Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (3) : 295-303    https://doi.org/10.1007/s11783-012-0410-2
RESEARCH ARTICLE
Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons
Xiangyu LI1, Lu SU1, Yujue WANG1,2(), Yanqing YU1, Chengwen WANG1, Xiaoliang LI3, Zhihua WANG3
1. School of Environment, Tsinghua University, Beijing 100084, China; 2. State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing 100084, China; 3. Department of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
 Download: PDF(175 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Catalytic fast pyrolysis (CFP) of Kraft lignins with HZSM-5 zeolite for producing aromatics was investigated using analytical pyrolysis methods. Two Kraft lignins were fast pyrolyzed in the absence and presence of HZSM-5 in a Curie-point pyrolyzer. Without the catalyst, fast pyrolysis of lignin predominantly produced phenols and guaiacols that were derived from the subunits of lignin. However, the presence of HZSM-5 changed the product distribution dramatically. As the SiO2/Al2O3 ratio of HZSM-5 decreased from 200 to 25 and the catalyst-to-lignin ratio increased from 1 to 20, the lignin-derived oxygenates progressively decreased to trace and the aromatics increased substantially. The aromatic yield increased considerably as the pyrolysis temperature increased from 500°C to 650°C, but then decreased with yet further increase of pyrolysis temperature. Under optimal reaction conditions, the aromatic yields were 2.0 wt.% and 5.2 wt.% for the two lignins that had effective hydrogen indexes of 0.08 and 0.35.

Keywords lignin      catalytic fast pyrolysis      HZSM-5      zeolite      aromatic hydrocarbon     
Corresponding Author(s): WANG Yujue,Email:wangyujue@tsinghua.edu.cn   
Issue Date: 01 June 2012
 Cite this article:   
Xiangyu LI,Lu SU,Yujue WANG, et al. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons[J]. Front Envir Sci Eng, 2012, 6(3): 295-303.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0410-2
https://academic.hep.com.cn/fese/EN/Y2012/V6/I3/295
sampleCHNSO (by diff.)H/Ceff
Lignin A51.125.280.154.1039.350.08
Lignin B63.555.490.321.4929.150.35
Tab.1  Elemental analysis of the lignin samples used in this study
Fig.1  Derivative thermogravimetric (DTG) profiles of the lignin and cellulose samples in an argon gas environment (20°C·min)
Fig.2  Total ion chromatograms of (a) non-catalytic fast pyrolysis of pure , 650°C for 10 s, and (b) catalytic fast pyrolysis of a mixture of and HZSM-5-25, 650°C for 10 s and a catalyst-to-lignin ratio of 20∶1. Refer to Table 2 for the names of identified compounds
grouplabelcompound name
phenols8phenol
13phenol, 2-methyl-
14phenol, 4-methyl-
other oxygenates15phenol, 2-methoxy-
16benzene, 1,2-dimethoxy-
17phenol, 4-methoxy-3-methyl-
19phenol, 2-methoxy-4-methyl-
20phenol, 4-ethyl-2-methoxy-
232-methoxy-4-vinylphenol
24vanillin
26phenol, 2-methoxy-4-(1-propenyl)-, (e)-
27ethanone, 1-(4-hydroxy-3-methoxyphenyl)-
28benzeneacetic acid, 4-hydroxy-3-methoxy
aromatics1benzene
2toluene
3ethylbenzene
4m,p-xylenes
5o-xylene
6benzene,1-ethyl-2-methyl-
7benzene, 1,3,5-trimethyl-
9benzene, 1,2,3-trimethyl-
10benzene, 1,2,4-trimethyl-
11indene
12indane
18naphthalene
21naphthalene, 2-methyl-
22naphthalene, 1-methyl-
25naphthalene, 2,7-dimethyl-
Tab.2  Major condensable gas products identified in the total ion chromatograms of non-catalytic and catalytic pyrolysis of lignin
Fig.3  Effects of the SiO/AlO ratio of HZSM-5 zeolites on the product distribution in catalytic fast pyrolysis of lignin. Reaction conditions: pyrolysis temperature of 590°C, pyrolysis time of 10 s, catalyst-to-lignin ratio of 5∶1
Fig.4  Effects of pyrolysis temperature on the product yields in catalytic fast pyrolysis of lignin. Reaction conditions: catalyst HZSM-5-25, pyrolysis time of 10 s, catalyst-to-lignin ratio of 5∶1
Fig.5  Effects of pyrolysis time on the product yields in catalytic fast pyrolysis of lignin. Reaction conditions: catalyst HZSM-5-25, pyrolysis temperature of 650°C, catalyst-to-lignin ratio of 5∶1
Fig.6  Effects of catalyst-to-lignin ratio on the product yields in catalytic fast pyrolysis of lignin. Reaction conditions: catalyst HZSM-5-25, pyrolysis temperature of 650°C, pyrolysis time of 10 s
product yield/wt.%Lignin ALignin B
non-CFPCFPnon-CFPCFP
coke56.465.524.039.7
aromatics0.12.00.25.2
carbon dioxide16.516.113.57.7
carbon monoxide2.94.38.018.3
methane2.52.67.37.0
olefins0.21.30.53.9
othersa)21.48.246.518.2
Tab.3  Distribution of pyrolysis products (wt.% of lignin) in non-catalytic and catalytic fast pyrolysis of lignin samples
aromatic selectivity /%Lignin ALignin B
benzene15.018.4
toluene23.925.5
xylenes24.514.4
trimethylbenzenes5.72.7
other monocyclic aromaticsa)9.57.4
naphthalene8.814.5
methylated naphthalenes12.617.2
Tab.4  Aromatic selectivity for catalytic fast pyrolysis of Kraft lignin
1 Ragauskas A J, Nagy N, Kim K H, Eckert C A, Hallett J, Liotta C L. From wood to fuels: integrating biofuels and pulp production. Industrial Biotechnology , 2006, 2(1): 55–65
doi: 10.1089/ind.2006.2.55
2 Pandey M P, Kim C S. Lignin depolymerization and conversion: a review of thermochemical methods. Chemical Engineering & Technology , 2011, 34(1): 29–41
doi: 10.1002/ceat.201000270
3 Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews , 2010, 110(6): 3552–3599
doi: 10.1021/cr900354u pmid:20218547
4 Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Technology , 2001, 79(3): 277–299
doi: 10.1016/S0960-8524(00)00180-2 pmid:11499582
5 Carlson T R, Vispute T P, Huber G W. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem , 2008, 1(5): 397–400
doi: 10.1002/cssc.200800018 pmid:18702131
6 Carlson T R, Tompsett G A, Conner W C, Huber G W. Aromatic production from catalytic fast pyrolysis of biomass—derived feedstocks. Topics in Catalysis , 2009, 52(3): 241–252
doi: 10.1007/s11244-008-9160-6
7 Lin Y C, Huber G W. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy and Environmental Science , 2009, 2(1): 68–80
doi: 10.1039/b814955k
8 Torri C, Reinikainen M, Lindfors C, Fabbri D, Oasmaa A, Kuoppala E. Investigation on catalytic pyrolysis of pine sawdust: catalyst screening by Py-GC-MIP-AED. Journal of Analytical and Applied Pyrolysis , 2010, 88(1): 7–13
doi: 10.1016/j.jaap.2010.02.005
9 Pattiya A, Titiloye J O, Bridgwater A V. Fast pyrolysis of cassava rhizome in the presence of catalysts. Journal of Analytical and Applied Pyrolysis , 2008, 81(1): 72–79
doi: 10.1016/j.jaap.2007.09.002
10 Azeez A M, Meier D, Odermatt J, Willner T. Effects of zeolites on volatile products of beech wood using analytical pyrolysis. Journal of Analytical and Applied Pyrolysis , 2011, 91(2): 296–302
doi: 10.1016/j.jaap.2011.03.007
11 Jackson M A, Compton D L, Boateng A A. Screening heterogeneous catalysts for the pyrolysis of lignin. Journal of Analytical and Applied Pyrolysis , 2009, 85(1-2): 226–230
doi: 10.1016/j.jaap.2008.09.016
12 Idem R O, Katikaneni S P R, Bakhshi N N. Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Processing Technology , 1997, 51(1-2): 101–125
doi: 10.1016/S0378-3820(96)01085-5
13 Jae J, Tompsett G A, Foster A J, Hammond K D, Auerbach S M, Lobo R F, Huber G W. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis , 2011, 279(2): 257–268
doi: 10.1016/j.jcat.2011.01.019
14 Carlson T R, Jae J, Lin Y C, Tompsett G A, Huber G W. Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. Journal of Catalysis , 2010, 270(1): 110–124
doi: 10.1016/j.jcat.2009.12.013
15 Mullen C A, Boateng A A. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Processing Technology , 2010, 91(11): 1446–1458
doi: 10.1016/j.fuproc.2010.05.022
16 Ben H X, Ragauskas A J. Pyrolysis of Kraft lignin with additives. Energy & Fuels , 2011, 25(10): 4662–4668
doi: 10.1021/ef2007613
17 Nowakowski D J, Bridgwater A V, Elliott D C, Meier D, de Wild P. Lignin fast pyrolysis: results from an international collaboration. Journal of Analytical and Applied Pyrolysis , 2010, 88(1): 53–72
doi: 10.1016/j.jaap.2010.02.009
18 Adjaye J D, Bakhshi N N. Catalytic conversion of a biomass-derived oil to fuels and chemicals. 1. Model-compound studies and reaction pathways. Biomass and Bioenergy , 1995, 8(3): 131–149
doi: 10.1016/0961-9534(95)00018-3
19 Gayubo A G, Aguayo A T, Atutxa A, Aguado R, Bilbao J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. Industrial & Engineering Chemistry Research , 2004, 43(11): 2610–2618
doi: 10.1021/ie030791o
20 Gayubo A G, Aguayo A T, Atutxa A, Aguado R, Olazar M, Bilbao J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids. Industrial & Engineering Chemistry Research , 2004, 43(11): 2619–2626
doi: 10.1021/ie030792g
21 Chen N Y, Walsh D E, Koenig L R. Fluidized-bed upgrading of wood pyrolysis liquids and related-compounds. ACS Symposium Series. American Chemical Society , 1988, 376: 277–289
doi: 10.1021/bk-1988-0376.ch024
22 Aho A, Kumar N, Eranen K, Salmi T, Hupa M, Murzin D Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel , 2008, 87(12): 2493–2501
doi: 10.1016/j.fuel.2008.02.015
23 Park H J, Heo H S, Jeon J K, Kim J, Ryoo R, Jeong K E, Park Y K. Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites. Applied Catalysis B: Environmental , 2010, 95(3-4): 365–373
doi: 10.1016/j.apcatb.2010.01.015
24 Shen D K, Gu S, Luo K H, Wang S R, Fang M X. The pyrolytic degradation of wood-derived lignin from pulping process. Bioresource Technology , 2010, 101(15): 6136–6146
doi: 10.1016/j.biortech.2010.02.078 pmid:20307972
25 Zhang H Y, Cheng Y T, Vispute T P, Xiao R, Huber G W. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy and Environmental Science , 2011, 4(6): 2297–2307
doi: 10.1039/c1ee01230d
26 French R, Czernik S. Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology , 2010, 91(1): 25–32
doi: 10.1016/j.fuproc.2009.08.011
27 Zhao Y, Deng L, Liao B, Fu Y, Guo Q X. Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil. Energy & Fuels , 2010, 24(10): 5735–5740
doi: 10.1021/ef100896q
28 Thring R W, Katikaneni S P R, Bakhshi N N. The production of gasoline range hydrocarbons from Alcell (R) lignin using HZSM-5 catalyst. Fuel Processing Technology , 2000, 62(1): 17–30
doi: 10.1016/S0378-3820(99)00061-2
[1] Safaa M. Ezzat, Mohammed T. Mohammed T.. Treating wastewater under zero waste principle using wetland mesocosms[J]. Front. Environ. Sci. Eng., 2021, 15(4): 59-.
[2] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[3] Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma. Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic aromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(4): 73-.
[4] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[5] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[6] Zhenfeng Han, Ying Miao, Jing Dong, Zhiqiang Shen, Yuexi Zhou, Shan Liu, Chunping Yang. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(4): 52-.
[7] Qiuying CHEN,Jingling LIU,Feng LIU,Binbin WANG,Zhiguo CAO. Biologic risk and source diagnose of 16 PAHs from Haihe River Basin, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 46-52.
[8] Bhagwanjee JHA,Nevin KOSHY,Devendra Narain SINGH. Establishing two-stage interaction between fly ash and NaOH by X-ray and infrared analyses[J]. Front. Environ. Sci. Eng., 2015, 9(2): 216-221.
[9] XIA Tianxiang,JIANG Lin,JIA Xiaoyang,ZHONG Maosheng,LIANG Jing. Application of probabilistic risk assessment at a coking plant site contaminated by Polycyclic Aromatic Hydrocarbons[J]. Front.Environ.Sci.Eng., 2014, 8(3): 441-450.
[10] Kai LIU, Fengkui DUAN, Kebin HE, Yongliang MA, Yuan CHENG. Investigation on sampling artifacts of particle associated PAHs using ozone denuder systems[J]. Front Envir Sci Eng, 2014, 8(2): 284-292.
[11] Yanqing YU, Xiaoliang LI, Xiaolan ZOU, Xiaobin ZHU. Effect of seawater salinity on the synthesis of zeolite from coal fly ash[J]. Front Envir Sci Eng, 2014, 8(1): 54-61.
[12] Longli BO, Jianbo LIAO, Yucai ZHANG, Xiaohui WANG, Quan YANG. CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating[J]. Front Envir Sci Eng, 2013, 7(3): 395-402.
[13] Zeinab JAMALZADEH, Mohammad HAGHIGHI, Nazli ASGARI. Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO2 nanocatalysts used for total oxidation of xylene at low temperatures[J]. Front Envir Sci Eng, 2013, 7(3): 365-381.
[14] Dengqiang FU, Ying TENG, Yuanyuan SHEN, Mingming SUN, Chen TU, Yongming LUO, Zhengao LI, Peter CHRISTIE. Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial ryegrass[J]. Front Envir Sci Eng, 2012, 6(3): 330-335.
[15] Osamu SHITAMICHI, Taiki MATSUI, Yamei HUI, Weiwei CHEN, Totaro IMASAKA. Determination of persistent organic pollutants by gas chromatography/laser multiphoton ionization/time-of-flight mass spectrometry[J]. Front Envir Sci Eng, 2012, 6(1): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed