Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (3) : 10    https://doi.org/10.1007/s11783-018-1035-x
REVIEW ARTICLE
Anaerobic ammonia oxidizing bacteria: ecological distribution, metabolism, and microbial interactions
Dawen Gao(), Xiaolong Wang, Hong Liang, Qihang Wei, Yuan Dou, Longwei Li
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(251 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The unique characteristics of anammox bacteria were reviewed.

Ecological distribution and nitrogen loss contributions were well documented.

Ecological interactions between anammox bacteria and other organisms were discussed.

Anammox (ANaerobic AMMonia OXidation) is a newly discovered pathway in the nitrogen cycle. This discovery has increased our knowledge of the global nitrogen cycle and triggered intense interest for anammox-based applications. Anammox bacteria are almost ubiquitous in the suboxic zones of almost all types of natural ecosystems and contribute significant to the global total nitrogen loss. In this paper, their ecological distributions and contributions to the nitrogen loss in marine, wetland, terrestrial ecosystems, and even extreme environments were reviewed. The unique metabolic mechanism of anammox bacteria was well described, including the particular cellular structures and genome compositions, which indicate the special evolutionary status of anammox bacteria. Finally, the ecological interactions among anammox bacteria and other organisms were discussed based on substrate availability and spatial organizations. This review attempts to summarize the fundamental understanding of anammox, provide an up-to-date summary of the knowledge of the overall anammox status, and propose future prospects for anammox. Based on novel findings, the metagenome has become a powerful tool for the genomic analysis of communities containing anammox bacteria; the metabolic diversity and biogeochemistry in the global nitrogen budget require more comprehensive studies.

Keywords Anammox      Metabolism      Metagenome      Ecological distribution      Microbial interactions     
Corresponding Author(s): Dawen Gao   
Issue Date: 29 March 2018
 Cite this article:   
Dawen Gao,Xiaolong Wang,Hong Liang, et al. Anaerobic ammonia oxidizing bacteria: ecological distribution, metabolism, and microbial interactions[J]. Front. Environ. Sci. Eng., 2018, 12(3): 10.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1035-x
https://academic.hep.com.cn/fese/EN/Y2018/V12/I3/10
Fig.1  Numbers of anammox-related SCI publication from 1995 to 2017 (data from the search result on WEB OF SCIENCETM, THOMSON REUTERSTM)
Genus Species Reference
Candidatus Anammoxoglobus Candidatus Anammoxoglobus propionicus NCBI website
Candidatus Anammoxoglobus sulfate Liu et al. [5]
Candidatus Brocadia Candidatus Brocadia anammoxidans NCBI website
Candidatus Brocadia fulgida NCBI website
Candidatus Brocadia sinica NCBI website
Candidatus Brocadia brasiliensis NCBI website
Candidatus Brocadia caroliniensis NCBI website
Candidatus Jettenia Candidatus Jettenia asiatica NCBI website
Candidatus Jettenia moscovienalis NCBI website
Candidatus Jettenia caeni NCBI website
Candidatus Kuenenia Candidatus Kuenenia stuttgartiensis NCBI website
Candidatus Scalindua Candidatus Scalindua brodae NCBI website
Candidatus Scalindua wagneri NCBI website
Candidatus Scalindua rubra NCBI website
Candidatus Scalindua marina NCBI website
Candidatus Scalindua sorokinii Kuypers et al. [6]
Candidatus Scalindua arabica Woebken et al. [7]
Candidatus Scalindua sinooifield Li et al. [8]
Candidatus Scalindua zhenghei Hong et al. [9]
Candidatus Scalindua Profunda van de Vossenberg et al. [10]
Candidatus Scalindua richardsii Fuchsman et al. [11]
Candidatus Anammoximicrobium Candidatus Anammoximicrobium moscowii NCBI website
Tab.1  Candidatus Genera and species of anammox bacteria described so far
Ecosystem Location Activity and Contribution Abundance Species Depth Reference
Ocean water column Black Sea 3–4 fmol/(cell·d);>40% contribution 1900 cells/mL; 75% of all cells Scalindua sorokinii 90–100 m depth Kuyper et al. [6]
South Atlantic, Benguela 4.5 fmol/(cell·d) 2.2 × 104 cells/mL; 1% of all cells Scalindua sorokinii
Scalindua brodae
40–130 m depth Woebken et al. [7]
Kuypers et al. [17]
Pacific of Iquique, Chile 0.24–0.7 nmol/(L·h) 3000 cells/mL; 0.45% of all cells Scalindua sorokinii 50 depth Thamdrup et al. [55]
Arabian Sea OMZ 0.03–0.1 nmol/(L·h); 8%–21% 1.7–4.1 × 105copies 16S rRNA/mL Scalindua arabica 150 m depth
650 m depth
Bulow et al. [56]
Pitcher et al. [57]
Coast of Peru 0.4–2.4 fmol/(cell·d) 0.2–10 × 107cells/L;
0–3.1% of all cells
Scalindua sorokinii
Scalindua brodae
0–600 m depth Hamersley et al. [58]
Ocean sediments Arctic coasts, Greenland 0.23 fmol/(cell·d); 1%–35% 0.23 × 108 cells/mL; 25% of all cells ND 36–100 m depth Rysgaard et al. [59]
Schmid et al. [19]
South China Sea ND 1.2–7.2 × 104 hzo copies/g(dry) Scalindua 1657 m depth Hong et al. [9]
Equatorial Western Pacific ND 4.0 × 103–1.2 × 104 hzo copies/g(dry) Scalindua Surface sediment cores Hong et al. [54]
Golfo Dulce, Costa Rica 0.08–0.23 fmol/(cell·d) 0.021–1.1 × 108 cells/mL Scalindua 55 m water depth Schmid et al. [19]
Arctic fjord, Barents Sea Spitsbergen 0.24 fmol/(cell·d); 5%–23% 0.78 × 108 cells/mL; 8.6% of all cells Scalindua 50–211 m depth Gihring et al. [60]
Schmid et al. [19]
North Sea, Terschelling 0–3000 nmol/(L·h); 0%–29% contribution 3 × 103–1.5 × 10716S rRNA copies /g Scalindua 9–49 m depth Bale et al. [61]
Gullmar Fjord, Sweden 0.6–4.8 fmol/(cell·d); 23%–47% 1.6–4.7 × 108 cells/g Scalindua 117 m depth Brandsma et al. [62]
Wetland ecosystem Pearl River Estuary 1–2.6 μmol/(L·h); 3.8%–7.0% 1.4–20 × 108 hzo copies/g(dry) Brocadia, Kuenenia 0–5 cm Wang et al. [27]
Cape Fear River
Estuary, USA
3.8%–16.5% <1.3–84 × 105 16S rRNA copies/g Except Anammoxoglobus 1 m water depth
Top 3 cm
Dale et al. [35]
Yangtze Estuary 0.94–6.61?nmol/(g·h); 7%–13% 2.63–15.6 × 106 16S rRNA copies/g Brocadia, Kuenenia Scalindua Surface soil Hou et al. [29]
Paddy soil, Jiaxing, China 0.5–2.9?nmol/(g·h); 4%–37% 4.4 × 106 cells/g Jettenia, Kuenenia, Anammoxoglobus 100 cm depth Zhu et al. [39]
Southern China, Paddy Soil 0.27–5.25 nmol/(g·h); 0.6%–15% 1.2–9.7 × 104 hzs copies/g dry soil Brocadia,
Kuenenia
0–20 cm Yang et al. [63]
Hunan, China, Paddy 0.33–0.64 nmol/(g·h); 31%–41% 0.7–1.4 × 107 hzs copies/g dry soil Brocadia
Kuenenia
0–20 cm Li et al. [64]
Jiangsu, China
Paddy ditches
4.4–23.8 nmol/(g·d); 2.1%–18.8% 1.9–12 × 104 hzs copies/g dry sediment Kuenenia, Brocadia, Anammoxoglobus 0–10 cm Shen et al. [65]
Hongkong Dongjiang River ND 0.3–11 × 106 16S rRNA copies/g(dry) Brocadia, Jettenia Surface: 0–5 cm Boog et al. [66]
Canada, Ground water, 13–31 nmol/(L·h); 18%–36% 5.2%–20.8% of 16S rRNA Except Anammoxoglobus 1.9–7.5 m Moore et al. [42]
Soil North Carolina 0.78 nmol/(g·d); 11% 5–16 × 105 hzo copies/g dry soil Jettenia 30 cm depth Long et al. [48]
Tab.2  Distributions, contributions, and activities of anammox bacteria in different natural environments (ND: no data)
Origin Predicted genes rRNA Nitrite reductase
(NIR)
Nitrate reductase:
(NAR/NXR)
Hydrazine synthesis
(HZS)
Hydrazine/ Hydroxylamine oxidoreductase
(HZO/HAO)
Ammonia transport Nitrite
transport
Nitrate
transport
Reference
Scalindua profunda from JGI
(2017108002, 2022004002)
4756 genes:
3347 genes matched in database;
98 genes with particular metabolism
3 Cyt cd1nirS:
similar to HAO protein
nxrA/narG:
scal00861–00868
(highly expressed)
hzsA: scal01318;
hzsBC gene: scal00025
9 genes: except kuste2457;
HZO function: scal03295;
Possible HZO function: scal01317,02116
12 amtB genes:
scal00587–00596
2 partial genes:
scal0168,03708
4 genes: scal0947, 00975,00416;
focA from FNT family similar to E.colinirC
1 narK type I gene: scal03007 van de Vossenberg et al. [10]
Kuenenia stuttgartiensis from EMBL
(CT030148,573071–573074)
4664 genes:
3279 (70.3%) genes matched in database;
200 genes relevant to particular metabolism
1 Cyt cd1nirS:
kuste4136–4140
nar gene:
kustd1699–1713;
nxrG: kustd1700;
nxrH: kustd1703;
nxrI is absent heme
b-containing:
kustd1704 or kustd1709
hzsCBA:
kuste2859–2861
10 genes:
kustc0458,0694,1061,
kuste2435,2457,2479,4574, kusta0043; kustd1340,2021;
HAO function: kustc1061
HZO function: kusta0043, kustc1061,0694
5 amtB genes 1 gene: kusta3055, similar to E.coli nirC;
5 focA genes: kusta0004,0009,1720,1721,4324
3 genes: kuste2335,2308 and kustd2047;
first two are similar to scal03007
Strous et al. [78]
Brocadia fulgida 2726 contigs:
536 ORFs
ND Missing:
only 2 possible genes
4 narG genes;
1 narH gene: similar to kustd1703
hzsCBA is highly mapped 9 genes: except kuste2457; HZO function: kustc0694, kustd1340 3 amtB genes 1 focA gene 1 nark gene Gori et al. [80]
Jettenia asiatica 37432 contigs ND Cu-containing nirK:
contig1180 and 21694
nxrG and nxrH matched 2 contigs:
covered hzsCBA subunit genes
8 genes: except kuste2479, kustd2021;
HAO function: kustc1061;
HZO function: kustd1340, kustc0694
7 contigs:
similar to 5 genes of Kuenenia
3 genes:
similar to focA genes of Kuenenia
2 contigs:
similar to 2 narK genes of Kuenenia
Hu et al. [81]
Tab.3  Genome information of four anammox bacteria species (ND: no data)
1 Dalsgaard T, Thamdrup B, Canfield D E. Anaerobic ammonium oxidation (anammox) in the marine environment. Research in Microbiology, 2005, 156(4): 457–464
https://doi.org/10.1016/j.resmic.2005.01.011 pmid: 15862442
2 Broda E. Two kinds of lithotrophs missing in nature. Zeitschrift fur allgemeine Mikrobiologie, 1977, 17(6): 491–493
https://doi.org/10.1002/jobm.3630170611 pmid: 930125
3 Mulder A, Graaf A, Robertson L, Kuenen J. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 1995, 16(3): 177–184
https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
4 van de Graaf A A, Mulder A, de Bruijn P, Jetten M S, Robertson L A, Kuenen J G. Anaerobic oxidation of ammonium is a biologically mediated process. Applied and Environmental Microbiology, 1995, 61(4): 1246–1251
pmid: 7747947
5 Liu S, Yang F, Gong Z, Meng F, Chen H, Xue Y, Furukawa K. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresource Technology, 2008, 99(15): 6817–6825
https://doi.org/10.1016/j.biortech.2008.01.054 pmid: 18343660
6 Kuypers M M, Sliekers A O, Lavik G, Schmid M, Jørgensen B B, Kuenen J G, Sinninghe Damsté J S, Strous M, Jetten M S. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 2003, 422(6932): 608–611
https://doi.org/10.1038/nature01472 pmid: 12686999
7 Woebken D, Lam P, Kuypers M M, Naqvi S W, Kartal B, Strous M, Jetten M S, Fuchs B M, Amann R. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environmental Microbiology, 2008, 10(11): 3106–3119
https://doi.org/10.1111/j.1462-2920.2008.01640.x pmid: 18510553
8 Li H, Chen S, Mu B Z, Gu J D. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs. Microbial Ecology, 2010, 60(4): 771–783
https://doi.org/10.1007/s00248-010-9733-3 pmid: 20740282
9 Hong Y G, Li M, Cao H, Gu J D. Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea: Analyses of marker gene abundance with physical chemical parameters. Microbial Ecology, 2011, 62(1): 36–47
https://doi.org/10.1007/s00248-011-9849-0 pmid: 21491114
10 van de Vossenberg J, Woebken D, Maalcke W J, Wessels H J, Dutilh B E, Kartal B, Janssen-Megens E M, Roeselers G, Yan J, Speth D, Gloerich J, Geerts W, van der Biezen E, Pluk W, Francoijs K J, Russ L, Lam P, Malfatti S A, Tringe S G, Haaijer S C, Op den Camp H J, Stunnenberg H G, Amann R, Kuypers M M, Jetten M S. The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environmental Microbiology, 2013, 15(5): 1275–1289
https://doi.org/10.1111/j.1462-2920.2012.02774.x pmid: 22568606
11 Fuchsman C A, Staley J T, Oakley B B, Kirkpatrick J B, Murray J W. Free-living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiology Ecology, 2012, 80(2): 402–416
https://doi.org/10.1111/j.1574-6941.2012.01306.x pmid: 22251018
12 Dalsgaard T, Canfield D E, Petersen J, Thamdrup B, Acuña-González J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature, 2003, 422(6932): 606–608
https://doi.org/10.1038/nature01526 pmid: 12686998
13 Lam P, Lavik G, Jensen M M, van de Vossenberg J, Schmid M, Woebken D, Gutiérrez D, Amann R, Jetten M S M, Kuypers M M M. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4752–4757
https://doi.org/10.1073/pnas.0812444106 pmid: 19255441
14 Rush D, Wakeham S G, Hopmans E C, Schouten S, Sinninghe Damsté J S. Biomarker evidence for anammox in the oxygen minimum zone of the Eastern Tropical North Pacific. Organic Geochemistry, 2012, 53: 80–87
https://doi.org/10.1016/j.orggeochem.2012.02.005
15 Nicholls J C, Davies C A, Trimmer M. High-resolution profiles and nitrogen isotope tracing reveal a dominant source of nitrous oxide and multiple pathways of nitrogen gas formation in the central Arabian Sea. Limnology and Oceanography, 2007, 52(1): 156–168
https://doi.org/10.4319/lo.2007.52.1.0156
16 Jensen M M, Lam P, Revsbech N P, Nagel B, Gaye B, Jetten M S, Kuypers M M. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. The ISME Journal, 2011, 5(10): 1660–1670
https://doi.org/10.1038/ismej.2011.44 pmid: 21509044
17 Kuypers M M, Lavik G, Woebken D, Schmid M, Fuchs B M, Amann R, Jørgensen B B, Jetten M S. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(18): 6478–6483
https://doi.org/10.1073/pnas.0502088102 pmid: 15843458
18 Schneider B, Nausch G, Pohl C. Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water. Marine Chemistry, 2010, 119(1–4): 153–161
https://doi.org/10.1016/j.marchem.2010.02.004
19 Schmid M C, Risgaard-Petersen N, van de Vossenberg J, Kuypers M M, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr M K, Strous M, den Camp H J, Jetten M S. Anaerobic ammonium-oxidizing bacteria in marine environments: Widespread occurrence but low diversity. Environmental Microbiology, 2007, 9(6): 1476–1484
https://doi.org/10.1111/j.1462-2920.2007.01266.x pmid: 17504485
20 Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology, 2002, 68(3): 1312–1318
https://doi.org/10.1128/AEM.68.3.1312-1318.2002 pmid: 11872482
21 Shu Q, Jiao N. Profiling Planctomycetales diversity with reference to anammox-related bacteria in a South China Sea, deep-sea sediment. Marine Ecology (Berlin), 2008, 29(4): 413–420
https://doi.org/10.1111/j.1439-0485.2008.00251.x
22 Trimmer M, Nicholls J C. Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic. Limnology and Oceanography, 2009, 54(2): 577–589
https://doi.org/10.4319/lo.2009.54.2.0577
23 Shehzad A, Liu J, Yu M, Qismat S, Liu J, Zhang X H. Diversity, community composition and abundance of anammox bacteria in sediments of the North Marginal Seas of China. Microbes and Environments, 2016, 31(2): 111–120
https://doi.org/10.1264/jsme2.ME15140 pmid: 27180640
24 Kartal B, Kuypers M M, Lavik G, Schalk J, Op den Camp H J, Jetten M S, Strous M. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology, 2007, 9(3): 635–642
https://doi.org/10.1111/j.1462-2920.2006.01183.x pmid: 17298364
25 Schubert C J, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers M M. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environmental Microbiology, 2006, 8(10): 1857–1863
https://doi.org/10.1111/j.1462-2920.2006.01074.x pmid: 16958766
26 Penton C R, Devol A H, Tiedje J M. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Applied and Environmental Microbiology, 2006, 72(10): 6829–6832
https://doi.org/10.1128/AEM.01254-06 pmid: 17021238
27 Wang S, Zhu G, Peng Y, Jetten M S, Yin C. Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River estuary. Environmental Science & Technology, 2012, 46(16): 8834–8842
https://doi.org/10.1021/es3017446 pmid: 22816681
28 Han P, Gu J D. Further analysis of anammox bacterial community structures along an anthropogenic nitrogen-input gradient from the riparian sediments of the Pearl River Delta to the deep-ocean sediments of the South China Sea. Geomicrobiology Journal, 2015, 32(9): 789–798
https://doi.org/10.1080/01490451.2014.1001502
29 Hou L J, Zheng Y L, Liu M, Gong J, Zhang X L, Yin G Y, You L. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research. Biogeosciences, 2013, 118(3): 1237–1246
https://doi.org/10.1002/jgrg.20108
30 Nicholls J C, Trimmer M. Widespread occurrence of the anammox reaction in estuarine sediments. Aquatic Microbial Ecology, 2009, 55(2): 105–113
https://doi.org/10.3354/ame01285
31 Fernandes S O, Michotey V D, Guasco S, Bonin P C, Bharathi P A. Denitrification prevails over anammox in tropical mangrove sediments (Goa, India). Marine Environmental Research, 2012, 74: 9–19
https://doi.org/10.1016/j.marenvres.2011.11.008 pmid: 22197479
32 Koop-Jakobsen K, Giblin A E. Anammox in tidal marsh sediments: The role of salinity, nitrogen loading, and marsh vegetation. Estuaries and Coasts, 2009, 32(2): 238–245
https://doi.org/10.1007/s12237-008-9131-y
33 Sato Y, Ohta H, Yamagishi T, Guo Y, Nishizawa T, Rahman M H, Kuroda H, Kato T, Saito M, Yoshinaga I, Inubushi K, Suwa Y. Detection of anammox activity and 16S rRNA genes in ravine paddy field soil. Microbes and Environments, 2012, 27(3): 316–319
https://doi.org/10.1264/jsme2.ME11330 pmid: 22353769
34 .Hamersley M R, Woebken D, Boehrer B, Schultze M, Lavik G, Kuypers M M. Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany). Systematic and Applied Microbiology, 2009, 32(8): 571–582
https://doi.org/10.1016/j.syapm.2009.07.009 pmid: 19716251
35 Dale O R, Tobias C R, Song B. Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environmental Microbiology, 2009, 11(5): 1194–1207
https://doi.org/10.1111/j.1462-2920.2008.01850.x pmid: 19161435
36 Fu B, Liu J, Yang H, Hsu T C, He B, Dai M, Kao S J, Zhao M, Zhang X H. Shift of anammox bacterial community structure along the Pearl Estuary and the impact of environmental factors. Journal of Geophysical Research. Oceans, 2015, 120(4): 2869–2883
https://doi.org/10.1002/2014JC010554
37 Wang J, Gu J D. Dominance of Candidatus Scalindua species in anammox community revealed in soils with different duration of rice paddy cultivation in Northeast China. Applied Microbiology and Biotechnology, 2013, 97(4): 1785–1798
https://doi.org/10.1007/s00253-012-4036-x pmid: 22526793
38 Rich J J, Dale O R, Song B, Ward B B. Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments. Microbial Ecology, 2008, 55(2): 311–320
https://doi.org/10.1007/s00248-007-9277-3 pmid: 17619213
39 Zhu G, Wang S, Wang Y, Wang C, Risgaard-Petersen N, Jetten M S, Yin C. Anaerobic ammonia oxidation in a fertilized paddy soil. The ISME Journal, 2011, 5(12): 1905–1912
https://doi.org/10.1038/ismej.2011.63 pmid: 21593796
40 Li M, Cao H, Hong Y G, Gu J D. Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. Microbes and Environments, 2011, 26(1): 15–22
https://doi.org/10.1264/jsme2.ME10131 pmid: 21487198
41 Sun W, Xu M Y, Wu W M, Guo J, Xia C Y, Sun G P, Wang A J. Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. Journal of Applied Microbiology, 2014, 116(2): 464–476
https://doi.org/10.1111/jam.12367 pmid: 24125160
42 Moore T A. Detection of Anammox Bacteria in Ammonium-Contaminated Groundwater. Waterloo, Canada: University of Waterloo, 2011
43 Zhao Y, Xia Y, Kana T M, Wu Y, Li X, Yan X. Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China. Chemosphere, 2013, 93(9): 2124–2131
https://doi.org/10.1016/j.chemosphere.2013.07.063 pmid: 23978673
44 Lee K H, Wang Y F, Zhang G X, Gu J D. Distribution patterns of ammonia-oxidizing bacteria and anammox bacteria in the freshwater marsh of Honghe wetland in Northeast China. Ecotoxicology (London, England), 2014, 23(10): 1930–1942
https://doi.org/10.1007/s10646-014-1333-4 pmid: 25139035
45 Naeher S, Huguet A, Roose-Amsaleg C L, Laverman A M, Fosse C, Lehmann M F, Derenne S, Zopfi J. Molecular and geochemical constraints on anaerobic ammonium oxidation (anammox) in a riparian zone of the Seine Estuary (France). Biogeochemistry, 2015, 123(1–2): 237–250
https://doi.org/10.1007/s10533-014-0066-z
46 Bernard R J, Mortazavi B, Kleinhuizen A A. Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO3− reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon. Biogeochemistry, 2015, 125(1): 47–64
https://doi.org/10.1007/s10533-015-0111-6
47 Deng F, Hou L, Liu M, Zheng Y, Yin G, Li X, Lin X, Chen F, Gao J, Jiang X. Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary. Journal of Geophysical Research. Biogeosciences, 2015, 120(8): 1521–1531
https://doi.org/10.1002/2015JG003007
48 Long A, Heitman J, Tobias C, Philips R, Song B. Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Applied and Environmental Microbiology, 2013, 79(1): 168–176
https://doi.org/10.1128/AEM.02520-12 pmid: 23087029
49 Humbert S, Tarnawski S, Fromin N, Mallet M P, Aragno M, Zopfi J. Molecular detection of anammox bacteria in terrestrial ecosystems: Distribution and diversity. The ISME Journal, 2010, 4(3): 450–454
https://doi.org/10.1038/ismej.2009.125 pmid: 20010634
50 Hu B L, Rush D, van der Biezen E, Zheng P, van Mullekom M, Schouten S, Sinninghe Damsté J S, Smolders A J, Jetten M S, Kartal B. New anaerobic, ammonium-oxidizing community enriched from peat soil. Applied and Environmental Microbiology, 2011, 77(3): 966–971
https://doi.org/10.1128/AEM.02402-10 pmid: 21148690
51 Rysgaard S, Glud R N, Sejr M K, Blicher M E, Stahl H J. Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biology, 2008, 31(5): 527–537
https://doi.org/10.1007/s00300-007-0384-x
52 Byrne N, Strous M, Crépeau V, Kartal B, Birrien J L, Schmid M, Lesongeur F, Schouten S, Jaeschke A, Jetten M, Prieur D, Godfroy A. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. The ISME Journal, 2009, 3(1): 117–123
https://doi.org/10.1038/ismej.2008.72 pmid: 18670398
53 Jaeschke A, Op den Camp H J, Harhangi H, Klimiuk A, Hopmans E C, Jetten M S, Schouten S, Sinninghe Damsté J S. 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiology Ecology, 2009, 67(3): 343–350
https://doi.org/10.1111/j.1574-6941.2008.00640.x pmid: 19220858
54 Hong Y G, Yin B, Zheng T L. Diversity and abundance of anammox bacterial community in the deep-ocean surface sediment from equatorial Pacific. Applied Microbiology and Biotechnology, 2011, 89(4): 1233–1241
https://doi.org/10.1007/s00253-010-2925-4 pmid: 20949269
55 Thamdrup B, Dalsgaard T, Jensen M M, Ulloa O, Farias L, Escribano R. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnology and Oceanography, 2006, 51(5): 2145–2156
https://doi.org/10.4319/lo.2006.51.5.2145
56 Bulow S E, Rich J J, Naik H S, Pratihary A K, Ward B B. Denitrification exceeds anammox as a nitrogen loss pathway in the Arabian Sea oxygen minimum zone. Deep-sea Research. Part I, Oceanographic Research Papers, 2010, 57(3): 384–393
https://doi.org/10.1016/j.dsr.2009.10.014
57 Pitcher A, Villanueva L, Hopmans E C, Schouten S, Reichart G J, Sinninghe Damsté J S. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. The ISME Journal, 2011, 5(12): 1896–1904
https://doi.org/10.1038/ismej.2011.60 pmid: 21593795
58 Hamersley M R, Lavik G, Woebken D, Rattray J E, Lam P, Hopmans E C, Damste J S S, Kruger S, Graco M, Gutierrez D, Kuypers M M M. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnology and Oceanography, 2007, 52(3): 923–933
https://doi.org/10.4319/lo.2007.52.3.0923
59 Rysgaard S, Glud R N, Risgaard Petersen N, Dalsgaard T. Denitrification and anammox activity in Arctic marine sediments. Limnology and Oceanography, 2004, 49(5): 1493–1502
https://doi.org/10.4319/lo.2004.49.5.1493
60 Gihring T M, Lavik G, Kuypers M M M, Kostka J E. Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard, Norway). Limnology and Oceanography, 2010, 55(2): 740–752
https://doi.org/10.4319/lo.2009.55.2.0740
61 Bale N J, Villanueva L, Fan H, Stal L J, Hopmans E C, Schouten S, Sinninghe Damsté J S. Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea. FEMS Microbiology Ecology, 2014, 89(1): 99–110
https://doi.org/10.1111/1574-6941.12338 pmid: 24716573
62 Brandsma J, van de Vossenberg J, Risgaard-Petersen N, Schmid M C, Engström P, Eurenius K, Hulth S, Jaeschke A, Abbas B, Hopmans E C, Strous M, Schouten S, Jetten M S, Damsté J S. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden. Environmental Microbiology Reports, 2011, 3(3): 360–366
https://doi.org/10.1111/j.1758-2229.2010.00233.x pmid: 23761282
63 Yang X R, Li H, Nie S A, Su J Q, Weng B S, Zhu G B, Yao H Y, Gilbert J A, Zhu Y G. Potential contribution of anammox to nitrogen loss from paddy soils in Southern China. Applied and Environmental Microbiology, 2015, 81(3): 938–947
https://doi.org/10.1128/AEM.02664-14 pmid: 25416768
64 Nie S, Li H, Yang X, Zhang Z, Weng B, Huang F, Zhu G B, Zhu Y G. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. The ISME Journal, 2015, 9(9): 2059–2067
https://doi.org/10.1038/ismej.2015.25 pmid: 25689022
65 Shen L d, Zheng P h, Ma S j. Nitrogen loss through anaerobic ammonium oxidation in agricultural drainage ditches. Biology and Fertility of Soils, 2015, 52(2): 1–10
66 Boog J, Nivala J, Aubron T, Wallace S, van Afferden M, Müller R A. Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland. Bioresource Technology, 2014, 162(0): 166–174
https://doi.org/10.1016/j.biortech.2014.03.100 pmid: 24747396
67 van Niftrik L, Geerts W J C, van Donselaar E G, Humbel B M, Webb R I, Fuerst J A, Verkleij A J, Jetten M S M, Strous M. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins. Journal of Bacteriology, 2008, 190(2): 708–717
https://doi.org/10.1128/JB.01449-07 pmid: 17993524
68 Rattray J E, van de Vossenberg J, Hopmans E C, Kartal B, van Niftrik L, Rijpstra W I C, Strous M, Jetten M S, Schouten S, Sinninghe Damsté J S. Ladderane lipid distribution in four genera of anammox bacteria. Archives of Microbiology, 2008, 190(1): 51–66
https://doi.org/10.1007/s00203-008-0364-8 pmid: 18385981
69 Sinninghe Damsté J S, Strous M, Rijpstra W I C, Hopmans E C, Geenevasen J A J, van Duin A C T, van Niftrik L A, Jetten M S M. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature, 2002, 419(6908): 708–712
https://doi.org/10.1038/nature01128 pmid: 12384695
70 van Niftrik L, van Helden M, Kirchen S, van Donselaar E G, Harhangi H R, Webb R I, Fuerst J A, Op den Camp H J, Jetten M S, Strous M. Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium “Candidatus Kuenenia stuttgartiensis”. Molecular Microbiology, 2010, 77(3): 701–715
https://doi.org/10.1111/j.1365-2958.2010.07242.x pmid: 20545867
71 van Teeseling M C F, Mesman R J, Kuru E, Espaillat A, Cava F, Brun Y V, VanNieuwenhze M S, Kartal B, van Niftrik L. Anammox Planctomycetes have a peptidoglycan cell wall. Nature Communications, 2015, 6(1): 1–6
https://doi.org/10.1038/ncomms7878 pmid: 25962786
72 Schalk J, Oustad H, Kuenen J G, Jetten M S. The anaerobic oxidation of hydrazine: A novel reaction in microbial nitrogen metabolism. FEMS Microbiology Letters, 1998, 158(1): 61–67
https://doi.org/10.1111/j.1574-6968.1998.tb12801.x pmid: 9453157
73 Jetten M S, Wagner M, Fuerst J, van Loosdrecht M, Kuenen G, Strous M. Microbiology and application of the anaerobic ammonium oxidation (“anammox”) process. Current Opinion in Biotechnology, 2001, 12(3): 283–288
https://doi.org/10.1016/S0958-1669(00)00211-1 pmid: 11404106
74 Oshiki M, Ali M, Shinyako-Hata K, Satoh H, Okabe S. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by “Candidatus Brocadia sinica”. Environmental Microbiology, 2016, 18(9): 3133–3143
https://doi.org/10.1111/1462-2920.13355 pmid: 27112128
75 Dietl A, Ferousi C, Maalcke W J, Menzel A, de Vries S, Keltjens J T, Jetten M S, Kartal B, Barends T R. The inner workings of the hydrazine synthase multiprotein complex. Nature, 2015, 527(7578): 394–397
https://doi.org/10.1038/nature15517 pmid: 26479033
76 Jetten M S, Niftrik L, Strous M, Kartal B, Keltjens J T, Op den Camp H J. Biochemistry and molecular biology of anammox bacteria. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44(2–3): 65–84
https://doi.org/10.1080/10409230902722783 pmid: 19247843
77 van der Star W R, Dijkema C, de Waard P, Picioreanu C, Strous M, van Loosdrecht M C. An intracellular pH gradient in the anammox bacterium Kuenenia stuttgartiensis as evaluated by 31P NMR. Applied Microbiology and Biotechnology, 2010, 86(1): 311–317
https://doi.org/10.1007/s00253-009-2309-9 pmid: 19862513
78 Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor M W, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh B E, Op den Camp H J, van der Drift C, Cirpus I, van de Pas-Schoonen K T, Harhangi H R, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen M A, Mewes H W, Weissenbach J, Jetten M S, Wagner M, Le Paslier D. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 2006, 440(7085): 790–794
https://doi.org/10.1038/nature04647 pmid: 16598256
79 Kartal B, Maalcke W J, de Almeida N M, Cirpus I, Gloerich J, Geerts W, Op den Camp H J, Harhangi H R, Janssen-Megens E M, Francoijs K J, Stunnenberg H G, Keltjens J T, Jetten M S, Strous M. Molecular mechanism of anaerobic ammonium oxidation. Nature, 2011, 479(7371): 127–130
https://doi.org/10.1038/nature10453 pmid: 21964329
80 Gori F, Tringe S G, Kartal B, Marchiori E, Jetten M S M. The metagenomic basis of anammox metabolism in Candidatus “Brocadia fulgida”. Biochemical Society Transactions, 2011, 39(6): 1799–1804
https://doi.org/10.1042/BST20110707 pmid: 22103529
81 Hu Z, Speth D R, Francoijs K J, Quan Z X, Jetten M S. Metagenome analysis of a complex community reveals the metabolic blueprint of anammox bacterium “Candidatus Jettenia asiatica”. Frontiers in Microbiology, 2012, 3: 366
https://doi.org/10.3389/fmicb.2012.00366 pmid: 23112795
82 Fuchsman C A, Rocap G. Whole-genome reciprocal BLAST analysis reveals that planctomycetes do not share an unusually large number of genes with Eukarya and Archaea. Applied and Environmental Microbiology, 2006, 72(10): 6841–6844
https://doi.org/10.1128/AEM.00429-06 pmid: 17021241
83 De Clippeleir H, Defoirdt T, Vanhaecke L, Vlaeminck S E, Carballa M, Verstraete W, Boon N. Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Applied Microbiology and Biotechnology, 2011, 90(4): 1511–1519
https://doi.org/10.1007/s00253-011-3177-7 pmid: 21360147
84 Kartal B, Koleva M, Arsov R, van der Star W, Jetten M S, Strous M. Adaptation of a freshwater anammox population to high salinity wastewater. Journal of Biotechnology, 2006, 126(4): 546–553
https://doi.org/10.1016/j.jbiotec.2006.05.012 pmid: 16806555
85 Kartal B, Rattray J, van Niftrik L A, van de Vossenberg J, Schmid M C, Webb R I, Schouten S, Fuerst J A, Damsté J S, Jetten M S, Strous M. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 2007, 30(1): 39–49
https://doi.org/10.1016/j.syapm.2006.03.004 pmid: 16644170
86 Strous M, Kuenen J G, Jetten M S. Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 1999, 65(7): 3248–3250
pmid: 10388731
87 Sonthiphand P, Hall M W, Neufeld J D. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Frontiers in Microbiology, 2014, 5: 1–14
https://doi.org/10.3389/fmicb.2014.00399 pmid: 25147546
88 Lam P, Jensen M M, Lavik G, McGinnis D F, Müller B, Schubert C J, Amann R, Thamdrup B, Kuypers M M. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(17): 7104–7109
https://doi.org/10.1073/pnas.0611081104 pmid: 17420469
89 Woebken D, Fuchs B M, Kuypers M M, Amann R. Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Applied and Environmental Microbiology, 2007, 73(14): 4648–4657
https://doi.org/10.1128/AEM.02774-06 pmid: 17526789
90 Sliekers A O, Haaijer S, Schmid M, Harhangi H, Verwegen K, Kuenen J G, Jetten M S. Nitrification and anammox with urea as the energy source. Systematic and Applied Microbiology, 2004, 27(3): 271–278
https://doi.org/10.1078/0723-2020-00259 pmid: 15214631
91 Vázquez-Padín J, Mosquera-Corral A, Campos J L, Méndez R, Revsbech N P. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor. Water Research, 2010, 44(15): 4359–4370
https://doi.org/10.1016/j.watres.2010.05.041 pmid: 20646732
92 van Kessel M A, Speth D R, Albertsen M, Nielsen P H, Op den Camp H J, Kartal B, Jetten M S, Lücker S. Complete nitrification by a single microorganism. Nature, 2015, 528(7583): 555–559
https://doi.org/10.1038/nature16459 pmid: 26610025
93 Dalsgaard T, Thamdrup B, Farias L, Revsbech N P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnology and Oceanography, 2012, 57(5): 1331–1346
https://doi.org/10.4319/lo.2012.57.5.1331
94 Du R, Cao S, Li B, Niu M, Wang S, Peng Y. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters. Water Research, 2017, 108: 46–56
https://doi.org/10.1016/j.watres.2016.10.051 pmid: 27817892
95 Zhang X, Zhang H, Ye C, Wei M, Du J. Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors. Bioresource Technology, 2015, 189: 302–308
https://doi.org/10.1016/j.biortech.2015.04.006 pmid: 25898093
96 Okabe S, Oshiki M, Takahashi Y, Satoh H. N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules. Water Research, 2011, 45(19): 6461–6470
https://doi.org/10.1016/j.watres.2011.09.040 pmid: 21996609
97 Ding J, Fu L, Ding Z W, Lu Y Z, Cheng S H, Zeng R J. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field. Applied Microbiology and Biotechnology, 2015, 100(1): 1–8
pmid: 26394860
98 Kindaichi T, Yuri S, Ozaki N, Ohashi A. Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. Water Science and Technology, 2012, 66(12): 2556–2561
https://doi.org/10.2166/wst.2012.479 pmid: 23109570
99 Prokopenko M G, Hirst M B, De Brabandere L, Lawrence D J, Berelson W M, Granger J, Chang B X, Dawson S, Crane E J 3rd, Chong L, Thamdrup B, Townsend-Small A, Sigman D M. Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia. Nature, 2013, 500(7461): 194–198
https://doi.org/10.1038/nature12365 pmid: 23925243
[1] Fei Xie, Bowei Zhao, Ying Cui, Xiao Ma, Xiao Zhang, Xiuping Yue. Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled with iron-carbon micro-electrolysis[J]. Front. Environ. Sci. Eng., 2021, 15(6): 121-.
[2] Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng. Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate shock[J]. Front. Environ. Sci. Eng., 2021, 15(2): 32-.
[3] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[4] Jinjin Fu, Quan Zhang, Baocheng Huang, Niansi Fan, Rencun Jin. A review on anammox process for the treatment of antibiotic-containing wastewater: Linking effects with corresponding mechanisms[J]. Front. Environ. Sci. Eng., 2021, 15(1): 17-.
[5] Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response[J]. Front. Environ. Sci. Eng., 2021, 15(1): 7-.
[6] Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang. Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia[J]. Front. Environ. Sci. Eng., 2020, 14(3): 38-.
[7] Gastón Azziz, Matías Giménez, Héctor Romero, Patricia M. Valdespino-Castillo, Luisa I. Falcón, Lucas A. M. Ruberto, Walter P. Mac Cormack, Silvia Batista. Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats[J]. Front. Environ. Sci. Eng., 2019, 13(3): 44-.
[8] Yao Zhang, Yayi Wang, Yuan Yan, Haicheng Han, Min Wu. Characterization of CANON reactor performance and microbial community shifts with elevated COD/N ratios under a continuous aeration mode[J]. Front. Environ. Sci. Eng., 2019, 13(1): 7-.
[9] Yandong Yang,Liang Zhang,Hedong Shao,Shujun Zhang,Pengchao Gu,Yongzhen Peng. Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by partial nitritation/anammox[J]. Front. Environ. Sci. Eng., 2017, 11(2): 8-.
[10] Weihua ZENG,Bo WU,Ying CHAI. Dynamic simulation of urban water metabolism under water environmental carrying capacity restrictions[J]. Front. Environ. Sci. Eng., 2016, 10(1): 114-128.
[11] Fangfang ZHANG, Huiquan LI, Bo CHEN, Xue GUAN, Yi ZHANG. Vanadium metabolism investigation using substance flow and scenario analysis[J]. Front Envir Sci Eng, 2014, 8(2): 256-266.
[12] Michael Bruce BECK, Rodrigo VILLARROEL WALKER. Nexus security: governance, innovation and the resilient city[J]. Front Envir Sci Eng, 2013, 7(5): 640-657.
[13] Daijun ZHANG, Cui BAI, Ting TANG, Qing YANG. Influence of influent on anaerobic ammonium oxidation in an Expanded Granular Sludge Bed-Biological Aerated Filter integrated system[J]. Front Envir Sci Eng Chin, 2011, 5(2): 291-297.
[14] WANG Jianfang, ZHAO Qingliang, JIN Wenbiao, LIN Jikan. Mechanism on minimization of excess sludge in oxic-settling-anaerobic (OSA) process[J]. Front.Environ.Sci.Eng., 2008, 2(1): 36-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed