Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (3) : 313-319    https://doi.org/10.1007/s11783-011-0346-y
RESEARCH ARTICLE
Development of a cloud condensation nuclei (CCN) counter using a laser and charge-coupled device (CCD) camera
Mikyung PARK, Jinkwan OH, Kihong PARK()
School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, The Republic of Korea
 Download: PDF(294 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A continuous flow streamwise thermal gradient cloud condensation nuclei (CCN) counter with an aerosol focusing and a laser-charge-coupled device (CCD) camera detector system was developed here. The counting performance of the laser-CCD camera detector system was evaluated by comparing its measured number concentrations with those measured with a condensation particle counter (CPC) using polystyrene latex (PSL) and NaCl particles of varying sizes. The CCD camera parameters (e.g. brightness, gain, gamma, and exposure time) were optimized to detect moving particles in the sensing volume and to provide the best image to count them. The CCN counter worked well in the particle number concentration range of 0.6–8000 #·cm-3 and the minimum detectable size was found to be 0.5 μm. The supersaturation in the CCN counter with varying temperature difference was determined by using size-selected sodium chloride particles based on K?hler equation. The developed CCN counter was applied to investigate CCN activity of atmospheric ultrafine particles at 0.5% supersaturation. Data showed that CCN activity increased with increasing particle size and that the higher CCN activation for ultrafine particles occurred in the afternoon, suggesting the significant existence of hygroscopic or soluble species in photochemically-produced ultrafine particles.

Keywords aerosol      cloud condensation nuclei (CCN) counter      ultrafine particle     
Corresponding Author(s): PARK Kihong,Email:kpark@gist.ac.kr   
Issue Date: 05 September 2011
 Cite this article:   
Mikyung PARK,Jinkwan OH,Kihong PARK. Development of a cloud condensation nuclei (CCN) counter using a laser and charge-coupled device (CCD) camera[J]. Front Envir Sci Eng Chin, 2011, 5(3): 313-319.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0346-y
https://academic.hep.com.cn/fese/EN/Y2011/V5/I3/313
Fig.1  Schematic of CCN counter system
Fig.2  CCD camera parameters adjusted to provide best particle image, (a) exposure time= 100 μs; (b) gamma= 700; (c) gain= 900
Fig.3  Comparison of the CPC and CCN number concentrations of 1.07 μm PSL particles in the concentration ranges of (a) 20-25000 #·cm; (b) 20-8000 #·cm; and (c) 20-25000 #·cm diluted by a factor of about 4
Fig.4  Comparison of the CPC and CCN number concentrations of PSL particles of varying sizes (0.5-10 μm)
Fig.5  CCN/CN values of NaCl particles of different sizes at varying temperature differences
Fig.6  Comparison of the CPC and CCN number concentrations of 170 nm NaCl particles at 0.3% (Δ= 5K) supersaturation
Fig.7  CCN/CN ratio of 50, 100, 163, and 200 nm atmospheric particles sampled at urban Gwangju, Korea on 23 November, 2009
1 IPCC. Climate Change 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2007
2 Twomey S A, Piepgrass M, Wolfe T L. An assessment of the impact of pollution on global cloud albedo. Tellus. Series B, Chemical and Physical Meteorology , 1984, 36B(5): 356–366
doi: 10.1111/j.1600-0889.1984.tb00254.x
3 Schulz M, Textor C, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Dentener F, Guibert S, Isaksen I S A, Iversen T, Koch D, Kirkev?g A, Liu X, Montanaro V, Myhre G, Penner J E, Pitari G, Reddy S, Seland ?, Stier P, Takemura T. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmospheric Chemistry and Physics , 2006, 6(12): 5225–5246
doi: 10.5194/acp-6-5225-2006
4 Kohler H. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society , 1936, 32: 1152–1161
doi: 10.1039/tf9363201152
5 Pruppacher H R, Klett J D. Microphysics of Clouds and Precipitation. Dordrecht: Kluwer Academic Pub, 1997
6 Cruz C N, Pandis S N. A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmospheric Environment , 1997, 31(15): 2205–2214
doi: 10.1016/S1352-2310(97)00054-X
7 Sun J, Ariya P A. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmospheric Environment , 2006, 40(5): 795–820
doi: 10.1016/j.atmosenv.2005.05.052
8 Twomey S. Measurements of natural cloud nuclei. Journal de Recherches Atmosphériques , 1963, 1: 101–105
9 Sinnarwalla A, Alofs D. A cloud nucleus counter with Long available growth time. Journal of Applied Meteorology , 1973, 12(5): 831–835
doi: 10.1175/1520-0450(1973)012<0831:ACNCWL>2.0.CO;2
10 Lala G, Jiusto J. An automatic light scattering CCN counter. Journal of Applied Meteorology , 1977, 16(4): 413–418
doi: 10.1175/1520-0450(1977)016<0413:AALSCC>2.0.CO;2
11 Fukuta N, Saxena V. A horizontal thermal gradient cloud condensation nucleus spectrometer. Journal of Applied Meteorology , 1979, 18(10): 1352–1362
doi: 10.1175/1520-0450(1979)018<1352:AHTGCC>2.0.CO;2
12 Hudson J G. An instantaneous CCN spectrometer. Journal of Atmospheric and Oceanic Technology , 1989, 6(6): 1055–1065
doi: 10.1175/1520-0426(1989)006<1055:AICS>2.0.CO;2
13 VanReken T M, Nenes A, Flagan R C, Seinfeld J H. Concept for a new cloud condensation nucleus (CCN) spectrometer. Aerosol Science and Technology , 2004, 38(7): 639–654
doi: 10.1080/02786820490479842
14 Lance S, Medina J, Smith J, Nenes A. Mapping the operation of the DMT continuous flow CCN counter. Aerosol Science and Technology , 2006, 40(4): 242–254
doi: 10.1080/02786820500543290
15 Sinnarwalla A, Alofs D, Carstens J. Measurement of growth rate to determine condensation coefficients for water drops grown on natural cloud nuclei. Journal of the Atmospheric Sciences , 1975, 32(3): 592–599
doi: 10.1175/1520-0469(1975)032<0592:MOGRTD>2.0.CO;2
16 Chuang P Y, Nenes A, Smith J N, Flagan R C, Seinfeld J H. Design of a CCN instrument for airborne measurement. Journal of Atmospheric and Oceanic Technology , 2000, 17(8): 1005–1019
doi: 10.1175/1520-0426(2000)017<1005:DOACIF>2.0.CO;2
17 Oliveira J C P, Vali G. Calibration of a photoelectric cloud condensation nucleus counter. Atmospheric Research , 1995, 38(1–4): 237–248
doi: 10.1016/0169-8095(94)00095-U
18 Philippin S, Betterton E A. Cloud condensation nuclei concentrations in Southern Arizona: instrumentation and early observations. Atmospheric Research , 1997, 43(3): 263–275
doi: 10.1016/S0169-8095(96)00046-4
19 Giebl H, Berner A, Reischl G, Puxbaum H, Kasper-Giebl A, Hitzenberger R. CCN activation of oxalic and malonic acid test aerosols with the University of Vienna cloud condensation nuclei counter. Journal of Aerosol Science , 2002, 33(12): 1623–1634
doi: 10.1016/S0021-8502(02)00115-5
20 Rose D, Gunthe S, Mikhailov E, Frank G, Dusek U, Andreae M, Poschl U. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmospheric Chemistry and Physics , 2008, 8(5): 1153–1179
doi: 10.5194/acp-8-1153-2008
21 Corrigan C, Novakov T. Cloud condensation nucleus activity of organic compounds: a laboratory study. Atmospheric Environment , 1999, 33(17): 2661–2668
doi: 10.1016/S1352-2310(98)00310-0
22 Frank G P, Dusek U, Andreae M O. Technical note: characterization of a static thermal-gradient CCN counter. Atmospheric Chemistry and Physics , 2007, 7: 3071–3080
[1] Guanyu Jiang, Can Wang, Lu Song, Xing Wang, Yangyang Zhou, Chunnan Fei, He Liu. Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster[J]. Front. Environ. Sci. Eng., 2021, 15(3): 46-.
[2] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[3] Wenwen Xie, Yanpeng Li, Wenyan Bai, Junli Hou, Tianfeng Ma, Xuelin Zeng, Liyuan Zhang, Taicheng An. The source and transport of bioaerosols in the air: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 44-.
[4] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[5] Pil Uthaug Rasmussen, Katrine Uhrbrand, Mette Damkjær Bartels, Helle Neustrup, Dorina Gabriela Karottki, Ute Bültmann, Anne Mette Madsen. Occupational risk of exposure to methicillin-resistant Staphylococcus aureus (MRSA) and the quality of infection hygiene in nursing homes[J]. Front. Environ. Sci. Eng., 2021, 15(3): 41-.
[6] Philippa Douglas, Daniela Fecht, Deborah Jarvis. Characterising populations living close to intensive farming and composting facilities in England[J]. Front. Environ. Sci. Eng., 2021, 15(3): 40-.
[7] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[8] Dongjie Shang, Jianfei Peng, Song Guo, Zhijun Wu, Min Hu. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China[J]. Front. Environ. Sci. Eng., 2021, 15(2): 34-.
[9] Youfang Chen, Yimin Zhou, Xinyi Zhao. PM2.5 over North China based on MODIS AOD and effect of meteorological elements during 2003‒2015[J]. Front. Environ. Sci. Eng., 2020, 14(2): 23-.
[10] Litao Wang, Joshua S. Fu, Wei Wei, Zhe Wei, Chenchen Meng, Simeng Ma, Jiandong Wang. How aerosol direct effects influence the source contributions to PM2.5 concentrations over Southern Hebei, China in severe winter haze episodes[J]. Front. Environ. Sci. Eng., 2018, 12(3): 13-.
[11] Gwang Il Jang, Chung Yeon Hwang, Byung Cheol Cho. Effects of heavy rainfall on the composition of airborne bacterial communities[J]. Front. Environ. Sci. Eng., 2018, 12(2): 12-.
[12] Xiao Zhang, Biwu Chu, Junhua Li, Chaozhi Zhang. Effects of seed particles Al2O3, Al2(SO4)3 and H2SO4 on secondary organic aerosol[J]. Front. Environ. Sci. Eng., 2017, 11(4): 5-.
[13] He NIU,Ziwei MO,Min SHAO,Sihua LU,Shaodong XIE. Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation[J]. Front. Environ. Sci. Eng., 2016, 10(5): 1-.
[14] Markku Kulmala,Tuukka Petäjä,Veli-Matti Kerminen,Joni Kujansuu,Taina Ruuskanen,Aijun Ding,Wei Nie,Min Hu,Zhibin Wang,Zhijun Wu,Lin Wang,Douglas R. Worsnop. On secondary new particle formation in China[J]. Front. Environ. Sci. Eng., 2016, 10(5): 8-.
[15] Meng Gao,Gregory R. Carmichael,Yuesi Wang,Dongsheng Ji,Zirui Liu,Zifa Wang. Improving simulations of sulfate aerosols during winter haze over Northern China: the impacts of heterogeneous oxidation by NO2[J]. Front. Environ. Sci. Eng., 2016, 10(5): 16-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed