Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (3) : 280-285
Research articles |
Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor
Youneng TANG1,Michal ZIV-EL1,Chen ZHOU1,Jung Hun SHIN1,Chang Hoon AHN1,Bruce E. RITTMANN1,Kerry MEYER2,Daniel CANDELARIA2,David FRIESE3,Ryan OVERSTREET3,Rick SCOTT4,
1.Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA; 2.CH2M Hill, Englewood, CO 80112, USA; 3.Applied Process Technology, Inc., Pleasant Hill, CA 94523, USA; 4.City of Glendale, Glendale, AZ 85303, USA;
 Download: PDF(225 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A long-term pilot-scale H2-based membrane biofilm reactor (MBfR) was tested for removal of nitrate from actual groundwater. A key feature of this second-generation pilot MBfR is that it employed lower cost polyester hollow fibers and still achieved high loading rate. The steady-state maximum nitrate surface loading at which the effluent nitrate and nitrite concentrations were below the Maximum Contaminant Level (MCL) was at least 5.9 g·N·(m2·d)−1, which corresponds to a maximum volumetric loading of at least 7.7 kg·N·(m3·d) −1. The steady-state maximum nitrate surface area loading was higher than the highest nitrate surface loading reported in the first-generation MBfRs using composite fibers (2.6 g·N·(m2·d)−1). This work also evaluated the H2-utilization efficiency in MBfR. The measured H2 supply rate was only slightly higher than the stoichiometric H2-utilization rate. Thus, H2 utilization was controlled by diffusion and was close to 100% efficiency, as long as biofilm accumulated on the polyester-fiber surface and the fibers had no leaks.
Keywords denitrification      groundwater treatment      hydrogen      membrane biofilm reactor (MBfR)      polyester fiber      
Issue Date: 05 September 2010
 Cite this article:   
Youneng TANG,Michal ZIV-EL,Chen ZHOU, et al. Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor[J]. Front.Environ.Sci.Eng., 2010, 4(3): 280-285.
Gros H, Schnoor G, Rutten P. Biological denitrificationprocess with hydrogen-oxidizing bacteria for drinking water treatment. Water Supply, 1998, 6: 193―198
Lee K C, Rittmann B E. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilmreactor for denitrification of drinking water. Water Research, 2002, 36(8): 2040―2052

doi: 10.1016/S0043-1354(01)00425-0
Rittmann B E. The membrane biofilm reactor: the natural partnershipof membranes and biofilm. Water Scienceand Technology, 2006, 53(3): 219―225

doi: 10.2166/wst.2006.096
Chung J, Rittmann B E, Wright W F, Bowman R H. Simultaneous bio-reduction of nitrate, perchlorate, selenate,chromate, arsenate, and dibromochloropropane using a hydrogen-basedmembrane biofilm reactor. Biodegradation, 2007, 18(2): 199―209

doi: 10.1007/s10532-006-9055-9
Nerenberg R, Rittmann B E, Najm I. Perchlorate reduction ina hydrogen-based membrane-biofilm reactor. Journal of American Water Works Association, 2002, 94(11): 103―114
Shin J H, Sang B I, Chung Y C, Choung Y K. A novel CSTR-type of hollow fiber membrane biofilm reactor for consecutivenitrification and denitrification. Desalination, 2008, 221(1―3): 526―533

doi: 10.1016/j.desal.2007.01.113
Nerenberg R, Rittmann B E. Hydrogen-based, hollow-fiber membrane biofilm reactor for reductionof perchlorate and other oxidized contaminants. Water Science and Technology, 2004, 49(11―12): 223―230
Rittmann B E, Nerenberg R, Lee K C, Najm I, Gillogly T E, Lehman G E, Adam S S. The hydrogen-based hollow-fiber membrane biofilm reactor(HFMBfR) for reducing oxidized contaminants. Water Science & Technology: Water Supply, 2004, 4(1): 127―133
Adham S, Gillogly T, Lehman G, Rittmann B E, Nerenberg R. MembraneBiofilm Reactor Process for Nitrate and Perchlorate Removal. AwwaRF, Denver,Colorado, USA, 2004
Lee K C, Rittmann B E. Effects of pH and precipitation on autohydrogenotrophic denitrificationusing the hollow-fiber membrane-biofilm reactor. Water Research, 2003, 37(7): 1551―1556

doi: 10.1016/S0043-1354(02)00519-5
Standard Methods for the Examinationof Water and Wastewater. 20th ed. Washington DC: American Public Health Association/American Water Works Association/WaterEnvironment Federation, 1988
Method 300.1 Determinationof inorganic anions in drinking water by ion chromatography. Washington DC: U.S. Environmental Protection Agency, 1993
Rittmann B E, McCarty P L. Environmental Biotechnology: Principles and Applications. New York: McGraw-Hill Companies, Inc, 2001
Snoeyink V L, Jenkins D. WaterChemistry. New York: Wiley, Inc, 1980
Ziv-El M, Rittmann B E. Systematic evaluation of nitrate and perchlorate bioreduction kineticsin groundwater using a hydrogen-based membrane biofilm reactor. Water Research, 2009, 43(1): 173―181

doi: 10.1016/j.watres.2008.09.035
[1] Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo. Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge[J]. Front. Environ. Sci. Eng., 2018, 12(4): 10-.
[2] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[3] Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3-.
[4] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
[5] Jianwei Liu, Kaixiong Yang, Lin Li, Jingying Zhang. A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics[J]. Front. Environ. Sci. Eng., 2017, 11(4): 6-.
[6] Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 8-.
[7] Takashi Osada, Makoto Shiraishi, Teruaki Hasegawa, Hirofumi Kawahara. Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities[J]. Front. Environ. Sci. Eng., 2017, 11(3): 10-.
[8] Linxia Yan, Senlin Tian, Jian Zhou, Xin Yuan. Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al2O3 catalyst: parameters and conditions[J]. Front. Environ. Sci. Eng., 2016, 10(6): 5-.
[9] Chong Liu, Jianzheng Li, Shuo Wang, Loring Nies. A syntrophic propionate-oxidizing microflora and its bioaugmentation on anaerobic wastewater treatment for enhancing methane production and COD removal[J]. Front. Environ. Sci. Eng., 2016, 10(4): 13-.
[10] Haifa RAJHI,Daniel PUYOL,Mirna C. MARTÍNEZ,Emiliano E. DÍAZ,José L. SANZ. Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems[J]. Front. Environ. Sci. Eng., 2016, 10(3): 513-521.
[11] Jie ZHU,Wei WANG,Xiuning HUA,Zhou XIA,Zhou DENG. Simultaneous CO2 capture and H2 generation using Fe2O3/Al2O3 and Fe2O3/CuO/Al2O3 as oxygen carriers in single packed bed reactor via chemical looping process[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1117-1129.
[12] Zhaoyi SHEN,Zhuo CHEN,Zhen HOU,Tingting LI,Xiaoxia LU. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms[J]. Front. Environ. Sci. Eng., 2015, 9(5): 912-918.
[13] Ning YAN,Lu WANG,Ling CHANG,Cuiyi ZHANG,Yang ZHOU,Yongming ZHANG,Bruce E. RITTMANN. Coupled aerobic and anoxic biodegradation for quinoline and nitrogen removals[J]. Front. Environ. Sci. Eng., 2015, 9(4): 738-744.
[14] Fen LI,Tao LEI,Yanping ZHANG,Jinzhi WEI,Ying YANG. Preparation, characterization of sludge adsorbent and investigations on its removal of hydrogen sulfide under room temperature[J]. Front. Environ. Sci. Eng., 2015, 9(2): 190-196.
[15] Yi ZHAO,Tianxiang GUO,Zili ZANG. Activity and characteristics of “Oxygen-enriched” highly reactive absorbent for simultaneous flue gas desulfurization and denitrification[J]. Front. Environ. Sci. Eng., 2015, 9(2): 222-229.
Full text