of the abundant specific proteins identified on ZnONPs at 5 and 60 min
Fig.2  Visualized biological processes associated with binding of proteins from culture media with ZnO nanoparticles after (A) 5 min and (B) 60 min
1 TBlunk, D F Hochstrasser, J C Sanchez, B W Muller, R H Muller. Colloidal carriers for intravenous drug targeting: Plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis, 1993, 14(12): 1382–1387
https://doi.org/10.1002/elps.11501401214
2 M SEhrenberg, A EFriedman, J NFinkelstein, GOberdorster, J LMcGrath. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials, 2009, 30(4): 603–610
https://doi.org/10.1016/j.biomaterials.2008.09.050
3 MLundqvist, C Augustsson, MLilja, KLundkvist, BDahlbäck, SLinse, TCedervall. The nanoparticle protein corona formed in human blood or human blood fractions. PLoS One, 2017, 12(4): e0175871
https://doi.org/10.1371/journal.pone.0175871
4 ABeduneau, Z Ma, C BGrotepas, AKabanov, B ERabinow, NGong, R L Mosley, H Dou, M DBoska, H EGendelman. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles. PLoS One, 2009, 4(2): e4343
https://doi.org/10.1371/journal.pone.0004343
5 M JClift, S Bhattacharjee, D MBrown, VStone. The effects of serum on the toxicity of manufactured nanoparticles. Toxicology Letters, 2010, 198(3): 358–365
https://doi.org/10.1016/j.toxlet.2010.08.002
6 PKhanna, C Ong, B HBay, G HBaeg. Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials (Basel, Switzerland), 2015, 5(3): 1163–1180
https://doi.org/10.3390/nano5031163
7 LLartigue, C Wilhelm, JServais, CFactor, ADencausse, J CBacri, NLuciani, FGazeau. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: Impact on macrophage uptake. ACS Nano, 2012, 6(3): 2665–2678
https://doi.org/10.1021/nn300060u
8 OLunov, T Syrovets, CLoos, JBeil, M Delacher, KTron, G UNienhaus, AMusyanovych, VMailänder, KLandfester, et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano, 2011, 5(3): 1657–1669
https://doi.org/10.1021/nn2000756
9 C DWalkey, J B Olsen, F Song, RLiu, RLiu, H Guo, D WOlsen, YCohen, AEmili, W CChan. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano, 2014, 8(3): 2439–2455
https://doi.org/10.1021/nn406018q
10 ZGu, Z Yang, YChong, CGe, J K Weber, D R Bell, R Zhou. Surface curvature relation to protein adsorption for carbon-based nanomaterials. Scientific Reports, 2015, 5(1): 10886
https://doi.org/10.1038/srep10886
11 AMarucco, E Gazzano, DGhigo, EEnrico, IFenoglio. Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO2, SiO2 and carbon nanomaterials. Nanotoxicology, 2016, 10(1): 1–9
12 CGe, J Du, LZhao, LWang, Y Liu, DLi, YYang, R Zhou, YZhao, ZChai, C Chen. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(41): 16968–16973
https://doi.org/10.1073/pnas.1105270108
13 M JHajipour, J Raheb, OAkhavan, SArjmand, OMashinchian, MRahman, MAbdolahad, VSerpooshan, LLaurentj, MMahmoudi. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide. Nanoscale, 2015, 7(19): 8978–8994
https://doi.org/10.1039/C5NR00520E
14 ASalvati, A S Pitek, M P Monopoli, K Prapainop, F BBombelli, D RHristov, P MKelly, CÅberg, EMahon, K ADawson. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology, 2013, 8(2): 137–143
https://doi.org/10.1038/nnano.2012.237
15 Z JDeng, M Liang, MMonteiro, IToth, R F Minchin. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology, 2011, 6(1): 39–44
https://doi.org/10.1038/nnano.2010.250
16 JSaikia, M Yazdimamaghani, M. S PHadipour, HGhandehari. Differential protein adsorption and cellular uptake of silica nanoparticles based on size and porosity. ACS Applied Materials & Interfaces, 2016, 8(50): 34820–34832
https://doi.org/10.1021/acsami.6b09950
17 C BAnders, J E Eixenberger, N A Franco, R J Hermann, K D Rainey, J J Chess, A Punnooseb, D GWingett. ZnO nanoparticle preparation route influences surface reactivity, dissolution and cytotoxicity. Environmental Science. Nano, 2018, 5(2): 572–588
https://doi.org/10.1039/C7EN00888K
18 J WRasmussen, EMartinez, PLouka, GDenise, D GWingett. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opinion on Drug Delivery, 2010, 7(9): 1063–1077
https://doi.org/10.1517/17425247.2010.502560
19 AScherzad, T Meyer, NKleinsasser, SHackenberg. Molecular mechanisms of zinc oxide nanoparticle-induced genotoxicity short running title: Genotoxicity of ZnO NPs. Materials (Basel), 2017, 10(12): e1427
https://doi.org/10.3390/ma10121427
20 NSingh, B Manshian, G JJenkins, S MGriffiths, P MWilliams, T GMaffeis, C JWright, S HDoak. Nanogenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials, 2009, 30(23-24): 3891–3914
https://doi.org/10.1016/j.biomaterials.2009.04.009
21 V DRajput, T M Minkina, A Behal, S NSushkova, SMandzhieva, RSingh, AGorovtsov, V STsitsuashvili, W OPurvis, K AGhazaryan, et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring & Management, 2018, 9: 76–84
https://doi.org/10.1016/j.enmm.2017.12.006
22 RWahab, M A Siddiqui, Q Saquib, SDwivedi, JAhmad, JMusarrat, A AAl-Khedhairy, H SShin. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids and Surfaces. B, Biointerfaces, 2014, 117(1): 267–276
https://doi.org/10.1016/j.colsurfb.2014.02.038
23 MChevallet, B Gallet, AFuchs, P HJouneau, KUm, E Mintz, IMichaud-Soret. Metal homeostasis disruption and mitochondrial dysfunction in hepatocytes exposed to sub-toxic doses of zinc oxide nanoparticles. Nanoscale, 2016, 8(43): 18495–18506
https://doi.org/10.1039/C6NR05306H
24 WZhang, Y Zhao, FLi, LLi, Y Feng, LMin, DMa, S Yu, JLiu, HZhang, et al. Zinc oxide nanoparticle caused plasma metabolomic perturbations correlate with hepatic steatosis. Frontiers in Pharmacology, 2018, 9: 57
https://doi.org/10.3389/fphar.2018.00057
25 V RLeite-Silva, D CLiu, W YSanchez, HStudier, Y HMohammed, AHolmes, WBecker, J EGrice, H ABenson, M SRoberts. Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles. Nanomedicine (London), 2016, 11(10): 1193–1205
https://doi.org/10.2217/nnm-2016-0010
26 C MSayes, K L Reed, D B Warheit. Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2007, 97(1): 163–180
https://doi.org/10.1093/toxsci/kfm018
27 TXia, Y Zhao, TSager, SGeorge, SPokhrel, NLi, D Schoenfeld, HMeng, SLin, X Wang, et al. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano, 2011, 5(2): 1223–1235
https://doi.org/10.1021/nn1028482
28 D BWarheit, C M Sayes, K L Reed. Nanoscale and fine zinc oxide particles: Can in vitro assays accurately forecast lung hazards following inhalation exposures? Environmental Science & Technology, 2009, 43(20): 7939–7945
https://doi.org/10.1021/es901453p
29 V VGiau, S S An. Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer’s disease. Journal of the Neurological Sciences, 2016, 15(360): 141–152
https://doi.org/10.1016/j.jns.2015.12.005
30 M NMana, P A Fougères, Y H Leung, F Liu, A BDjurišić, J PGiesy, K M YLeung. Physicochemical characteristics and toxicity of surface-modified zinc oxide nanoparticles to freshwater and marine microalgae. Scientific Reports, 2017, 7(1): 15909
https://doi.org/10.1038/s41598-017-15988-0
31 SMilani, F B Bombelli, A S Pitek, K A Dawson, J Rädler. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: Soft and hard corona. ACS Nano, 2012, 6(3): 2532–2541
https://doi.org/10.1021/nn204951s
32 FPederzoli, G Tosi, M AVandelli, DBelletti, FForni, BRuozi. Protein corona and nanoparticles: How can we investigate on? Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2017, 9(6): e1467
https://doi.org/10.1002/wnan.1467
33 ARao, H Long, AHarley-Trochimczyk, TPham, AZettl, CCarraro, RMaboudian. In situ localized growth of ordered metal oxide hollow sphere array on microheater platform for sensitive, ultra-fast gas sensing. ACS Applied Materials & Interfaces, 2017, 9(3): 2634–2641
https://doi.org/10.1021/acsami.6b12677
34 SSchöttler, K Landfester, VMailänder. Controlling the stealth effect of nanocarriers through understanding the protein corona. Angewandte Chemie International Edition in English, 2016, 55(31): 8806–8815
https://doi.org/10.1002/anie.201602233
35 STenzer, D Docter, JKuharev, AMusyanovych, VFetz, R Hecht, FSchlenk, DFischer, KKiouptsi, CReinhardt, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology, 2013, 8(10): 772–781
https://doi.org/10.1038/nnano.2013.181
36 KSaha, M Rahimi, MYazdani, S TKim, D FMoyano, SHou, R Das, RMout, FRezaee, MMahmoudi, et al. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS Nano, 2016, 10(4): 4421–4430
https://doi.org/10.1021/acsnano.6b00053
37 J HShannahan, J MBrown, RChen, P C Ke, X Lai, SMitra, F AWitzmann. Comparison of nanotube-protein corona composition in cell culture media. Small, 2013, 9(12): 2171–2181
https://doi.org/10.1002/smll.201202243
38 J HShannahan, XLai, P C Ke, R Podila, J MBrown, F AWitzmann. Silver nanoparticle protein corona composition in cell culture media. PLoS One, 2013, 8(9): e74001
https://doi.org/10.1371/journal.pone.0074001
39 K MKim, M H Choi, J K Lee, J Jeong, Y RKim, M KKim, S MPaek, J MOh. Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes. International Journal of Nanomedicine, 2014, 9(Suppl 2): 41–56
40 K HShim, J Hulme, E HMaeng, M KKim. An S S A. Analysis of zinc oxide nanoparticles binding proteins in rat blood and brain homogenate. International Journal of Nanomedicine, 2014, 9(Suppl 2): 217–224
41 TCedervall, I Lynch, MFoy, TBerggård, S CDonnelly, GCagney, SLinse, K ADawson. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angewandte Chemie International Edition in English, 2007, 46(30): 5754–5756
https://doi.org/10.1002/anie.200700465
42 SLara, F Alnasser, EPolo, DGarry, M C LGiudice, D RHristov, LRocks, ASalvati, YYan, N K A Dawso. Identification of receptor binding to the biomolecular corona of nanoparticles. ACS Nano, 2017, 11(2): 1884–1893
https://doi.org/10.1021/acsnano.6b07933
43 JKreuter, D Shamenkov, VPetrov, PRamge, KCychutek, CKoch-Brandt, RAlyautdin. Apolipoprotein-mediated transport of nanoparticle-bond drugs across the blood-brain barrier. Journal of Drug Targeting, 2002, 10(4): 317–325
https://doi.org/10.1080/10611860290031877
44 SPalchetti, V Colapicchioni, LDigiacomo, GCaracciolo, DPozzi, A LCapriotti, GLa Barbera, ALaganà. The protein corona of circulating PEGylated liposomes. Biochimica et Biophysica Acta, 2016, 1858(2): 189–196
https://doi.org/10.1016/j.bbamem.2015.11.012
45 SRitz, S Schöttler, NKotman, GBaier, AMusyanovych, JKuharev, KLandfester, HSchild, OJahn, S Tenzer, et al. Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake. Biomacromolecules, 2015, 16(4): 1311–1321
https://doi.org/10.1021/acs.biomac.5b00108
46 MLundqvist, J Stigler, GElia, ILynch, TCedervall, K ADawson. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(38): 14265–14270
https://doi.org/10.1073/pnas.0805135105
47 J LTownson, Y S Lin, J O Agola, E C Carnes, H S Leong, J D Lewis, C L Haynes, C J Brinker. Differing in vivo characteristics of size- and charge-matched mesoporous silica nanoparticles. Journal of the American Chemical Society, 2013, 135(43): 16030–16033
https://doi.org/10.1021/ja4082414
48 CRöcker, M Pötzl, FZhang, W JParak, G UNienhaus. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nature Nanotechnology, 2009, 4(9): 577–580
https://doi.org/10.1038/nnano.2009.195
49 Z JDeng, G Mortimer, TSchiller, AMusumeci, DMartin, R FMinchin. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology, 2009, 20(45): 455101
https://doi.org/10.1088/0957-4484/20/45/455101
50 ALesniak, A Campbell, M PMonopoli, ILynch, ASalvati, K ADawson. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials, 2010, 31(36): 9511–5918
https://doi.org/10.1016/j.biomaterials.2010.09.049
51 ALesniak, F Fenaroli, M PMonopoli, CÅberg, K ADawson, ASalvati. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano, 2012, 6(7): 5845–5857
https://doi.org/10.1021/nn300223w
52 ALesniak, A Salvati, M JSantos-Martinez, M WRadomski, K ADawson, CÅberg. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. Journal of the American Chemical Society, 2013, 135(4): 1438–1444
https://doi.org/10.1021/ja309812z
53 R CMurdock, L Braydich-Stolle, A MSchrand, J JSchlager, S MHussain. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2008, 101(2): 239–253
https://doi.org/10.1093/toxsci/kfm240
54 GMaiorano, S Sabella, BSorce, VBrunetti, M AMalvindi, RCingolani, P PPompa. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano, 2010, 4(12): 7481–7491
https://doi.org/10.1021/nn101557e
55 JWang, U B Jensen, G V Jensen, S Shipovskov, V SBalakrishnan, DOtzen, J SPedersen, FBesenbacher, D SSutherland. Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano Letters, 2011, 11(11): 4985–4991
https://doi.org/10.1021/nl202940k
56 YZhou, X Fang, YGong, AXiao, Y Xie, LLiu, YCao. The interactions between ZnO nanoparticles (NPs) and α-linolenic acid (LNA) complexed to BSA did not influence the toxicity of ZnO NPs on HepG2 cells. Journal of the American Chemical Society, 2017, 135(4): 1438–1444
57 M RGo, J Yu, S HBae, H JKim, S JChoi. Effects of interactions between ZnO nanoparticles and saccharides on biological responses. International Journal of Molecular Sciences, 2018, 19(2): 486
https://doi.org/10.3390/ijms19020486
[1] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[2] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
[3] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[4] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[5] Fan Shu, Meng Wang, Jinbo Pang, Ping Yu. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil[J]. Front. Chem. Sci. Eng., 2019, 13(2): 393-399.
[6] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[7] Xiu-Tian-Feng E, Lei Zhang, Fang Wang, Xiangwen Zhang, Ji-Jun Zou. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels[J]. Front. Chem. Sci. Eng., 2018, 12(3): 358-366.
[8] Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions[J]. Front. Chem. Sci. Eng., 2018, 12(1): 24-31.
[9] Pengwei Zhang, Junxiao Ye, Ergang Liu, Lu Sun, Jiacheng Zhang, Seung Jin Lee, Junbo Gong, Huining He, Victor C. Yang. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer[J]. Front. Chem. Sci. Eng., 2017, 11(4): 529-536.
[10] Mani Abirami, Krishnan Kannabiran. Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications[J]. Front. Chem. Sci. Eng., 2016, 10(4): 542-551.
[11] Jie Wang, Jianjia Liu, Xuhong Guo, Liang Yan, Stephen F. Lincoln. The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions[J]. Front. Chem. Sci. Eng., 2016, 10(3): 432-439.
[12] Peibo Hu,Yahao Dong,Xiaotian Wu,Yuping Wei. 2-Aminopyridine functionalized cellulose based Pd nanoparticles: An efficient and ecofriendly catalyst for the Suzuki cross-coupling reaction[J]. Front. Chem. Sci. Eng., 2016, 10(3): 389-395.
[13] Christian Bortolini,Mingdong Dong. Cystine oligomers successfully attached to peptide cysteine-rich fibrils[J]. Front. Chem. Sci. Eng., 2016, 10(1): 99-102.
[14] Wenchao Zhang,Lin Zhang,Yan Sun. Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine[J]. Front. Chem. Sci. Eng., 2015, 9(4): 494-500.
[15] Han-Wen Cheng,Jin Luo,Chuan-Jian Zhong. SERS nanoprobes for bio-application[J]. Front. Chem. Sci. Eng., 2015, 9(4): 428-441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed